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Due to the high efficiency in finding the most relevant online products for users from the information 

ocean, recommender systems have now been applied to many commercial web sites. Meanwhile, many 

recommendation algorithms have been developed to improve the recommendation accuracy and diver- 

sity. However, whether the recommended items are timely or not in these algorithms has not yet been 

well understood. To investigate this problem, we consider a temporal data division which divides the 

links to probe set and training set strictly according to the time stamp on links. We find that the recom- 

mendation accuracy of many algorithms are much lower in temporal data division than in the random 

data division.With a timeliness metric, we find that the low accuracy is caused by the tendency of these 

algorithms to recommend out-of-date items, which cannot be detected with the random data division. To 

solve this problem, we improve the considered recommendation algorithms with a timeliness factor. The 

resulting algorithms can strongly suppress the probability of recommending obsolete items. Meanwhile, 

the recommendation accuracy is substantially enhanced. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The digital revolution brought to us what is known as “infor-

mation overload”, i.e. there is too much information for a sin-

gle individual to deal with. As a result, nowadays there is hardly

an e-commerce website without some form of information filter-

ing and recommendation service ( Xiao & Benbasat, 2007 ).Thanks

to the Web 2.0 and Web applications, the recommender systems

have been achieving rapid development. The recommender sys-

tems can help users find the useful items from the online in-

formation ocean. The e-commerce development has also greatly

promoted the advantages of recommender systems, such as the

Amazon.com and eBay.com . Accurate and efficient recommenda-

tion algorithms can help us analyze the potential consumption

trends of users, and eventually provide an effective personalized

recommendation service for them. The e-commerce development

has also greatly promoted the advantages of recommender sys-

tems, such as the Amazon.com and eBay.com . Accurate and ef-

ficient recommendation algorithms can help us analyze the po-

tential consumption trends of users, and eventually provide an

effective personalized recommendation service for them. So far,

there are many efficient recommendation algorithms that have
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een proposed, such as the collaborative filtering ( Bobadilla, Or-

ega, Hernando, & Gutirrez, 2013; Jeong, Lee, & Cho, 2010; Kon-

tan et al., 1997 ), diffusion-based ( Zhang, Blattner, & Yu, 2008;

hou et al., 2010; Zhou, Ren, Medo, & Zhang, 2007 ), content-based

 Salter & Antonopoulos, 2006; Serrano-Guerrero, Herrera-Viedma,

livas, Cerezo, & Romero, 2011 ), trust-aware ( Martinez-Cruz, Por-

el, J., Moreno, & Herrera-Viedma, 2015; Massa & Bhattacharjee,

004 ), social impact ( Deng, Huang, & Xu, 2014; Qian, Feng, Zhao, &

ei, 2014 ) and tag-aware ( Feng & Wang, 2012; Huang, Yeh, Lin, &

u, 2014 ) algorithms. 

Time-aware recommender systems (TARS) have been received

ncreasing attention in recent years ( Campos, Díez, & Cantador,

014 ). Most studies about time-aware recommender system focus

n the idea that the attraction of items to users in online systems

ill decay with time ( Ding & Li, 2005; Koren, 2009; Xiang et al.,

010 ), which means that the user’s most recent ratings on a neigh-

orhood of similar items show her current trend on such items. 

However, an important issue, the timeliness of the recom-

ended items, has been overlooked in most of the literature. Ev-

ry item has its life cycle. Some are short, such as the items in

 news website. Some are long. For example, some popular films

n the past like “Titanic” are still chosen by some customers now.

e assume that a user tend to select a new item or an item long

eing listed in the website but still popular now. Therefore, a well-

erformed recommendation algorithm should be able to include

hose items in the recommendation lists, and a metric should be

http://dx.doi.org/10.1016/j.eswa.2017.05.038
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esigned to measure such timeliness feature of the recommenda-

ion algorithms. The previous recommendation metrics such as ac-

uracy and diversity, however, fail to capture such timeliness fea-

ure. 

In order to address the above problem, in this paper we pro-

ose a timeliness metric which measures whether the recom-

ended items are timely. We examine the timeliness metric of

any well-known recommendation algorithms with the temporal

ata division, i.e. the real data is divided to the training set and

robe set strictly according to time. We find that most of the ex-

sting recommendation algorithms have very low timeliness value,

ncluding even the Heat Conduction algorithm which is supposed

o recommend unpopular yet relevant items. We finally develop

n effective framework to improve the timeliness of the existing

ecommendation algorithms. Interestingly, we find that the recom-

endation accuracy of the methods are simultaneously increased.

he results are consistent when the methods are tested in differ-

nt real data sets. The contributions of this study are as follows:

1) We study the performance of some representative recommen-

ation algorithms with the temporal data division, and find that

he recommendation accuracy with temporal data division is much

ower than that with random data division. The reason behind this

s that the probe set in the temporal probe set has many new

tems, but traditional recommendation algorithms do not consider

he timeliness of the recommend items. Therefore, the accuracy

f most existing recommendation algorithms is low. (2) We pro-

osed a timeliness metric for recommender systems, which mea-

ures whether the recommended items are timely, due to the fact

hat previous recommendation metrics such as accuracy and di-

ersity fail to capture such timeliness feature. (3) To enhance the

ecommendation accuracy in the temporal data division, we pro-

ose a simple timeliness-based recommendation framework which

an be applicable to any recommendation algorithm including CF,

iffusion-based algorithms, content-based algorithms and hybrid 

lgorithms. It directly modifies the recommendation score of items

y incorporating their timeliness factor. We find that with this

odification, the recommendation accuracy is largely improved. 

The paper is organized as follows. In Section 2 , we will give

 brief review of the relevant works. In Section 3 , we will in-

roduce the timeliness metric and describe our timeliness based

ecommendation algorithms we are going to used. In Section 4 ,

e will present the simulation results and discussion. Finally, we

ill conclude this work with a brief outlook of the future work in

ection 5 . 

. Related works 

.1. Recommendation algorithms 

In the literature, there are many effective recommendation al-

orithms. Collaborative filtering (CF) is the most widely applied

ecommendation technology in real online systems ( Bobadilla, Or-

ega, Hernando, & Gutirrez, 2013; Konstan et al., 1997; Łady ̇zy ́nski

 Grzegorzewski, 2015 ). In addition, the content-based ( Salter

 Antonopoulos, 2006; Serrano-Guerrero, Herrera-Viedma, Olivas, 

erezo, & Romero, 2011 ), trust-aware ( Martinez-Cruz, Porcel, J.,

oreno, & Herrera-Viedma, 2015; Massa & Bhattacharjee, 2004 ),

ocial impact ( Deng, Huang, & Xu, 2014; Qian, Feng, Zhao, & Mei,

014 ) and tag-aware ( Feng & Wang, 2012; Huang, Yeh, Lin, & Wu,

014 ) are also frequently used recommendation technologies. Re-

ently, the fruitful achievements of complexity theory, especially

ome physical methods such as mass diffusion ( Lü & Liu, 2011;

hang, Lu, Zhang, & Zhou, 2009; Zeng, Vidmer, Medo, & Zhang,

014; Zhou et al., 2010; Zhou, Ren, Medo, & Zhang, 2007 ) and

eat conduction ( Liu, Zhou, & Guo, 2011; Zhang, Blattner, & Yu,
008 ), have attracted increasing attention from both computer sci-

nce and physics community. 

Researchers use the user-item bipartite network to model the

nline commercial system ( Lü et al., 2012 ). The mass diffusion al-

orithm is a spreading process on the bipartite network, which has

igh accuracy but low personality and surprisal ( Lü & Liu, 2011;

hang, Lu, Zhang, & Zhou, 2009; Zeng, Vidmer, Medo, & Zhang,

014; Zhou et al., 2010; Zhou, Ren, Medo, & Zhang, 2007 ). The

eat conduction method, another spreading process on bipartite

etwork, has low accurate but high personality and surprisal ( Liu,

hou, & Guo, 2011; Zhang, Blattner, & Yu, 2008 ). In ref. ( Zhou

t al., 2010 ), the authors proposed a hybrid method to combine

he mass diffusion and heat conduction which solve the appar-

nt diversity-accuracy dilemma of recommender systems. In other

ords, a recommender system should not only consider to rec-

mmend the popular objects, but also the niche objects. After ref.

 Zhou et al., 2010 ), many different methods have been proposed

o achieve even better recommendation performance. For exam-

le, the preferential diffusion ( Lü & Liu, 2011 ) and the biased heat

onduction ( Liu, Zhou, & Guo, 2011 ) have been designed to yield

igher accuracy and larger diversity compare to the method in

 Zhou et al., 2010 ). Moreover, the network manipulation has been

hown to effectively solve the cold-start problem in recommenda-

ion ( Zhang & Zeng, 2012 ). To enhance the efficiency of the recom-

endation process, the method to extract the information back-

one (minimum structure) from online system is also designed

 Zhang, Zeng, & Shang, 2013 ). Very recently, the long-term influ-

nce of the recommendation methods on the user-item bipartite

etwork evolution is studied ( Zeng, Chi, Medo, & Zhang, 2015 ). It

s found that many personalized recommendation methods have

einforce effect on item degree distribution. 

.2. Evaluation metrics 

As it is very costly to directly validate the effectiveness of the

ecommendation algorithms in online web sites, researchers have

roposed the training-probe set data division framework. So far,

ost of the recommendation algorithms are examined with the

andom data division, i.e. the real data is randomly divided to a

raining set and a testing set ( Herlocker, Konstan, Terveen, & Riedl,

004 ). In a recent review ( Yu, Zeng, Gillard, & Medo, 2015 ), it is

entioned that recommendation should be done with the data di-

ided into the training set and probe set based on the time stamps

n links. Focusing on the over-fitting problems for recommenda-

ion algorithms, Zeng et al. proposed a triple data division model in

hich the real data is divided into a training set, a learning set and

 probe set ( Zeng, Vidmer, Medo, & Zhang, 2014 ). The basic idea is

o estimate users’ parameters with the learning set and then ap-

lied the learned parameters to actually predict users’ future ob-

ects in the probe set. 

Many metrics have been proposed to measure the performance

f the recommendation methods ( Gunawardana & Shani, 2008 ).

ne main aspect to measure is the recommendation accuracy

hich is simple the overlap of the predicted items and the true

uture items selected by the users ( Bobadilla, Ortega, Hernando, &

utirrez, 2013 ). The effectiveness of most existing recommenda-

ion algorithms are judged by their accuracy ( Herlocker, Konstan,

erveen, & Riedl, 2004 ). The recommendation diversity is another

mportant aspect of the recommendation performance ( Bradley &

myth, 2001 ). It measures whether the recommended items are

ifferent from one user to another (which is usually called person-

lity) and whether the recommended items are of small popularity

which is usually called surprisal). The recommendation diversity is

ow gradually accepted also by the computer scientists as a signif-

cant aspect for recommendation performance. 
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Fig. 1. The illustration of the reason of using the timeliness metric in recommen- 

dation. 
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2.3. Time-aware recommendation algorithms 

Since the purchase behaviors which happened long time ago

could not truly reflect the current interests of the target user, many

methods have been proposed to improve the recommendation ac-

curacy with the time information. The first recommendation algo-

rithm considering time information is the one proposed by Zim-

dars et al. who mapped the recommendation problem as a time se-

ries prediction problem ( Zimdars, Chickering, & Meek, 2001 ). After

that, most of the related work focused on the collaborative filtering

(CF) method. The ways to improve CF are mainly heuristic-based

(or memory-based) approaches ( Adomavicius, Sankaranarayanan,

Sen, & Tuzhilin, 2005 ) and model-based approaches ( Koren, 2009 ).

Recently, Song et al. investigated the impact of the time window

on the training set on recommender algorithms. The experimen-

tal results indicate that by only selecting a portion of recent rat-

ing records as the training set, the accuracy could be improved a

lot, and the diversity could be improved slightly ( Song, Qiang, &

Liu, 2015 ). For a recent review on the time-aware recommenda-

tion algorithms, see Ref. ( Campos, Díez, & Cantador, 2014 ). Even

though these methods can effective improve the recommendation

accuracy, whether these existing algorithms can avoid recommend-

ing obsolete items still remains unknown. This is partially because

a metric measuring the timeliness of the recommended items is

missing. In addition, how to incorporate the time information in

the diffusion-based algorithm is not well investigated. The contri-

bution of this paper is to solve these two problems. 

3. Timeliness metric and timeliness-based recommendation 

algorithms 

3.1. Definition of timeliness metric 

Every item has its product life cycle. If an item has passed its

maturity and enters recession, it means that fewer and fewer cus-

tomers will pay attention to it. A well-performed recommendation

algorithm should be able to include those items not in recession.

The existing recommendation algorithms treat items in recession

the same as other items in the recommendation process. Here, we

propose a new metric called timeliness to measure the extent to

which the items are new or long listed in the market. For a item

α, its timeliness T α can be computed as 

T α = 

1 

k α

∑ 

i ∈ U α
(t iα − t 0 ) , (1)

where k α is the degree of item α representing the number of users

selecting it, U α is the set of users who selected α, t i α is the time

when i selects item α, t 0 is the starting time of the data set. Ac-

cordingly to this definition, if an item appeared long time ago but

recently selected by many users, its timeliness can still be high.

With this definition, one can estimate the timeliness of the items

in a user i ’s recommendation list, as a metric evaluating the rec-

ommendation results. Mathematically, it reads 

T i (L ) = 

1 

L 

∑ 

α∈ O i 
T α, (2)

where T α is the timeliness of item α. O i represents the recommen-

dation list for user i , and L is the length of the recommendation

list. The timeliness of the recommendation algorithm T ( L ) is ob-

tained by averaging T i ( L ) of each user. A high T ( L ) indicates the

strong timeliness of the recommended items. The reason of using

the timeliness metric in recommendation is illustrated in Fig. 1 .

Neither the old relevant items in recession nor the new irrelevant

items are good recommendations. The relevant and timely items

are more likely to be liked by the users. 
.2. Timeliness-based recommendation algorithms 

As mentioned in Section 3.1 ,timeliness is a quantity measuring

hether an item is still relevant in current time. A low timeliness

alue indicates that the item is already out-of-date. We assume

hat a user tend to select a timely item, which is not considered

n traditional recommendation algorithm. Therefore,in this paper

e propose a simple timeliness-based recommendation framework

hich can be applied to different existing recommendation algo-

ithms. 

Usually, each recommendation algorithm will obtain a recom-

endation score of an item α to user i , denoted as f i α . As in most

lgorithms, a value f i α is calculated as the recommendation score

f an item α to a user i. The basic idea of our approach is that the

core of the out-of-date items should be suppressed. Therefore, we

ropose a straightforward modification of the score, which is sim-

ly the product of the f i α and T α (the timeliness of item α). As f i α
s a general score which needs to be calculated in any recommen-

ation algorithm, our medication is actually applicable to any rec-

mmendation algorithm including CF, diffusion-based algorithms,

ontent-based algorithms and hybrid algorithms. The timeliness-

ased recommendation approach simply modifies this score by 

˜ f iα = f iα × T α (3)

here T α is the timeliness of item α. The recommendation list for

ser i can be obtained by sorting vector ̃  f i in descending order. The

imeliness-based recommendation approach can be applied to any

ecommendation algorithm (see the description of some represen-

ative recommendation algorithms below). 

. Numerical experiments 

.1. Recommendation algorithms 

Among the existing recommendation algorithms, we consider

ve representative ones including the popularity-based recommen-

ation (PR) method ( Lü et al., 2012 ), the item-based collaborative

ltering, the Mass diffusion method ( Zhou, Ren, Medo, & Zhang,

007 ), the heat conduction method ( Zhang, Blattner, & Yu, 2008 )

nd the hybrid method ( Zhou et al., 2010 ) in this paper. Before

ntroducing the recommendation algorithms, we first describe the

otations for the user-item bipartite networks. This kind of net-

ork consists two types of nodes, i.e. user nodes and item nodes.

f a user collects an item, a link is drawn between them. We con-

ider a system of N users and M items represented by a bipartite

etwork with adjacency matrix A , where the element a = 1 , if a
iα
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ser i has collected an object α, and a α = 0 , otherwise (throughout

his paper we use Greek and Latin letters, respectively, for item-

nd user-related indices). 

The most straightforward method is the popularity-based rec-

mmendation (PR) method. In this method, each user is recom-

ended with the top- L most popular items where L is the length

f the recommendation list. The recommendation score of an item

to user i is simply f iα = k α where k α is the cumulative degree

popularity) of item α. 

The collaborative filtering (CF) is a personalized recommenda-

ion algorithm which means that users are presented with dif-

erent recommendation results. It consists of the user-based and

tem-based versions. In general, the item-based collaborative filter-

ng (ICF) has higher accuracy. Therefore, in this paper we consider

his algorithm. In ICF, the recommendation score of an unselected

tem is evaluated based on its similarity with the collected items

f the target user. Here we define the similarity with the Cosine

ndex ( Salton & Mcgill, 1983 ) in the bipartite networks. The final

ecommendation score for each item can be written as 

f iα = 

M ∑ 

β=1 

s αβa iβ, (4) 

here s αβ is the cosine similarity between item α and β . The rec-

mmendation list for each user i is obtained by sorting f i α in de-

cending order. 

The Mass diffusion and Heat conduction methods are both

ased on a two-step spreading process on the user-item bipartite

etwork. The components of the adjacency matrix as a i α and the

ector with initial resources as g i where component g i α is the re-

ource assigned to item α. When computing recommendation for

ser i , the resource vector is initialized as g iα = a iα, i.e., one unit of

esource is assigned to each item collected by user i . The recom-

endation scores f i are obtained as f i = W g i . The difference be-

ween the Mass diffusion and Heat conduction methods lays on

he matrix W . In general, W can be written as 

 αβ = 

1 

k 1 −λ
α k λ

β

N ∑ 

j=1 

a jαa jβ

k j 
, (5) 

here k β is the degree of item β and k j is the degree of user j.

∈ [0, 1] is a tunable parameter. As λ increases from 0 to 1, this

o-called hybrid algorithm changes gradually from Heat conduction

ethod (i.e. λ = 0 ) to Mass diffusion method (i.e. λ = 1 ). 

.2. Data 

In this paper, we use data sets from two real online web sites.

he MovieLens 1 data is about ratings of online users on movies.

he level of rating from 1 to 5 as worst to best. We remove the

atings lower than 3 ( Lü & Liu, 2011 ) (The rating lower than 3

eans the user don’t like the item). After filtering, the data con-

ains 864,581 user-object pairs including 50 0 0 users and 7533

tem. The data has time information, with 1096 days in total. The

etflix data 2 is a random sampling of the whole records of user

nteraction in the Netflix website. It has the ratings of 4960 online

sers on 16,569 movies. We also carry out the filtering process by

onsidering the link with ratings equal or above 3. After link fil-

ering, there are 1,249,058 links left. This data also has time in-

ormation, with 2183 days in total. To model the recommendation

rocess, the real data is divided into two parts according to the

ime stamp: the earliest 90% links form the training set (ET) and

he rest of the data (i.e. the latest 10% links) form the probe set
1 http://www.grouplens.org/ . 
2 https://www.netflix.com/ . 

r  

t  

t  

m

EP). The training set is treated as known information and the rec-

mmendation algorithms will be applied to it. The probe set will

e used to evaluation the performance of the recommendation al-

orithms. Some main evaluation metrics are described below. 

.3. Metrics 

The ranking score ( RS ) is one of the representative accuracy

etrics ( Zhou et al., 2010 ). For a target user i , the position for each

f his link (i.e. his selected object) in the probe set is measured.

ssume the rank of object α in i ’s recommendation list is r i α and

he total number of unselected objects is n i , then the ranking score

f this probe set link i α is r i α/ n i . The ranking score of the recom-

endation algorithm is obtained by 

S = 

1 

| E P | 
∑ 

iα∈ E P 
RS iα. (6) 

learly, a well-performed recommendation algorithm will place the

robe set link in the top of users’ recommendation lists. Therefore,

he smaller RS , the more accurate the recommendation algorithm. 

RS calculates the accuracy of the recommendation algorithms

ased on the whole ranking lists of the objects. However, in real-

ty the recommender systems only show each user a short list of

he most relevant objects. Therefore, whether the top ranking list

ts users’ interest is a more practical question. The precision ( P )

etric aims to evaluate the recommendation algorithms’ accuracy

n this aspect. For each user i , the precision of recommendation is

alculated as 

 i (L ) = 

d i (L ) 

L 
, (7) 

here d i ( L ) represents the number of user i ’s probe set links in the

op- L places in the recommendation list. The precision P ( L ) of the

ecommendation algorithms can be obtained by averaging the indi-

idual precisions over all users with at least one link in the probe

et. The higher the P ( L ), the better the recommendation results. 

Besides accuracy, diversity is also very important for recom-

endation algorithms. In this paper, we consider two standard di-

ersity metrics: personalization and surprisal ( Zhou et al., 2010 ).

he personalization measures how users’ recommendation lists are

ifferent from each other. Such difference is computed with the

amming distance. For user i and j , their hamming distance can be

xpressed as 

 i j (L ) = 1 − C i j (L ) 

L 
, (8)

here C ij ( L ) is the number of common items in the top- L place

f the recommendation list of i and j . According to the definition,

 ij ( L ) is between 0 and 1, which are respectively corresponding to

he cases where i and j have the same or an entirely different rec-

mmendation list. By averaging D ij ( L ) over all pairs of users, we

btain the personalization D ( L ) of the recommendation algorithms.

he higher D ( L ), the more personalized the recommendations. 

Surprisal measures the average popularity of the items in the

ecommendation list. This is based on the fact that users may have

lready known the popular objects from other channels. Therefore,

 well-performed recommendation algorithm should help users

iscover unpopular objects. Therefore, the surprisal metric can be

ritten as 

 i (L ) = 

1 

L 

∑ 

α∈ O i 
k α, (9)

here O i represents the recommendation list for user i, k α rep-

esents the degree of the item α (i.e. number of links connecting

o item α). The surprisal of the recommendation algorithm is ob-

ained by averaging I i ( L ) of each user. A low I ( L ) indicates recom-

endation of unpopular objects. 

http://www.grouplens.org/
https://www.netflix.com/
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Fig. 2. (Color online) The recommendation performance ((a) ranking score; (b) precision; (c) personalization; (d) surprisal) of the mass diffusion and item-based collaborative 

filtering algorithms under the random data division and temporal data division. The network used in this figure is Movielens. 

40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

training set size(%) 

Ra
nk

s

40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

training set size(%) 

Pr
ec

isi
on

40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

training set size(%) 

Di
ve

rs
ity

40 50 60 70 80 90 100
500

1000

1500

2000

training set size(%) 

No
ve

lty

(a) (b)

(c) (d)

MD(random) ICF(random) MD(temporal) ICF(temporal)

Netflix

Fig. 3. (Color online) The recommendation performance ((a) ranking score; (b) precision; (c) personalization; (d) surprisal) of the mass diffusion and item-based collaborative 

filtering algorithms under the random data division and temporal data division. The network used in this figure is Netflix. 
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5. Results and discussion 

To begin our analysis, we compare the recommendation results

of the recommendation algorithms under the random data divi-

sion and temporal data division, as shown in Figs. 2 and 3 . As

mentioned above, the temporal data division is based on the time

stamps on links (i.e. earlier links are put in the training set and

later links are put in the probe set). The random data division ad-

justs the size of the training set by directly controlling the number
f links placed in the training set. The temporal data division, how-

ver, adjusts the size of the training set by selecting different test-

ng time. For a fair comparison, we make sure that when the frac-

ion of links in the training set is p in the random data division, the

raction of links in the training set is also p in the temporal data

ivision. We use the Mass diffusion method and the item collab-

rative filtering method as examples, and show their performance

ith both kind of data divisions. In both Figs. 2 and 3 , one can

ee that the recommendation performance is very different when a
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Fig. 4. (Color online) The distribution of T α in users’ recommendation lists when different recommendation algorithms are applied. The method marked with “T” is the 

timeliness-based version of the method. The network data used in this figure is Movielens. 
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timeliness-based version of the method. The network data used in this figure is Netflix. 
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ecommendation algorithm is applied to the random data division

nd the temporal data division. Specifically, the recommendation

ccuracy is much lower in the temporal data division, indicating

hat the random data division cannot capture the recommendation

rocess in real systems and real future items of online users are

ard to predict. 

We investigate the existing recommendation methods with re-

pect to the timeliness of the recommended items. The Mass diffu-

ion, Heat conduction, Collaborative filtering and Popularity-based

ethods are examined. For each method, we compute T α = t α − t 0 
or each recommended item α in users’ recommendation lists. We

hen compare the distribution of T α obtained by different methods

n Fig. 4 and Fig. 5 . One can see that the distribution of T α obtained

y the Mass diffusion, Collaborative filtering and Popularity-based

ethods all have very small probability for large T , indicating that

any recommended items by these methods are out-of-date. On

he contrary, the distribution of T α obtained by Heat conduction
as a higher probability for large T , indicating that this method

an recommend many timely items to users. 

Based on the timeliness metric, we further design for each

ethod a timeliness-based version that can include more timely

tems in the recommendation lists. As discussed in the method

ection, the recommendation algorithm will compute for each user

 the recommendation scores of his/her unselected items α as

 i α . The timeliness-based version of the recommendation algo-

ithm is simply modifying the recommendation scores as f iα(t α −
 0 ) , and the recommendation list for user i is finally gener-

ted by sorting f iα × (t α − t 0 ) in descending order. Even though

ut-of-date items have high f i α , its (t α − t 0 ) is very small. We

how the timeliness distribution of the timeliness-based mass dif-

usion, timeliness-based heat conduction, timeliness-based item- 

ased collaborative filtering, timeliness-based popularity-based al- 

orithms in Figs. 4 and 5 . One can clearly see that the timeliness-
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Fig. 6. (Color online) The dependence of ranking score and precision on the training set size when the traditional and timeliness-based methods are applied. The size of the 

training set is measured by the number of days’ data in the training set. The probe set consists of 10% (this ratio is with respect to the total number of links in the data set) 

future links after the testing time. (a)(b) are the results of the Movielens data set. (c)(d) are the results of the Netflix data set. 
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based recommendation methods can provide much more timely

items compared to their traditional counterparts. 

We then further study whether the timeliness-based recom-

mendation algorithms can improve the recommendation accuracy.

To this end, we plot in Fig. 6 the dependence of ranking score

and precision on the training set size (measured by the number of

days’ data in the training set) when the traditional and timeliness-

based methods are applied. We consider Mass diffusion as an ex-

ample in Fig. 6 . One can see that the traditional and timeliness-

based methods perform similarly when the training set is small.

However, when the training set size is larger than a certain value,

the performance of the traditional and timeliness-based methods

start to split, i.e. the ranking score of the traditional method grad-

ually becomes worse while the ranking score of the timeliness-

based method decreases quickly to a small value and then becomes

stable. The improvement in the recommendation accuracy is due to

the fact that more timely items are presented in the recommenda-

tion lists and users tend to selected these items. The phenomenon

is roughly similar when the accuracy is measured by Precision. In

Fig. 6 , we also compare the results in both Movielens and Netflix

data sets, and the results are consistent. 

Finally, we take into account the well-known Hybrid recom-

mendation algorithm which is a combination of the Mass diffusion

and Heat conduction methods with a tunable parameter λ (see

the method section). We introduce another parameter controlling

the effect of the timeliness factor in the corresponding timeliness-

based method. Specifically, the recommendation score of items can

be written as f iα × (t α − t 0 ) 
θ . When θ = 0 , the timeliness-based

method reduces to the traditional method. The larger θ is, the

more weight are given to the timeliness of the items when the

algorithms decides whether an item should be recommended. In

Fig. 7 (a) and (b), we first fix θ = 1 , and study the dependence

of ranking score on the training set size when traditional Hy-

brid method and the timeliness-based Hybrid method are used.

In both methods, λ is set to be the optimal value with respect

to the ranking score. One can see that the behavior of the Hybrid

method is similar to the Mass diffusion method, i.e. the timeliness-

based Hybrid method remarkably outperforms the traditional Hy-

brid method in recommendation accuracy. 

In Fig. 7 (c) and (d), we study the effect of θ on the ranking

score. Clearly, the ranking score achieves a minimum value at cer-
ain θ , meaning that to achieve the optimal recommendation ac-

uracy one has to take into account both relevance (i.e. the diffu-

ion scores obtained via the Hybrid algorithm) and timeliness of

he items. In Fig. 7 (e) and (f), we study the dependence of the

anking score on parameter λ. One can see that the optimal λ is

ery different in the random data division and the temporal data

ivision. The optimal λ is closer to 0 in the traditional Hybrid

ethod, indicating that the Mass diffusion method should be given

ore weight and the recommendation should be more biased to

he unpopular items. On the contrary, the optimal λ is closer to

 in the timeliness-based Hybrid method, indicating that the Heat

onduction method plays a more important role and the recom-

endation should give priority to the popular items. The differ-

nce of λ is due to the fact that in the temporal data division,

any items in the probe set are new items with small degree.

herefore, a more accurate recommendation should include more

npopular items in the recommendation list. The timeliness-based

ybrid method has already taken into account the timeliness of

he items, so the recommended items are already new and the pa-

ameter λ doesn’t have to be small (close to Heat conduction). In

able 1 , we quantitatively compare the traditional and timeliness-

ased recommendation algorithms in Movielens and Netflix data

ets. Clearly, all the five timeliness-based recommendation meth-

ds result in higher timeliness compared to their traditional coun-

erparts. Meanwhile, all the five timeliness-based recommendation

lgorithms except Heat conduction method outperform the tradi-

ional recommendation algorithms on rank score metric. 

. Conclusion 

In this paper, we study the performance of some representative

ecommendation algorithms with the temporal data division. Af-

er a testing time is set, the links appearing before this time con-

ists of the training set and the links appearing after this time are

laced in the probe set. We find that the recommendation perfor-

ance of these algorithms is significantly different in the temporal

ata division and the traditional random data division. In general,

he recommendation accuracy with temporal data division is much

ower than that with random data division. The reason behind this

s that the probe set in the temporal probe set has many new

tems. But traditional recommendation algorithms don’t consider
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Fig. 7. (Color online) (a)(b) show the dependence of ranking score on the training set size when traditional Hybrid method and the timeliness-based Hybrid method are 

used in Movielens and Netflix, respectively. In these two figures, the parameter θ and λ are respectively set as 1 and the optimal value for ranking score. (c)(d) show the 

effect of θ on the ranking score in Movielens and Neflix. In these two figures, the parameter λ is set as the optimal value for ranking score. (e)(f) show the dependence of 

the ranking score on parameter λ in Movielens and Neflix. In these two figures, the parameter θ is set to be 1. 

Table 1 

Comparison of the traditional and timeliness-based recommendation algorithms in Movielens and Netflix data sets. For the ranks metrics, the smaller the 

better, while, regarding the timeliness metric, the higher the better. The algorithm with better performance is highlighted in bold font. 

Method Movielens ( ranks ) Movielens ( timeliness ) Netflix ( ranks ) Netflix ( timeliness ) 

Traditional Timeliness-based Traditional Timeliness-based Traditional Timeliness-based Traditional Timeliness-based 

PR 0.1929 0.1188 613.7 810.0 0.1440 0.1049 1631 1908 

ICF 0.1927 0.1212 612.6 747.9 0.1386 0.1005 1640 1888 

MD 0.1677 0.1069 614.5 717.2 0.1184 0.0871 1665 1878 

HC 0.1634 0.1307 625.3 729.1 0.1247 0.1717 1807 1919 

Hybrid 0.1450 0.1061 615.2 665.0 0.1006 0.0840 1671 1864 
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D  
he timeliness of the recommend items. Therefore, the accuracy of

ost existing recommendation algorithms is low. To enhance the

ecommendation accuracy in the temporal data division, we pro-

ose a temporal recommendation approach. It directly modifies the

ecommendation score of items by incorporating their timeliness

actor. We find that with this modification, the recommendation

ccuracy is largely improved. 

Our work opens up a couple of questions for future research.

ne straightforward extension would be systematically examine

he recommendation performance of all the existing recommenda-

ion algorithms with the temporal data division. This will give us

 better understanding of the true performance of these methods.

urthermore, some better way to incorporate the timeliness infor-

ation in the recommendation algorithms can be designed in the

uture. For instance, a preferential diffusion could be designed in

hich the diffusion score are biased to the timely items. Last but

ot least, as the temporal data division include many new items, a

ore fundamental problem in this situation is the cold-start prob-

em. Even though in the literature many methods have been pro-

osed to solve the cold-start problem. These methods have to be

eexamined with the temporal data division for the true effective-

ess. Only those with high accuracy in the temporal data division
an eventually enjoy a satisfactory performance in real applica-

ions. 
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