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Abstract A Smart Home is able to generate energy-
related values such as electricity consumption, temper-
ature, or luminosity without higher infrastructure re-
quirements. The main aim of this research is to extract
information from that raw data that could contribute to
improving the energy efficiency management. This pa-
per presents a system which, using different Machine
Learning approaches to learn about the users’ consump-
tion habits, is able to generate collaborative recommen-
dations and consumption predictions that help the user
to consume better, which will in turn improve the de-
mand curve. Moreover, from consumption values, the
system learns to identify devices, enabling the demand
to be anticipated. Taking into account the fact that the
amount of energy data is increasing in real-time, the use
of Big Data techniques will be the key to handling all the
operations and one of the more innovative features of
the system.

Keywords Smart meter . Sensor network . Power
consumption .Machine learning .Energyefficiency.Big
data

Introduction

The objective of increasing energy efficiency by 20 %
was set in the European Union 2020 Strategy as a key
factor to achieving long-term energy and climate goals
(da Graça Carvalho 2012). Although substantial steps
have been taken towards this objective, the European
Commission estimated in 2009 that only half of the
20 % objective would be achieved if that trend contin-
ued and, therefore, a new energy efficiency [lan was
developed in 2011. In this plan, the greatest energy-
saving potential lies in buildings (nearly 40 % of the
final energy consumption), with such policies as the
creation of utilities to enable customers to cut their
energy consumption (European Commission 2011).

In the current year, 2015, the Horizon 2020 program
is being put into practice as the financial instrument
implemented by the Innovation Union, a European
2020 flagship initiative aimed at securing Europe’s
global competitiveness. In this context, the concept of
the Smart Grid is viewed as a key block and is repre-
sented in the main road maps throughout Europe
(Massoud Amin and Wollenberg 2005).

The core element of Smart Grid is the active partic-
ipation on the demand side, and this involves two main
activities, load shifting and energy conservation pro-
grams (Palensky and Dietrich 2011). The first option
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transfers customer load during periods of high demand
to off-peak periods, flattening the load curve, while the
second approach encourages customers to reduce their
consumption, by such methods as reducing the air con-
ditioning thermostat a few degrees.

Smart Metering (Stromback et al. 2011) is considered
to be one of the most cost-effective methods for increas-
ing end-consumer involvement and engagement. This
method is based on an intelligent measuring device
capable of reporting information about the power con-
sumed. The said information can be managed by the
final user to monitor and control the devices in their
home, i.e., their own costs and expenses from any
device connected to the Internet. If the management is
optimum, the final bill is considerably reduced
(Venables 2007). Another key enabling technology is
the Sensor Network, made up of measuring devices that
are distributed and embedded within the environment
(Sheth et al. 2008), collecting such information as the
temperature or humidity.

In the past, several attempts have been made to
improve energy efficiency through the use of Smart
Metering (Christine Easterfield 2013), and it is a fact
that this type of infrastructure is becoming more wide-
spread, although most of the information obtained from
it is not being fully exploited (Jahn et al. 2010). The
main aim of this research is to extract information from
that raw data that can contribute to improving the energy
efficiency management.

In that context, an architecture proposal able to reuse
such data to give feedback, which is a possible proven
energy saver (Fischer 2008), is presented in this re-
search. The concept of Intelligent Infrastructure is ap-
plied—opening up the idea of Smart Grid (Gershenfeld
et al. 2010)—and combined with the use of Machine
Learning (ML) techniques, which permit learning to be
done automatically from the data generated by the home
devices, thus generating useful information to improve
energy efficiency.

A prediction and recommender system can learn the
consumption patterns of a home and thus contribute to
the efficient use of energy. Such knowledge includes the
technical aspects of behavior and habits of life, so a user
can predict the consumption and adapt their activities to
achieve more economies (for instance, considering the
times with the best rate) and more environmentally
responsible habits (Case 2012).

As well as saving energy, the system can help to
detect fraud and abuse through consumption behavioral

pattern analysis. For example, in communal areas, ap-
plying patterns to relate how much, when and how it is
consumed, an improper use of the facilities could be
detected. Furthermore, by modifying the consumption
of final users, it is possible to flatten the demand curve,
so the distribution network is optimized as a result of
reducing consumption peaks. The knowledge of the
behavior pattern of each house, every hour of the week,
allows a better distribution of energy to meet demand.
This could be generalized to any intelligent service
development where low frequency data sampling may
be necessary.

Concerning the possible growth of data, the tradition-
al computing technologies have some limitations in
terms of the capacity to store and process data, above
which specific supercomputers are required, with a very
high-associated cost. Big Data technology (Marz and
Warren 2013) is able to approach the capabilities of
supercomputers using conventional hardware, making
it possible to apply the technology to fields in which it
was unprofitable before. The use in real-time of Big
Data and analytical data techniques applied in this con-
text is the most innovative characteristic of this
contribution.

The rest of the paper is organized as follows: firstly,
in State of the art, an overview of the most relevant
research that has made progress in improving energy
efficiency or that has applied similar ideas and success-
ful technologies to other fields. Secondly, a specific
system applying the mentioned ideas will be described
in Proposed system, with data about the initial results
obtained. Finally, the document ends with the
conclusions.

State of the art

A Smart Home can be defined as a complex system that
integrates technology and services to enhance power
efficiency and improve the quality of life (Robles and
Kim 2010). It is necessary to take into account the fact
that a growing number of consumer items (smart appli-
ances, service robots, or electric vehicles) and different
energy production sources (for instance, renewable en-
ergies like photovoltaic solar energy) are part of that
home. Moreover, it is influenced by many sources of
uncertainty, such as the outdoor temperature or the
behavior of its occupants (Venkatesh 2008). In fact, user
behavior is a key factor to explain households’ energy
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consumption (Gram-Hanssen 2013). There are previous
studies (Hargreaves et al. 2010) that show how feedback
can change consumption behavior.

The design and development of energy manage-
ment systems for homes would require the capability
of predicting such parameters as the temperature or the
energy demand to teach the user how to consume.
Previous studies show that predictive models based
on neural networks (González Lanza and Zamarreño
Cosme 2002; González and Zamarreno 2005) and
support vector machines (SVM) (Zhao and Magoulès
2012) are able to predict both the temperature evolu-
tion in a building and the consumption of their de-
vices, allowing the preparation of corrective policies to
improve the homes’ energy efficiency. Regarding the
requirements of energy demand, several research
works have been carried out in the field of the identi-
fication of devices from power consumption using
different algorithms of machine learning classification,
which would anticipate the energy needs. However,
the obtained results are not accurate enough (Berges
et al. 2009; Murata and Onoda 2002). Similar classi-
fication and pattern characterization problems have
been solved in other areas of knowledge, such as
Computer Vision (Chechik et al. 2010) or the detection
of malicious web sites (Ma et al. 2009), and the basis
can be applied to this field of study.

Furthermore, taking into account the fact that the
environment under study is repeated in all the Smart
Homes and starting from the idea that two users/
buildings with a similar energy profile could be inter-
ested in the same saving measures, a collaborative rec-
ommender system can be used as a complementary
energy-saving tool. Specifically, one of the most used
techniques for recommendations is collaborative filter-
ing (CF), which filters items through the opinions of
other people. It is based on the idea that if the advisors
have similar preferences to the user, he/she is much
more likely to take their opinions into account (Su and
Khoshgoftaar 2009). This kind of tool is used success-
fully in other fields, such as the best known commercial
online companies—e.g., Amazon.com (Linden et al.
2003). However, to the best of our knowledge, it has
not yet been applied to the energy field. The fundamen-
tal assumption is that if users X and Y rate n recommen-
dations similarly or have similar consumption behaviors
(doing the washing at night, air conditioning during
August, etc.), hence, they will rate or act on other
recommendations similarly.

Regarding the state of the technologies for the reali-
zation of the ML process, Weka (Frank et al. 2010) is a
matured software that has the advantage of incorporat-
ing a large number of training algorithms. It can be used
for exploring representative data portions and testing the
suitability of different learning methods easily. But for
larger amounts of data, as in the case of the environment
presented in this research, the tool did not offer a suit-
able response time, so specific tools for Big Data are
needed. The Mahout Apache Project (Owen et al. 2011)
and Jubatus Framework (Jubatus 2011) were selected
for doing the batch and online learning, respectively. On
the one hand, Mahout aims to produce a free implemen-
tation of a package that includes the main ML algo-
rithms. The project is very active, but there are still some
algorithms to be included, especially for time series
classification. Its main advantage over other stand-
alone implementations is the scalability offered when
running on Hadoop (Lam 2010). On the other hand, the
Jubatus online learning framework (Jubatus WebSite
2011) is a tool which maintains the scalability charac-
teristics of Mahout and, in addition, allows a real-time
response to be obtained. It incorporates some weighted
algorithms which are the most appropriate for time
series classifications.

Proposed system

The proposed system architecture is composed of four
main sub-modules:

& The Data Collection element corresponds to the
Smart Home Energy (SHE) project (SHE
Consortium 2012), which obtains the measurements
directly from the home.

& The collected values are processed by the Data
Storage module, which makes them available for
the rest of the modules.

& The Machine Learning module includes all the al-
gorithms that can be executed massively for each
home or user, many times a day, to learn, classify
devices, generate recommendations, or predict the
consumption using a large set of data for each
execution.

& Finally, the Data Visualizationmodule is the closest
to the user and includes data publishing, allowing
the interface to query, receive, and show the data.
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The mentioned components will be described in
depth in the following subsections.

Data collection

The Smart Home Energy environment, whose graphical
description is shown in Fig. 1, is capable of obtaining
energy-related information from the Digital Home, such
as the power consumed by the electrical devices, the
indoor temperature, or the luminosity in a specific zone.

Data acquisition is done by some hardware compo-
nents—the Smart Meter Network and the Sensor
Network—and a software adapter (SHE Adapter) that
makes use of the Web Service for Device (WS4D)
technology (Web Services for Devices (WS4D)
Website (2012)) for making the measurement data
available.

Before sending them to the Cloud, the SHE Adapter
encapsulates the measurements obtained from the home
into an object. Each measurement has an address, a
location, and a time. Besides, for consumption values,
the smart meter identification, the associated appliance,
and the measured consumption value are also provided.
In the case of the sensors, only the sensor code and its
measure are needed.

Data storage

The collected energy-related data from the SHE envi-
ronment is centrally stored by means of Cloud technol-
ogy, which does not require a large infrastructure at

home and, moreover, provides facilities to manage and
maintain the integrity, security, and availability of data
(Rhoton and Haukioja 2011).

The standardized energy measurement rate is
15 min (Franks 2012), due to the limitations of older
technologies. If the rate increases, which is possible,
thanks to Big Data, more detailed information would
be offered, improving our understanding of what
happens at home. Decreasing it, however, would
represent a huge increase in the information storage
and processing capacity, but further possibilities of
extracting value from the information would be
added. Furthermore, the incorporation of consumers
to these measurement techniques would be a re-
markable increase in communications, storage, and
processing requirements.

Specifically, in the system, each home submits con-
sumption information every minute, which means
525,600 samples per year. As other environmental pa-
rameters such as temperature or humidity are also mea-
sured, the number of samples per year in the system rises
to more than three million. Each sample causes the
transmission and storage of 1 kbps, so each home gen-
erates 3,229,286,400 bytes of information per year.
Considering a population of ten million homes, a system
able to process, receive, and store 32 PB of information
per year is needed. Additionally, it would be necessary
to support the execution of the operations to be per-
formed with all this information, which could greatly
increase the needs, and also to give support to remote
user access.

Fig. 1 Smart home energy
environment
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The storage needs are covered through a cost-linear
investment technology based on Big Data. A distributed
file system capable of storing up to the order of
petabytes of information is the key to the storage man-
agement. The system self-manages the integrity of data
through replication, without requiring backups or RAID
disk enclosures. HBase technology is used to achieve
real-time random access to databases consisting of large
tables (billions of rows and millions of columns)
through a Hive motor (Vora 2011).

Application of Machine Learning techniques
to the collected energy-related data

Machine Learning is a technology for mining knowl-
edge from data and then applying it to the new data. A
common practice in machine learning to evaluate an
algorithm is to split the data into two sets, the training
set on which we learn data properties and the testing set
on which we test these properties. Depending on the
learning problem, the learning can be supervised (inputs
and desired outputs are known) or unsupervised (un-
known labels), and the technique is slightly different, so
the learning details will be given in each subsection.

Appliance recognition module

This module’s objective is to identify which device has
the highest probability of generating a specific unla-
beled consumption record. For this purpose, this module
trains a classifier using supervised Machine Learning
techniques.

Taking into account the fact that power consumption
data is an infinite time series, the online learning ap-
proach was considered the most suitable option, offering
simple, fast, and less-memory demanding solutions,
avoiding re-training when adding new data since the
model is generated incrementally.

The solution—graphically described in Fig. 2—fol-
lows a Jubatus client/server structure. The Classifier
Tester processes the Big Data stream and composes
the Training Datum (nomenclature used by Jubatus).
Specifically, it is made up of the minimum and maxi-
mum values, the mean, sum, deviation, and variance.
Finally, the Fast Fourier Transform (FFT) was used to
introduce the frequency aspect.

The classification process involves two main opera-
tions that can be performed in parallel (50 % of the
measured data is used for each one):

– Training the model. The train function of the
Classifier Client receives the labeled record (list of
tuple of datum and its label, following the Jubatus
nomenclature) and returns the number of trained
datum. In each of the iterations, the Classifier
Server obtains and saves a new version of the
model.

– Classification. The model is tested with unlabeled
data. It receives the list of datum to classify and
returns a list of estimated results, specifically, for
each label, the probability of having generated the
input record. The score, which represents the pos-
sibility of belonging to each class, is calculated as
the inner product of the model coefficients and the
feature vector. In this step, it is possible to adjust the

Fig. 2 Appliance identification process
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input variables and configure the learning algorithm
in order to improve the accuracy of the classifier.

The accuracy of the classifier is calculated as the
number of times that an unlabeled record is classified
in the correct class in relation to the total number of tests
carried out. Both the first and second choice were taken
into account, considering the weight of the second as
half (Stamatatos and Widmer 2005).

The results shown in this work were obtained by
training the Jubatus classifier with the consumption
values of seven appliances situated in the Smart Home
(CRT monitor, LCDmonitor, heater, lamp, fridge, print-
er, and smart TV), sending measures at a 1-min rate
(hence, the duration of each training iteration is 16 min).
The experiment has tested all the training algorithms
implemented in Jubatus. They can be classified in three
families according to their basis:

– Perceptron (McDonald et al. 2010), the classical
online learning algorithm performs a multi-class
classification based on a set of weight vectors (one
for each class), which are updated according to the
prediction results, leading to the segmentation of
the data space. Based on this, Passive Aggressive
(PA) (Crammer et al. 2006) is offered by the tool in
three different implementations (PA, PA1, and
PA2), but it does not offer optimum results in
multi-class classification.

– ConfidenceWeighted (CW) (Crammer et al. 2009a,
b) is based on the notion of a parameter confidence
measure, as an improvement over the aforemen-
tioned methods. Maintaining this idea, Adaptive
Regularization of Weights (AROW) (Crammer
et al. 2009a, b) also offers large margin training
and the capacity to handle non-separable data.
Normal Gaussian herding (NHERD) (Crammer
and Lee 2010) is an attempt to improve learning
when some noise is present.

The evolution learning rate of the classifier for each
algorithm can be seen in Fig. 3, where the accumulated
accuracy in the first 15 iterations (4 h of training) is
shown. The best performance (about 74 % recognition
rate) was obtained using weighted algorithms, such as
CW and AROW, which, moreover, are the fastest, pre-
senting values above 60 % of success after 30 min of
training.

Collaborative recommender

The function of this module is to suggest actions to the
users that other similar users have done in their homes,
helping them to reduce their energy consumption.

To this end, it will be necessary to define a method
for calculating the similarity between two users, i.e., the
Bdistance^ between them. When two users are Bclose^
enough, they are considered as belonging to the same

Fig. 3 Evolution of the accumulated accuracy of the classifier for each tested training algorithm
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Bneighborhood^—virtually speaking—and therefore
similar recommendations are offered to them.

The Pearson correlation coefficient and the Euclidean
distance are two valid values, which are based on the
degree of acceptance of the actions that the users chose.
In the specific solution proposed in this work, the users
can agree (value 0) or not (value 1) with the completion
of an action. In this context, the most appropriate algo-
rithms are those of Tanimoto (Cechinel et al. 2013). The
Tanimoto similarity coefficient can be expressed as (1),
where A and B are the number of actions carried out by
the two users whose similarity is calculated, respective-
ly, and C corresponds to the number of actions common
to both users.

T A; Bð Þ ¼ C

Aþ B−C
ð1Þ

From the formula, the distances between all the users
are calculated and stored in a matrix. When a recom-
mendation is required to be given to the user, the algo-
rithm returns the actions that most similar users have
done and that the user has not yet carried out.

As for implementation, specific tools such asMahout
already incorporate these algorithms. The basic steps are
to build a recommendation engine, and from there,
generate recommendations. A sample code can be seen
in Fig. 4.

Predictions

The system generates a weekly consumption prediction
for each user. This massive information can be handled
because the algorithms are implemented using Big Data
technologies, which enable the code to be parallelized
and the calculations to be performed for N users in a
distributed way (cluster of machines), with a linear
function of associated costs.

To make this kind of prediction, which can be seen in
Fig. 5, specific and overall consumption factors are
taken into account, as well as other relevant external
factors, such as holiday schedules, prices, or meteorol-
ogy. The graph allows the user to zoom over it and to
compare the consumption (in green) with the prediction
(in blue). The temperature (°C) is also shown (in red) as
it is a representative input to guide the learning process,
since the air conditioning consumption is a relevant
parameter in business buildings and offices.

Regarding the methodology, the system tries to learn
the behavior under certain climatic conditions, also con-
sidering social or behavioral aspects. In the first itera-
tion, the variations in the prediction were analyzed and
different patterns of day were found (holidays, holidays
with commercial time schedule, holidays with full busi-
ness hours, etc.). This point was solved by typifying the
days and creating different units of knowledge for each
of them.

To consider the seasonal variation, the system first
determines whether the type of day corresponds to a day
in winter, spring, summer, or fall, depending on the
weather, and applying the acquired knowledge of the
season.

Therefore, the system learns and predicts a differen-
tiated Bunit of knowledge^ corresponding to the time
range (morning, noon, afternoon, evening, night), the
range type (spring morning, noon summer, etc.), the
type of day (weekday morning spring, festive, festive
opening noon), and the day except holidays (Monday
spring morning business, etc.), obtaining 140 units of
knowledge.

The system could determine which ML algorithm is
applied in each unit of knowledge, which is different
from one user to the next and even some seasons of the
year, schedules, and other ranges.

The system learns in each case, i.e., how the user
behaves on Monday mornings in spring, on Sunday

Fig. 4 Sample code for generating collaborative recommendations

Energy Efficiency



afternoons in fall, etc., and depending on the day to
predict, the system selects the appropriate unit of knowl-
edge, which relearns from the new measurement.

The strategy used by the model allows the way in
which the system learns to be defined and adjusted,
enhancing the use of relevant data and filtering the
irrelevant data.

The model has been trained and tested over 2 years—
one for training and one for testing—using the informa-
tion (temperature, humidity, and consumption) generated
by two buildings located in different climatic zones,
specifically, Atlantic (a seaside city of northern Spain,
Vigo) and Continental (Madrid, located in the center of
the country) climate zones. The model is able to learn
from the data how energy consumption is correlated with
humidity and temperature measurements and then get the
prediction for 1 week ahead. The value used for testing is
actually the corresponding measured value for the second
year. The effectiveness of the prediction system has been
evaluated by statistical analysis. The interpretation of
these statistics permits the error in the prediction to be
calculated and the way in which that error was distributed
to be evaluated and thereby adjust the learning model.

From the results listed in Table 1, some conclusions
can be drawn. The MAD value offers an insight to the
error that can occur in a prediction, and it is similar in
both climatic zones. Besides that, MAPE, defined as the
probability (between 0 and 1) of the average prediction

errors, presents a better value in the oceanic climatic
zone. The PA can be calculated fromMAPE to compare
different datasets. This technique shows a better value in
the oceanic climatic zone. In the context of our system,
we can predict with that confidence how much and in
which way a user has consumed, taking the recorded
consumption of last year. Considering the RMSD
values, the errors are well spread over time if the value
is low or very concentrated at certain times if the value is
high. Having concentrated errors can be interpreted as
more convenient for adjusting to anomalies. The ocean-
ic zone shows a greater concentration of error than the
continental zone, according to this technique. Finally,
the SD is considered as an indicator of the error disper-
sion regarding the average error. Since the error is
concentrated at certain points, the algorithm has a more
stable performance regarding the error committed in
each prediction than if the error was uniformly distrib-
uted because it would mean that wide variations exist
between different predictions. The continental zone of-
fers a better value in that case.

Data mining and insight

The information is presented to the user using highly
expressive visual graphics, thanks to Data Mining and
Insight technologies, which permit the user to view a lot
of varied information at a glance, thus avoiding having

Fig. 5 Expandable graphic prediction generated by the systems, in comparison with the real measure

Table 1 System efficiency eval-
uation results by means of
statistics

Statistic Atlantic climate zone Continental climate zone

Median absolute deviation (MAD) 237.46 kWh 207.59 kWh

Mean absolute percentage error (MAPE) 0.099 0.194

Prediction accuracy (PA) 90.09 % 80.59 %

Root mean square deviation (RMSD) 333.03 kWh 281.17 kWh

Standard deviation (SD) 233.49 kWh 189.63 kWh
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many disjoint element graphics. In addition, inspection
capabilities are provided, allowing the user to select
sections, filtering the remaining information in order to
draw conclusions.

A relevant graph is the BHeat Map^ of consumption,
where the consumption is represented by a disk com-
prising seven concentric circles (one for each day of the
week) and 24 segments (one for each hour of the day),
wherein the color corresponds to the intensity of con-
sumption (to higher consumption, greater intensity of
blue). This graph helps the user to know his/her con-
sumption pattern, showing the differences in consump-
tion between weekdays, which can help to improve the
associated habits. Moreover, it facilitates the detection
of anomalies that may be caused by device failures,
which cause higher consumption. For example, Fig. 6
shows a higher consumption from 0700 to 2100 h on
weekdays. Besides, two consumption anomalies can be
distinguished, a fall on Saturday between 0200 and
0300 h and a rise on Monday between 0000 and 0100 h.

Relations between the modules

The elements described in the current section can be
seen graphically in the SysML Block Diagram of Fig. 7

(dotted rectangles), which includes both hardware and
software elements.

At the top of the hierarchy, the SHE Adapter collects
the values such as the consumption from the home. The
obtained data is then processed by the Data Storage
module, which follows the concepts of Lambda
Architecture (Fan and Bifet 2013), decomposing the
problem into three layers:

& The Acquisition block collects the data from the
SHE Adapter, to make it available for the Batch
and Real-time blocks.

& The Real-time block is needed to provide a
real-time monitoring and control services to
users through a Graphical User Interface.
This layer needs to aggregate the data, using
typical functions, such as average and summa-
rization for each user, group of devices, and
time intervals, in a near real-time continuous
computing.

& The Batch block includes several components to
store and process the data, applying Data Mining
and Machine Learning algorithms to acquire a cus-
tomized knowledge pool for the home energy
consumption.

Fig. 6 Heat Map of air
conditioning consumption
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The stored data is then available to be used both by the
Data Insight block to generate interactive graphs and
Mahout and Jubatus instances, which will execute the
learning over them, as was described earlier in the section.

Conclusions

The knowledge of household energy is a key factor in
achieving the efficient use of resources. The widespread
use of Smart Meters and Sensor Networks at residential
level facilitates the obtaining of data, but due to their
variety and size, it cannot be directly used to make
conclusions that help to improve the energy efficiency.

The architecture of a four-module system based on
Machine Learning techniques, combined with Big Data
technology, has been presented in this work. Big Data
allows large volumes of varied data to be managed and

offers support for ML algorithms, Data Mining visual
tools, near to real-time monitoring, and other informa-
tion analysis and processing possibilities that fit perfect-
ly with the requirements.

The Data Collection module is based on the data
generated by the Smart Home Energy project, so the
solution does not require investment in infrastructure.
Moreover, it could be applied to any other similar smart
environments.

Cloud technology offers an elastic and resilient solu-
tion without requiring a high-capacity storage infra-
structure at the household level. Besides, the layered
design allows both a batch and a continuous real-time
processing of the measurements to be done, working
with a large set of data taken over time from a large set
of homes and historical database (Data Storagemodule).

The Machine Learning module is composed of three
elements. First, a supervised classifier is trained to

Fig. 7 Proposed system SysML block diagram
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recognize each device from the consumption data, with
the aim of being able to anticipate its consumption
demand. By using some weighted algorithms, recogni-
tion rates above 74% have been obtained, a value which
improves with time, since the learning is done online. A
potential improvement could be the use of clustering
techniques in a previous phase in order to find out which
category the device belongs to and therefore reduce the
number of candidates that the classifier would need to
screen it with. Furthermore, by applying the concept of
user energy profile, a collaborative recommender pro-
cesses the user actions in order to make energy-saving
suggestions for similar users. It is also possible to extract
consumption patterns and thus allow predictions to be
made to anticipate and adapt to other cheaper options.
The efficiency of this module was evaluated in buildings
located in two different climatic zones, and an accuracy
of 90 % has been achieved in the Atlantic Zone.

A useful complementary tool—belonging to the Data
Mining and Insight module—, is the incorporation of
interactive and customizable graphs to show the informa-
tion to the user, who is able to manage the energy con-
sumption and consequently improve the energy efficiency.

Summarizing, a complete infrastructure to improve
the energy efficiency from the data generated by a smart
environment has been proposed. The main advantages
of the solution are that it is open, distributed, and scal-
able. The application of Big Data technology allows the
information to be analyzed in more detail than with
traditional technology, and the application of it to the
energy sector is an innovative idea.
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