
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 1

2n RNS Scalers for Extended 4-Moduli Sets
Leonel Sousa, Senior Member, IEEE

Abstract—Scaling is a key important arithmetic operation and is difficult to perform in Residue Number Systems (RNS). This
paper proposes a comprehensive approach for designing efficient and accurate 2n RNS scalers for important classes of moduli
sets that have large dynamic ranges. These classes include the traditional 3-moduli set, but the exponent of the power of two
modulo is augmented by a variable value x ({2n − 1, 2n+x, 2n + 1}), and any extended set with an additional modulo m4

({2n − 1, 2n+x, 2n + 1[,m4]}). The proposed approach embeds scaling into the formulation of the Chinese remainder theorem
and the mixed radix system, and it exploits the properties of the target moduli sets to perform scaling explicitly in the RNS
domain. This is accomplished by operating hierarchically on each channel without requiring reverse and forward conversions.
Simple memoryless VLSI architectures are proposed based on the obtained formulations. The relative assessment indicates
that not only are these architectures comprehensive and suitable for configurable systems, but they are also more efficient than
the related state of the art in terms of both performance and energy. The experimental results obtained for a 90 nm CMOS
ASIC technology show improvements in the area-delay product, normalized with respect to the dynamic range, of up to 57%
and 146% with the proposed scalers for the augmented 3-moduli set (dynamic range of 4n − 1 bits) and an extended 4-moduli
set (dynamic range of 6n bits), respectively. These improvements increase to 64.9% and 263% when the energy required per
scaling is measured. The proposed scalers are not only flexible and cost-effective, but they are also suitable for designing and
implementing energy-constrained devices, particularly mobile systems.

Index Terms—Residue number system, scaling, Chinese remainder theorem, VLSI architecture, ASIC, FPGA.

F

1 INTRODUCTION

Residue number systems (RNS) are alternative repre-
sentations to positional number systems. The primary
benefit of RNS is that their carry-free arithmetic can
be computed both independently and in parallel in
each of the channels to perform integer addition,
subtraction and multiplication [1]. The usefulness of
RNS has been tested in several applications, including
public-key cryptography [2] [3] and linear signal pro-
cessing, such as digital communication systems [4],
[5], [6]. For these applications, RNS provide improved
performance with less energy consumption, which
is a fundamental advantage in real-time processing
and embedded systems, particularly for energy au-
tonomous devices.

The conversion between representations, i.e., the
reverse conversion between RNS and the weighted
binary system, requires auxiliary operations that im-
pose overhead and cannot be individually computed
within each RNS channel. These operations do not
have a significant impact on the complexity of the
RNS-based arithmetic only in the cases of compu-
tationally intensive applications. This is the case of
public-key cryptography, which requires multiplica-
tions of very large numbers, and linear signal pro-
cessing, which requires the iterative computation of
a large number of multiply-accumulate operations.
However, unlike floating-point arithmetic, integer
fixed-point arithmetic often requires scaling to ensure

• Leonel Sousa is with the Department of Electrical and Computer
Engineering, Instituto Superior Técnico, Universidade de Lisboa, and
at Instituto de Engenharia e de Sistemas de Computadores (INESC-
ID), Portugal, e-mail: leonel.sousa@inesc-id.pt.

that the computed results do not exceed the dynamic
range.

Scaling, which is a division by a constant, is an
operation that cannot be directly implemented in
RNS within each channel but, unlike the reverse
conversion, must be completed several times during
the processing. For example, the iterative nature of
the digital signal processing, ranging from finite and
infinite impulse response filters to fast Fourier and
wavelet transforms, often imposes expanded dynamic
ranges if no scaling is applied. Either the RNS is
designed to support the dynamic range required in
the worst case, or scaling must be applied to avoid
overflow, similarly to traditional fixed point compu-
tation. Therefore, scaling is an essential operation to
limit the required dynamic range, in order to prevent
overflow while maintaining the cost of the RNS-based
data-paths low and the performance high. A truly
representative example of such problem is the case of
recursive algorithms for adaptive filtering, for which
a mixed RNS-Binary approach must be adopted to
meet the constraints of the physical channel equal-
ization [5]: a binary implementation of the least mean
squares (LMS) algorithm is used to avoid complex and
expensive scaling circuits in RNS, and the large vari-
able FIR takes advantage of the RNS implementation.

There have been several recent contributions to
the literature on RNS scaling. The early approaches
exploited the Chinese Remainder Theorem (CRT) to
design approximate scaling techniques for integers
represented in RNS [7], [8], [9]. For example, two al-
gorithms for approximating the scaling under certain
assumptions are proposed in [7]. One of these approx-
imate scaling algorithms was thoroughly analyzed

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 2

in [8]. Two different bands of error were identified:
only small errors occur in one band, but in the other
band, errors can assume values in the order of the
modulus.

Other approaches obtain exact solutions for RNS
scaling by applying modular reduction to the inte-
ger function of division. To obtain exact solutions,
computationally intensive base extension methods are
applied [10], [11], [12], [13]. Most of the scaling
algorithms in this class accelerate the evaluation of
〈X〉K by assuming scale factors that are the product
of subset moduli of the original set.

Most of the aforementioned RNS scaling algorithms
use Look-Up-Tables (LUTs); thus, their implementa-
tion in hardware requires memory components, read-
only memories (ROMs) or read-write random access
memories (RAM), to support different moduli sets.
These memory-based implementations do not scale
well for two main reasons: i) the hardware cost in-
creases sharply with the dynamic range, and ii) they
do not support pipelining, the processing throughput
is therefore limited and decreases with the memory
size. Few adder-based designs have been proposed
for RNS scaling [14], [15], [16], [17]. Most of these pro-
posals consider the particular scaling factor 2n, which
is usually adopted in the weighted binary system. On
the one hand, [14] considered more general moduli
sets and scaling factors, assuming that the moduli in
the set and the scaling factor are relatively prime,
which resulted in high hardware costs and low per-
formance. On the other hand, a very efficient RNS 2n

scaler was proposed in [15] and extended in [16] for
signed numbers and in [17] to consider programmable
power-of-two scaling factors, though it was restricted
to the traditional 3-moduli set {2n−1, 2n, 2n+1}. The
number theoretic properties of this 3-moduli set has
led to the design of very efficient arithmetic units,
such as converters to and from RNS [18], [19], [20],
but these converters provide a limited dynamic range
(DR) that is less than (3n)-bit.

The work presented here starts by observing that
most of the proposed moduli sets for RNS can be
considered extended and augmented moduli sets:
i) augmented 3-sets that result from increasing the
power of two modulo, even as a variable [21]; ii)
extended 4-moduli sets, which introduce a fourth
element to the traditional 3-moduli set [22], [23], [24]
or the augmented 3-moduli set [25], [26], [27], [28].
Therefore, an algorithm that can design efficient 2n

scalers for all such extended or augmented moduli
sets represents an important step toward the design
of efficient RNS scalers that are neither overly generic
to provide competitive performance figures nor exces-
sively constrained to a single moduli set. This paper
proposes algorithms with these exact features by ex-
panding the results in [15] for augmented 3-moduli

sets and by hierarchically applying the CRT and the
mixed radix system (MRS) to design cost-effective
VLSI scalers for augmented and extended 4-moduli
sets. Moreover, the proposed unified scalers for the
moduli sets can be employed in reconfigurable sys-
tems to support dynamic RNS-based systems when
modifying the moduli set at run time [29]. It is exper-
imentally shown that very efficient VLSI scalers are
obtained using the proposed approaches, which can
help in the design of systems faced with constraints
in processing time, cost, and power consumption.

This paper is organized as follows. Section 2
presents the background material and introduces
the notation. Section 3 proposes the formulation for
scaling with the augmented 3-moduli sets {2n −
1, 2n+x, 2n + 1}. Similarly, Section 4 proposes for-
mulations for 4-moduli supersets of the type {2n −
1, 2n+x, 2n + 1,m4}. VLSI architectures for scaling
based on the derived formulations are designed in
Section 5. The relative performance of the proposed
scalers is evaluated and experimentally assessed in
Section 6 regarding the related state of the art. Finally,
in Section 7, conclusions are drawn.

2 BACKGROUND

By defining a basis {m1,m2, · · ·mN} of pairwise co-
prime elements, where mi is known to be a modulus,

any integer X within a DR M =

N∏

i=1

mi can be

represented in the RNS domain by the N-tuple of
residues (R1, R2, · · ·RN). To simplify the presentation
of the methods and the description of the architectures
proposed herein, the following notation is adopted.
• For an n-bit array of a generic value αi, bits

are noted in a range from the most significant
bit (MSB) to the least significant bit (LSB) as
αi(n−1), · · · , αi(0), and the sequence of bits from
k to j is represented as αi(k:j).

• Ri denotes the residue for mi; Ri is the least
positive remainder obtained after dividing X by
mi (Ri = 〈X〉mi

), for which the n-bit array
representation is ri(n−1), · · · , ri(0).

• The residue for a composed moduli
n∏

i=l

mi is

represented as Rn↔l (0 < l < n ≤ N).
• Si denotes the residue for mi of the scaled integer.
• The designation ”channel mi” is adopted to refer

to the set of modulo mi operations.
In the RNS forward conversion (to convert the

integer number X from binary to RNS), residue Ri
is computed for each channel 1 ≤ i ≤ N . The main
advantage of the RNS is the possibility of performing
the same operations in parallel that one would per-
form using integers in each channel: for three integers
A, B and C, all of which are smaller than M, and o, an

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 3

addition/subtraction or a multiplication, C = A o B
is computed independently in each channel (ci =
〈ai o bi〉mi

). The RNS reverse conversion, which is a
more complex operation, returns the representation of
an integer from RNS to the binary domain.

2.1 Modular arithmetic properties
The characteristics and properties of modular arith-
metic are exploited in this paper. Property 1 expresses
well-known, simple-to-prove, and useful equalities for
power of two moduli.

Property 1:
〈2n ×Ri〉2n+1 = 〈−Ri〉2n+1

〈2x ×Ri〉2n−1 = 〈Ri〉2n−1 for x = n ;

(for 0 < x < n) = ri(n−x−1), · · · , ri(0), ri(n−1), · · · , ri(n−x)

Scaling the integer X by given K can be expressed,
by definition, as

bX
K
c = X − 〈X〉K

K
(1)

Lemmas 1 and 2 can be used to simplify the
modular reduction for moduli that possess certain
characteristics.

Lemma 1:

〈bk ×Ac〉k×p = bk×〈A〉pc; A, p, k× p ∈ N ; k ∈ Q (2)

Proof: The remainder operation is computed as

〈bk ×Ac〉k×p = bk ×Ac − bbk ×Ac
k × p c × k × p

Although k ∈ Q, because k × p ∈ N:

bbk ×Ac
k × p c = b

6 k ×A
6 k × p c ,

therefore,

〈bk ×Ac〉k×p = bk × (A− bA
p
c × p)c =

= bk × 〈A〉pc .

Lemma 2:〈
〈A〉q

〉
p
= 〈A〉p ; for any q = k × p; A, k, p ∈ N (3)

Proof: The remainder operation can be repre-
sented as 〈A〉q = A − k1 × q, 0 ≤ A − k1 × q < q.
Thus,

〈
〈A〉q

〉
p

= 〈A− k1 × q〉p =

=
〈
〈A〉p − 〈k1 × q〉p

〉
p

Because q = k × p,
〈
〈A〉q

〉
p
=
〈
〈A〉p − 〈k1 × q〉p

〉
p

= 〈A〉p .

2.2 RNS reverse conversion
In the RNS reverse conversion, the integer X can be
obtained from its residues (R1, R2, · · ·RN) by using
the CRT (4) or adopting the MRS (5). The CRT allows
one to compute in parallel the terms of the sum that
are required to perform the reverse conversion by
applying modulo M arithmetic (4):

X =

〈
N∑

i=1

Mi ×
〈
M−1i

〉
mi
×Ri

〉

M

, (4)

where Mi =M/mi, and
〈
M−1i

〉
mi

is the multiplicative
inverse of Mi with respect to mi (

〈
Mi ×M−1i

〉
mi

= 1).
Though most of the arithmetic required for the

MRS has the width of the RNS channels, iterative
computation is required (5):

X = y1 +m1 × (y2 +m2× (y3 +m3 × (· · ·))) (5)
y1 = R1

y2 =
〈
(R2 − y1)×

〈
m−1

1

〉
m2

〉
m2

y3 =
〈(

R3 − y1)×
〈
m−1

1

〉
m3
− y2

)
×
〈
m−1

2

〉
m3

〉
m3

· · ·

To support the class of augmented and extended 4-
moduli sets whose general form is {m1 = 2n−1,m2 =
2n+x,m3 = 2n + 1,m4} (where 0 ≤ x ≤ n and m4 is
any integer value that is pairwise co-prime with all
other elements), hierarchical reverse conversion is per-
formed on two consecutive levels: i) the the CRT (4) is
computed for the 3-moduli set {2n − 1, 2n+x, 2n + 1},
and ii) the MRS (5) is applied to calculate the final
value X .

Multiplicative inverses (M−1i) in Lemma 3 are ap-
plied in the CRT to obtain the integer R3↔1 and
bR3↔1

2n c from the residues in the moduli set {2n −
1, 2n+x, 2n + 1} (0 ≤ x ≤ n).

Lemma 3: The following multiplicative inverses
(M−1i) exist for 0 ≤ x ≤ n.

M−11 =
〈
[2n+x × (2n + 1)]−1

〉
2n−1 =

=
〈
22n−x−1

〉
2n−1 (6)

M−12 =
〈
[(2n − 1)× (2n + 1)]−1

〉
2n+x =

=
〈
2n+x − 1

〉
2n+x (7)

M−13 =
〈
[2n+x × (2n − 1)]−1

〉
2n+1

=

=
〈
22n−x−1

〉
2n+1

(8)

Proof: By applying the definition of multiplicative
inverse

〈
Mi ×M−1i

〉
mi

= 1 to (6) (7) and (8),

〈
M1 × 22n−x−1〉

2n−1
=

〈
23n−1 × 2

〉
2n−1

= 1〈
M2 × (2n+x − 1)

〉
2n+x =

〈
−22n + 1)

〉
2n+x = 1〈

M3 × 22n−x−1〉
2n+1

=
〈
23n−1 × (−2)

〉
2n+1

= 1 .

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 4

The MRS (5) is then applied to compute the final

value b X2n c by considering the 2-moduli set {
3∏

i=1

mi =

(22n − 1)× 2n+x,m4} and the residues R3↔1 and R4.
Naturally, the final value is produced directly in the
first level of the scaler when only the 3-moduli set is
considered because b X2n c = bR3↔1

2n c. The multiplicative
inverses for the 4-moduli sets depend on the values
that m4 assumes.

3 SCALER FOR AUGMENTED 3-MODULI
SETS

By using the CRT to scale an integer represented in
the RNS domain by a constant k, the following holds:
⌊
X

k

⌋
=

⌊
1

k
×
〈

N∑

i=1

Mi ×
〈
M−1i

〉
mi
×Ri

〉

M

⌋
(9)

By applying Lemma 1 to (9), we have
⌊
X

k

⌋
=

〈⌊
1

k
×

N∑

i=1

×Mi ×
〈
M−1i

〉
mi
×Ri

⌋〉

M
k

.

(10)
Instantiating (10) for k = 2n and the augmented 3-

moduli sets and using the multiplicative inverses in
Lemma 3, bR3↔1

2n c can computed using (11).

⌊
R3↔1

2n

⌋
=

〈⌊
(2x × (2n + 1))× 22n−x−1 ×R1+

+
(22n − 1)

2n
× (2n+x − 1)×R2 +

+ (2n − 1)× 22n−1 ×R3

⌋〉
(22n−1)×2x(11)

Because the first and last operands in (11) are al-
ways integers, the floor function must only be applied
to the operand associated with R2:

⌊
(22n−1)×(2n+x−1)×R2

2n

⌋
=

(22n+x − 2n − 2x)×R2 +
⌊
R2

2n

⌋
=

(22n+x − 2n − 2x)×R2 + r2(n+x−1:n) . (12)

By applying (12) on (11), we have

⌊
R3↔1

2n

⌋
=

〈
(2n + 1)× 22n−1 ×R1+

+ (22n+x − 2n − 2x)×R2 + r2(n+x−1:n) +

+ (2n − 1)× 22n−1 ×R3

〉
(22n−1)×2x

. (13)

Analysing (13) indicates that the major challenge
in obtaining a representation of

⌊
R3↔1

2n

⌋
directly in

each channel is formulating the scaling in the channel
(2n+x) because (22n−1)×2x is not a multiple of 2n+x.
However, by applying Lemma 1,

〈⌊
R3↔1

2n

⌋〉
2n+x

=
〈〈

(23n−1 + 22n−1)×R1 (14)

− 2n ×R2 + (23n−1 − 22n−1)×R3

+ r2(n+x−1:n)

〉
(22n−1)×2x

〉
2n+x

=
〈〈

2x × 2n−x ×
[
(22n−1 + 2n−1)×R1

− R2 + (22n−1 − 2n−1)×R3

]
+ r2(n+x−1:n)

〉
(22n−1)×2x

〉
2n+x

=

〈〈
2x
〈
2n−x

[
(22n−1 + 2n−1)×R1︸ ︷︷ ︸

− R2 + (22n−1 − 2n−1)×R3

]〉
(22n−1)︸ ︷︷ ︸

φ

+ r2(n+x−1:n)

〉
(22n−1)×2x

〉
2n+x

.

Given that, by definition, φ ≤ 22n − 2 and
r2(n+x−1:n) ≤ 2x − 1,

2x ×φ+ r2(n+x−1:n) ≤ 22n+x − 2x+1 +2x − 1 < (22n − 1)× 2x ,
(15)

(16) is used to compute S2 =
〈⌊

R3↔1

2n

⌋〉
2n+x by

applying (15) on (14).

S2 =
〈
2x
〈
2n−x

[
(22n−1 + 2n−1)×R1 −R2 (16)

+ (22n−1 − 2n−1)×R3

]〉
(22n−1)

+ r2(n+x−1:n)

〉
2n+x

.

To compute S1 =
〈⌊

R3↔1

2n

⌋〉
2n−1 and S3 =〈⌊

R3↔1

2n

⌋〉
2n+1

, one can apply both Lemma 2 (because
(22n−1)×2x = (2n−1)×(2n+1)×2x) and Property 1
to (13), leading to (17) and (18), respectively.

S1 =
〈
R1 −R2 + r2(n+x−1:n)

〉
2n−1

=
〈
R1 − 〈R2〉2n

〉
2n−1

(17)

S3 =
〈
R2 + r2(n+x−1:n) −R3

〉
2n+1

=
〈
〈R2〉2n −R3

〉
2n+1

. (18)

Using this comprehensive formulation, we can ob-
tain results for any values of x in the range 0 ≤ x ≤ n.
For example, when x = 0 (r2(n+x−1:n) = 0), the
results should be the same as those presented in [15].
Further, for moduli 2n−1 and 2n+1, exactly the same
expressions were obtained, though slightly different
formulations for modulo 2n are provided in that
study. The formulation in [15] is

〈⌊
R3↔1

2n

⌋〉
2n

=
〈〈

(22n−1 + 2n−1)×R1 − 2n ×R2 (19)

+ (22n−1 + 2n−1 − 1)×R3

〉
(22n−1)

〉
2n

.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 5

However, because
〈
23n−1

〉
(22n−1) = 2n−1, for x = 0,

we can obtain (20) from (16), which is equivalent to
(19).〈⌊

R3↔1

2n

⌋〉
2n

=
〈〈

(2n−1 + 22n−1)×R1 − 2n ×R2 (20)

+ (2n−1 + 22n − 1− 22n−1)×R3

〉
(22n−1)

〉
2n

R3↔1 might be considered either the final integer
value of the conversion for the 3-moduli sets or an
intermediate result obtained while proceeding to the
second level of the conversion to 4-moduli sets. It is
worth noting that based on (16), the value of

⌊
R3↔1

2n

⌋

is obtained before the final reduction (modulo 2n+x).
Moreover, it is simple to obtain a representation of
R3↔1 by using (21) because the addition is performed
by simply concatenating the n LSB of R2.

R3↔1 =

⌊
R3↔1

2n

⌋
×2n+〈R3↔1〉2n =

⌊
R3↔1

2n

⌋
×2n+r2(n−1:0) .

(21)

4 EXTENDED 4-MODULI SUPERSETS
The MRS (5) is applied in the second level of the
proposed hierarchical scaling method to obtain the
final integer scaled value. From the residues R3↔1

and R4 for the 4-moduli sets {(22n − 1) × 2n+x,m4}
(M4 = M

m4
= 2n+x × (22n − 1)), we have

X = R3↔1 +
〈
(R4 −R3↔1)×

〈
M−1

4

〉
m4

〉
m4

×M4 (22)

(23) is obtained by scaling (22) by 2n:⌊
X

2n

⌋
=

⌊
R3↔1

2n

⌋
+
〈
(R4 −R3↔1)×

〈
M−1

4

〉
m4

〉
m4

× 6 2n

6 2n × 2x × (2n − 1)× (2n + 1) . (23)

Computing (23) modulo 2n+x to obtain S2 leads to
(24). The first term of (24) can be computed using (16),
and R3↔1 can be obtained from (21).

S2 =

〈〈⌊
R3↔1

2n

⌋〉
2n+x

+
〈
(R4 −R3↔1)

×
〈
M−1

4

〉
m4

〉
m4

× (−2x)
〉

2n+x

(24)

Similarly, S4 is given by (25):

S4 =

〈⌊
R3↔1

2n

⌋
+ (R4 −R3↔1)

×
〈
M−1

4

〉
m4
× (22n+x − 2x)

〉
m4

(25)

The complexity of (24) and (25) depends primarily
on the values chosen for m4 and x, which define
not only the required modular arithmetic but also

the complexity of the multiplicative inverse. This is
not the case for the moduli 2n − 1 and 2n + 1. It is
worth noting that the scaled values on these channels
do not change upon the introduction of m4 into the
moduli set; therefore, (17) and (18) can be used
on (26) and (27).

S1 =

〈⌊
X

2n

⌋〉
2n−1

=

〈⌊
R3↔1

2n

⌋〉
2n−1

(26)

S3 =

〈⌊
X

2n

⌋〉
2n+1

=

〈⌊
R3↔1

2n

⌋〉
2n+1

(27)

The next sub-sections are devoted to case studies
of RNS scaling on 4-moduli sets with different char-
acteristics. Because the scaled values S1 and S3 are
independent of the values of m4 and x, we focus our
attention on the other two channels, 2n+x and m4.

4.1 Case studies {2n − 1, 2n, 2n + 1, 2n+1 ± 1}
The 4-moduli set {2n − 1, 2n, 2n + 1, 2n+1 − 1}, as
proposed in [22] and designated here by 4-Mod A,
is composed of relatively prime numbers for even
values of n and provides a DR of (4n)-bit. In the first
level of the scaler, x = 0, and on the second level,
m4 = 2n+1−1.

〈⌊
R3↔1

2n

⌋〉
2n

is computed by using (20);
for the second level, the value of the multiplicative
inverse ψ is provided in [22] for n ≥ 4:

ψ =
〈[

2n × (22n − 1)
]−1

〉
2n+1−1

= 2n + 2n−2 + · · ·+ 24 + 2 .

(28)

All of the operands required to compute S2 and S4

using (29) and (30), respectively, are thus available.

S2 =

〈〈⌊
R3↔1

2n

⌋〉
2n

+ 〈(R4 −R3↔1)ψ〉2n+1−1 (−1)
〉

2n
(29)

S4 =

〈⌊
R3↔1

2n

⌋
+ (R4 −R3↔1)ψ × (2n−1 − 1)

〉
2n+1−1

(30)

Table 1 illustrates the application of the proposed
hierarchical scaling method. As an example, for n = 8,
the method corresponds to the moduli set {m1 =
255,m2 = 256,m3 = 257,m4 = 511} and provides
a 32-bit DR. This table also considers the straight-
forward RNS scaling method, which applies reverse
conversion followed by both scaling on the binary
domain and forward conversion, to verify the correct-
ness of the proposed approach.

The other extended 4-moduli set {2n − 1, 2n +
1, 2n, 2n+1+1} [22], herein designated as 4-Mod B, for
m4 = 2n+1+1 and odd n provides a DR of (4n+1)-bit.
For this 4-moduli set (28), (29) and (30) become (31)
(the terms in n exist until n − 2k = 5 for n ≥ 5), (32)
and (33), respectively.

ζ =
〈[

2n × (22n − 1)
]−1

〉
2n+1+1

= 2n+2n−2+· · ·+2n−2k+24−2
(31)

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 6

TABLE 1: Example of scaling in RNS the integer X = 230 − 1 by 2n for the 4-moduli A and n = 8 (28 = 256)

Moduli 2n − 1 = 255 2n = 256 2n + 1 = 257 2n+1 − 1 = 511

Original residues R1 = 63 R2 = 255 R3 = 192 R4 = 7

Reverse conv. to obtain X 230 − 1
⌊
(230 − 1)/28

⌋
= 222 − 1

(Forward conv.
⌊
X/28

⌋
= 222 − 1))

Residues of scaled result Si S1=63 S2=255 S3=63 S4=15

Applying the proposed formulation for 28 RNS scaling

S1 =
〈
b 2

30−1
256
c
〉
255

(26) 〈R1 −R2〉255 = 〈63− 255〉255 = 63

S3 =
〈
b 2

30−1
256
c
〉
257

(27) 〈R2 −R3〉257 = 〈255− 192〉257 = 63〈⌊
R3↔1
256

⌋〉
256

(20)
〈
〈(128 + 32768)× 63− 256× 255 + (128 + 65535− 32768)× 192〉65535

〉
256

= 〈63〉256 = 63

R3↔1 (21)
⌊
R3↔1
256

⌋
× 256 + 〈R3↔1〉256 = 63× 256 + 255 = 16383

ψ =
〈[

28 × (216 − 1)
]−1

〉
29−1

(28) 28 + 26 + 24 + 2 = 338

S2 =
〈⌊

X
2n

⌋〉
256

(29)
〈
63 + 〈(7− 16383)× 338〉511 × (−1)

〉
256

= 255

S4 =
〈⌊

X
2n

⌋〉
511

(30)
〈
〈63〉511 + 〈(7− 16383)× 338〉511 × 127

〉
511

= 15

S2 =

〈〈⌊
R3↔1

2n

⌋〉
2n

+ 〈(R4 −R3↔1)ζ〉2n+1+1 (−1)
〉

2n
(32)

S4 =

〈⌊
R3↔1

2n

⌋
+ (R4 −R3↔1)ζ × (−2n−1 − 1)

〉
2n+1+1

(33)

4.2 Case study {2n − 1, 22n, 2n + 1, 22n+1 − 1}
The 4-moduli set {2n−1, 22n, 2n+1, 22n+1−1} [25] [30],
herein designated as 4-Mod C, enlarges the DR to
(6n)-bit by adopting the augmented 3-moduli set
{2n − 1, 22n, 2n + 1}. By using (16) with x = n in the
first level of the scaler, (34) is obtained.〈⌊

R3↔1

2n

⌋〉
22n

=
〈
2n ×

〈
(22n−1 + 2n−1)×R1 −R2

+ (22n−1 − 2n−1)×R3

〉
(22n−1)

+ r2(2n−1:n)

〉
22n

. (34)

The multiplicative inverse χ [25] is provided
in (35):

χ =
〈[

22n × (22n − 1)
]−1

〉
22n+1−1

=
〈
−22n+3

〉
22n+1−1

= −4
(35)

(36) and (37) are used to compute S2 and S4, respec-
tively.

S2 =

〈〈⌊
R3↔1

2n

⌋〉
22n

+ 〈4(R3↔1 −R4)〉22n+1−1 (−2
n)

〉
22n
(36)

S4 =

〈⌊
R3↔1

2n

⌋
+ (R4 −R3↔1)(2

n+1)

〉
22n+1−1

. (37)

5 VLSI ARCHITECTURES

The hybrid architecture for scaling depicted in Fig. 1
performs reverse conversion between RNS and the
binary representations, and in the middle, it applies
scaling by a power of two, which is a straightforward
operation in the binary domain. However, as stated
above, this is a computationally expensive and ineffi-
cient solution for RNS scaling.

RNS-to-Binary Reverse Converter

Binary Scaler

Binary-to-RNS Forward Converter

n−bit ⌈log2 m4⌉−bit(n+x)−bit (n+1)−bit

⌈log2 M⌉−bit

(⌈log2 M⌉−n)−bit

n−bit ⌈log2 m4⌉−bit(n+x)−bit (n+1)−bit

⌈log2 M4⌉-bit

(⌈log2 M4⌉−n)−bit

R1 R2 R3 R4

X

⌊ X

2n

⌋

R3↔1

⌊R3↔1

2n

⌋

S1 S2 S3 S4

Fig. 1: Hybrid scaler performs reverse conversion to
binary, binary scaling, and direct conversion to RNS.

A generic architecture proposed to design RNS
scalers is presented in Fig. 2. The RNS scaler on the
left-hand side of Fig. 2 operates directly in the chan-
nels of any 3-moduli set of the class {2n−1, 2n+x, 2n+

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 7

1} (0 ≤ x ≤ n). The scaler on the right-hand side of
Fig. 2 also operates in the RNS domain, but for 2-
moduli sets of the class {22n − 1 × 2n+x,m4}, where
both moduli are co-prime. The internal architectures
of those scalers are directly derived from the formu-
lations derived in the previous sections.

3-moduli RNS Scaler

n−bit ⌈log2 m4⌉−bit(n+x)−bit (n+1)−bit

n−bit (n+x)−bit(n+1)−bit

2-moduli RNS Scaler

(n+x)−bit ⌈log2 m4⌉−bit

(3n+x)−bit

R1 R2 R3 R4

〈⌊X3↔1

2n

⌋〉
2n+x

X3↔1

S1 S2S3 S4

Fig. 2: General architecture of the proposed RNS
scalers.

The architecture for the 3-moduli set, as depicted in
Fig. 2, provides the scaled values in the three channels
by applying the architectures in Fig. 3a), Fig. 3b) and
Fig. 4) to compute (26), (27) and (16), respectively, in
parallel.

Bitwise Logic

n−bit (n+x)−bit

n−bit n−bit

Modulo CPA2n−1

n−bit

R1 R2

R1 r2(n−1:0)

S1

(a) Channel 2n − 1

Bitwise Logic

(n+x)−bit

 CEAC CSA .

Modulo CPA

(n+1)−bit

(n+1)−bit

2n+1

n−bit n−bit n−bit
CT

n−bit

R2 R3

r3(n−1:0)

n−bit n−bit

r2(n−1:0)

S3

(b) Channel 2n + 1

Fig. 3: Architecture of the proposed RNS scaler for
3-moduli sets: S1, S3.

The architectures shown in Fig. 3a) and Fig. 3b)
were proposed in [15] for the moduli set {2n −
1, 2n, 2n+1}. In Fig. 3a), two n-bit operands are added
by using a modulo 2n − 1 carry propagate adder
(CPA) [31]; 〈−R2〉2n−1 = R2, where the overline rep-
resents the one’s complement operation. In Fig. 3b), a
Carry Save Adder with Complemented End-Around
Carry (CSA-CEAC) and a modulo 2n+1 CPA [31] are
used to compute

〈⌊
R3↔1

2n

⌋〉
2n+1

. Complementing the
carry-out bit of the CSA and performing end around-
carry, a modulo 2n + 1 addition is implemented,
but with the result incremented by one. Therefore,
although only two (n + 1)-bit operands have to be
added, the CSA-CEAC is required to add a Correction
Term (CT), which arises not only because the result
obtained using the CEAC technique is incremented
by one but also because 〈−R3〉2n+1 = 〈R3+2〉2n+1. In
Fig. 3b, the n-th bit of r3 is also accounted for by the
CT.

The architecture in Fig. 4 was designed to compute
R3↔1 scaled by 2n directly in the channel 2n+x. This

Bitwise Logic

(n+x)−bit

EAC CSA () .

simplified EAC CSA () .

(n+1)−bitn−bit

2n−bit 2n−bit 2n−bit

2n−bit2n−bit

2n−bit

(2n+x)−bit

2n−bit 2n−bit

2n−bit 2n−bit

R1 R2 R3

(n+x−1 : 0)

Bitwise Logic

<< (x)|r2(n+x−1:n)

S2

n−bit n−bit

n−bit

n−bit n−bit n−bit n−bit

n−bit

⌊R3↔1

2n

⌋

R3↔1

(3n+x)−bit

<< (n)|r2(n−1:0)

modulo CPA . 22n−1

Fig. 4: Architecture of the proposed RNS scaler for 3-
moduli sets; it may be used singly (S2) or as as the
first level for 4-moduli sets (R3↔1).

channel requires more hardware resources and im-
poses more delay because it applies modulo 22n − 1
arithmetic. However, this burden can be alleviated
by applying Property 1 to the terms in (16) modulo
22n − 1:

(22n−1 + 2n−1)R1
mod 22n−1
≡

r1(0), r1(n−1), · · · r1(0), r1(n−1), · · · , r1(1) (38)

−R2
mod 22n−1
≡

n−x︷ ︸︸ ︷
1, · · · , 1, r2(n+x−1), · · · , r2(0) (39)

22n−1 ×R3
mod 22n−1
≡ r3(0),

n−1︷ ︸︸ ︷
0, · · · , 0, r3(n), · · · , r3(1) (40)

−2n−1 ×R3
mod 22n−1
≡ r3(n), r3(n−1), · · · r3(0),

n−1︷ ︸︸ ︷
1, · · · , 1 (41)

and by rewriting (40) and (41) to obtain (42) and (43).

(22n−1 − 2n−1)R3
mod 22n−1
≡

r3(0),

n−1︷ ︸︸ ︷
0, · · · 0, , r3(n),

n−1︷ ︸︸ ︷
1, · · · , 1 (42)

+r3(n), r3(n−1), · · · , r3(0), r3(n−1), · · · , r3(1) . (43)

Therefore, to compute (16), a Carry Save Adder
with End-Around Carry (CSA-EAC) and a second
simplified CSA-EAC, as highlighted in Fig. 4, are
used. One of the operands of this last adder has the
values of only two bits as variables from a total of 2n
(operand in (42)). The multiplication by 2n−x modulo
22n − 1 in (16) is performed by rotating the obtained
carry and sum bit vectors, (n−x) positions to the left

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 8

(operation performed in the ’Bitwise Logic’ compo-
nent highlighted in Fig. 4). It can also be observed
in (16) that only the n LSB of the modulo 22n − 1
sum are required, which are left shifted by x positions
(’<< (x)’ in Fig. 4) and concatenated with r2(n+x−1:n)
(’|’ symbol in Fig. 4) to compute S2. Therefore, the n-
bit CPA in Fig. 4 performs modulo 22n−1 addition but
only computes the n LSB bits of the sum. The R3↔1

can also be obtained by taking the (2n)-bit sum from
the modulo 22n − 1 CPA in Fig. 4 (

⌊
R3↔1

2n

⌋
), shifting

left the result n positions and concatenating it with
the n least significant bits of R2 (r2(n−1:0)), as stated
in (21).

⌈log2 m4⌉−bit(n+x)−bit (3n+x)−bit

Modulo CPA

⌈log2 m4⌉−bit

m4

Modulo Multiplierm4

⌈log2 m4⌉−bit

⌈log2 m4⌉−bit T

Modulo Multiplierm4

⌈log2 m4⌉−bit

CPA .

(n+x)−bit

(n+x)−bit

⌈log2 m4⌉−bit

Modulo CPAm4

⌈log2 m4⌉−bit

(n+x)−bit ⌈log2 m4⌉−bit

〈⌊R3↔1

2n

⌋〉
2n+x

〈
M−1

4

〉
m4

R4 R3↔1

⌊R3↔1

2n

⌋

⌈log2 m4⌉−bit

〈⌊R3↔1

2n

⌋〉
m4

〈M4

2n

〉
m4

−
〈
R3↔1

〉
m4

M4

2n
=(22n−1)×2x

(2n+x)−bit

(2n+x)−bit

⟨−T << (x)⟩2n+x

S2 S4

Fig. 5: Second level of the proposed scalers for generic
4-moduli sets, (24), (25); the highlighted shared units
are assumed to support generic modulo m4 co-prime
with M4.

The architecture of the second level of the hier-
archical scalers that support 4-moduli sets of the
form {M4 = (22n − 1) × 2n+x,m4} is depicted in
Fig. 5. (24) and (25) both require the computation
of T =

〈
(R4 −R3↔1)×

〈
M−14

〉
m4

〉
m4

, which is per-
formed using the highlighted components in Fig. 5.
Moreover, on the left-hand side of Fig. 5, a shifter and
a (n+x)-bit binary CPA are used to produce the final
result in the channel 2n+x (S2), but on the right side,
a multiplier and a CPA, both modulo m4, are used to
produce S4.

The complexity of the modulo m4 multipliers in
Fig. 5 is variable. The highlighted modulo m4 mul-
tiplier may range from a simple shift unit (case study
in subsection 4.2) to a multiplier implemented with an
adder tree (case study in subsection 4.1), depending
on the particular value of m4 and, consequently, the
operand

〈
M−14

〉
m4

. The same consideration applies
to the other modulo m4 multiplier in the data path

that is used to compute
〈⌊

X
2n

⌋〉
m4

, which can be also
reduced to a very simple arithmetic unit depending
on the value of 〈M4〉m4

.
Although these general architectures can be tuned

to perform optimizations of specific parametrizations
and moduli-sets, i.e., for particular values of x and m4,
this work is primarily focused on general architectures
that can be used as a framework to develop com-
prehensive scalers. For example, for the case study
of the moduli set {2n − 1, 22n, 2n + 1, 22n+1 − 1} in
subsection 4.2, the architecture of the second level
of the proposed scalers is presented in Fig. 6. In
comparison with Fig. 5, the data path in Fig. 6 is quite
simplified. Both of the modulo m4 multipliers of Fig. 5
are mapped to simple bitwise operations in Fig. 6
according to (36) and (37). Therefore, both multipliers
have a negligible impact on the total delay and the
circuit area of the scaler. Moreover, the reduction
modulo m4 of R3↔1 is performed using the 2n+1-bit
CSA-EAC introduced in Fig. 6.

r′
(2n:0)

Bitwise logic

EAC CSA .

CPA .

〈⌊R3↔1

2n

⌋〉
2n

R4 R3↔1 R′≡
⌊R3↔1

2n

⌋

4n−bit

(2n+1)−bit

4n−bit
r3↔1(2n:0)

(2n+1)−bit (2n+1)−bit

(2n+1)−bit

Modulo CPA 22n+1−1

T(2n+1)−bit

Bitwise logic

 EAC CSA .

(2n+1)−bit (2n+1)−bit

(2n+1)−bit

Modulo CPA 22n+1−1

(2n+1)−bit

3n−bit

r′
(3n−1:2n+1)

(2n+1)−bit

r3↔1(4n−1:2n+1)

2n−bit

2n−bit

2n−bit

2n−bit

Bitwise logic

S2 S4

tn−2, . . . , t0,
t2n−1, . . . , tn−1tn−3, . . . , t0,

0, . . . , 1

Fig. 6: Second level of the proposed scaler, (36), (37),
for the the 4-mod C ({2n − 1, 22n, 2n + 1, 22n+1 − 1}).

6 ASSESSMENT AND EXPERIMENTAL EVAL-
UATION

To assess the proposed RNS scalers and perform a
technology-agnostic comparison with the related state
of the art, the simple unit-gate (U-G) model used
in [15] is also adopted here. Because the conclusions
are similar and due to space limitations, we present
a detailed evaluation for only two of the addressed
scalers: the 3-moduli set in Fig. 3 and Fig. 4 (for x = n)
and the 4-Mod C {2n − 1, 22n, 2n + 1, 22n+1 − 1} in

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 9

Fig. 6. Experimental results, obtained by designing
an Application-Specific Integrated Circuit (ASIC) and
configuring Field Programming Gate Arrays (FPGAs),
are provided for all of the scalers considered in this
paper.

6.1 Evaluation based on the U-G model
In the U-G model, a two-input monotonic gate, such
as a NAND gate, is considered to have one unit of
area and one unit of delay. An XOR gate is deemed
to require two units of area and to impose a delay
of two units. The area and delay of an inverter is a
negligible fraction of a unit, and it is thus assumed
to require zero units of area and delay. Based on the
U-G model, a Full Adder (FA) has seven units of area
and four units of delay.

Binary adders and 2k − 1 and 2k + 1 modulo
adders are the main requirements for implementing
the scalers’ architectures described in section 5. The
circuit area and delay for each RNS channel can be
independently evaluated using the U-G model. In this
assessment, the adopted adders are similar to those
presented in [15]. The adopted Ling modulo 2n − 1
adders [32] require 3ndlog2 n− 1e+ 12n units of area
and impose a delay of 2dlog2 n− 1e+3 units. Modulo
2n+1 adders for the diminished-1 representation [33]
require 4.5ndlog2 ne+0.5n+6 units of area and impose
a delay of 2dlog2 ne + 3 units. For binary adders,
1.5ndlog2 ne+ 5n units of area and 2dlog2 ne+ 3 units
of time are assumed [33].

The required area and imposed delay of the pro-
posed scalers are presented in Tables 2 and 3 for each
channel. Analyzing Fig. 3a, only a modulo 2n−1 CPA
is used for the channel 2n − 1. The channel 2n + 1
requires a n-bit CSA and a final modulo 2n+1 CPA, as
depicted in Fig. 3b. It is worth to noting that both the
CPA and each CSA-CEAC increment the result, which
is offset by the correction term applied in Fig. 3b.

Table 2 and Table 3 consider for the 2n+x channel of
the the 3-moduli set (Fig. 4) to be the worst case with
respect to the area and delay (x = n). For this channel,
two 2n-bit CSA-EAC and a modulo 22n − 1 CPA are
used to add the four operands in (38) (39) and (42).
It is worth noting that all but two bits of one of
the operands in (42) assume a constant value; thus,
the highlighted CSA-EAC in Fig. 4 only requires half
adders for (2n−2) bits from a total of 2n. A half adder
requires less than half of the area of an FA. Thus, the
CSA-EAC in Fig. 4 only requires 7n units of area but
imposes a delay of 4 units. Moreover, the modified
binary adder of Fig. 4 requires an area corresponding
to that of an n-bit binary adder and the delay of a
modulo 22n − 1 modulo adder.

For the 4-mod C set and considering the architec-
ture shown in Fig. 6, to simplify the presentation of
the results, we use dlog2(2n + 1)e ∼= dlog2 2ne. The

TABLE 2: Circuit Area (A) required (U-G model) for
the 3-moduli set (x = n) and the 4-mod C

Channel ACPA ATotal

3-moduli set

2n+x 3ndlog2 ne+ 12n 3ndlog2 ne+ 33n

Common to 3 and 4 moduli sets

2n − 1 3ndlog2 n− 1e+ 12n 3ndlog2 n− 1e+ 12n

2n + 1 4.5ndlog2 ne+ 0.5n+ 6 4.5ndlog2 ne+ 7.5n+ 6

Total 10.5ndlog2 ne+ 10.5ndlog2 ne+
3-moduli 21.5n+ 6 49.5n+ 6

4-mod C

22n (9n+ 3)dlog2 ne+ (9n+ 3)dlog2 ne+
37n+ 12 51n+ 19

22n+1 − 1 (6n+ 3)dlog2 ne+ (6n+ 3)dlog2 ne+
24n+ 12 38n+ 19

Total (28.5n+ 6)dlog2 ne+ (28.5n+ 6)dlog2 ne+
4-mod C 94.5n+ 30 150.5n+ 44

part of the computation common to both the 22n and
22n+1−1 channels is performed using the highlighted
components in Fig. 6: a 2n + 1-bit CSA-EAC, with
[14n + 7] units of area and a delay of 4 units, and a
modulo 22n+1−1 CPA, with [(6n+3)dlog2 ne+24n+12]
units of area and a delay of [2dlog2 ne + 3] units. In
the results presented in Tables 2 and 3, these units of
area are accounted for in the 22n modulus, for which
a final 2n-bit binary CPA is also used and requires
an additional [3ndlog2 ne + 13n] units of area and
[2dlog2 ne+5] units of delay. As observed in Fig. 6, an
additional 2n+1-bit EAC CSA and a modulo 22n+1−1
CPA are used for the 22n+1− 1 channel, for which we
must consider [14n+7] and [(6n+3)dlog2 ne+24n+12]
units of area, and 4 and [2dlog2 ne+3] units of delay,
respectively.

The total area required by the the proposed scaler
for the 4-mod C set is obtained from Table 2 by adding
the area of the components in each channel, leading
to (28.5n+ 6)dlog2 ne+ 150.5n+ 44 units. The critical
path presented in Table 3, 6dlog2 ne + 25 units, goes
through the shared components of channels 2n+x and
m4 = 2n+1 − 1.

Table 4, which was also obtained using the U-G
model, extends the relative assessment of the pro-
posed scalers by considering other RNS scalers for
n = 8 and n = 16. Again, the worst case scenario for
an area and delay is obtained for the 3-moduli sets
(x = n). The results in [15] are used as a benchmark
because, to the best of the author’s knowledge, that
study proposed the most efficient scaler for the 3-
moduli set {2n − 1, 2n, 2n + 1}.

Because there is no specific scaler for the considered
4-moduli sets, the figures of merit obtained using the
proposed scalers are compared with those registered
by performing reverse conversion followed by binary

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 10

TABLE 3: Delay (D) imposed (U-G model) for the 3-
moduli set (x = n) and the 4-mod C

Channel DCPA DTotal

3-moduli set

2n+x 2dlog2 ne+ 3 2dlog2 ne+ 11

Common to 3 and 4 moduli sets

2n − 1 2dlog2 n− 1e+ 3 2dlog2 n− 1e+ 3

2n + 1 2dlog2 ne+ 3 2dlog2 ne+ 7

Total 3-moduli 2dlog2 ne+ 3 2dlog2 ne+ 11

4-mod C

22n 4dlog2 ne+ 8 4dlog2 ne+ 12

22n+1 − 1 4dlog2 ne+ 6 4dlog2 ne+ 14

Total 4-mod C 6dlog2 ne+ 11 6dlog2 ne+ 25

TABLE 4: Comparative assessment regarding the re-
lated state of the art (U-G model): A-Area, D-Delay,
A×D
DR -Product Area Delay values normalized with re-

spect to the DR expressed in bits

n 8 16
Method A D A×D

DR
A D A×D

DR

3 moduli set (m2 = 22n)

Proposed 654 17 347 1470 19 437

[15] 804 15 503 1812 17 642

4-mod C (m4 = 22n+1 − 1)

Proposed 1950 43 1747 4548 45 2195

RC�Sc�FC [25] 2547 59 3131 5513 67 3848

scaling and forward conversion (RC�Sc�FC), which
maps the representation back to the RNS domain
(Fig. 1). This reverse converter was built in a two-level
hierarchy: the first level was based on the CRT (4), and
the second level was based on the MRS [25]. Scaling
by a power of two in the binary domain is easily
performed by a hardwired shift operation, so neither
additional costs nor extra delay are incurred. The most
efficient topologies are adopted to implement the for-
ward converters [34]. Apart from the binary channel,
which requires only truncation, these topologies apply
to all of the moduli sets considered in this study, i.e.,
Property 1, CSA-EAC, CSA-CEAC, and modulo 2k−1
and 2k+1 CPAs, to implement the forward converters.

In addition to the area and delay, the values for the
area-delay product, normalized with respect to the
DR, are presented in Table 4. For the 3-moduli set,
the proposed scaler supports a DR of approximately
4n-bit, whereas the scaler in [15] only supports an
approximately 3n-bit DR. The normalized area-delay
product figure in (44) is used for comparison pur-
poses; an improvement greater than 1 indicates that
the proposed scaler is more efficient than the related
state of the art. An average improvement of approxi-
mately 45% is achieved by using the proposed scalers
for the 3-moduli sets. This improvement increases

significantly when the scaling is performed on the 4-
mod C set: with significant reductions in both area
and delay, we estimate an area-delay product average
improvement of 78%.

Improvement =
(Area× Delay)reference × DRproposed
(Area× Delay)proposed × DRreference

(44)

6.2 Experimental evaluation

The circuits of the proposed and related state-of-the-
art scalers were described in synthesizable VHDL,
and their functionality was thoroughly tested. A well-
known library of arithmetic units [31], also written
with synthesizable VHDL, was used. This library con-
tains a structural specification of components, namely
optimized prefix adders, that were employed to de-
scribe and implement the scalers. Using these HDL
specifications, implementations targeting FPGA and
ASIC were accomplished.

A Xilinx Virtex 4 (part xc4vlx200ff1513-11) FPGA,
based on 90 nm CMOS technology, was targeted to
obtain the programming bitstream using the Synop-
sys Synplicity Premier tools (version E-2010.09-SP2)
for the synthesis procedure and the Xilinx ISE tools
(version 12.4) for placing and routing. For the ASIC
technology, we supported our implementation on a
Faraday 90-nm standard cell library that was tailored
for the UMC 90 nm logic SP/RVT Low-K, using the
Synopsys Design Vision tools (version E-2010.12) to
synthesize the design and the Cadence Encounter and
NanoRoute tools (versions v09.12-s159 and v09.12-
s013, respectively) for placing and routing1. For both
the FPGA and ASIC technologies, no manual opti-
mizations were introduced. The synthesis tools were
set to target minimum delay, thus allowing the tool
to use unconstrained resources and power consump-
tion. The presented energy-per-scaling estimated val-
ues were obtained from the placed-and-routed circuit
specifications for 20% of the switching activity. The
Cadence Encounter built-in power reporting tool was
employed to measure the dynamic and leakage power
on the target ASIC technology.

The experimental results obtained for the ASIC and
the FPGA are presented in Table 5 for the 3-moduli
set (with x = n) and the extended 4-moduli sets
addressed in Section 4. The measures for n = 8, 16
are presented and correspond to dynamic ranges from
31-bit to 96-bit.

Let us first analyze the results obtained for the 3-
moduli sets. The area and delay results that were
experimentally obtained for the proposed and refer-
ence scalers are in line with the estimations derived

1. The HDL specification of the proposed and related art scalers
are publicly available at http://sips.inesc-id.pt/las/prototypes/rnsscalers/.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 11

TABLE 5: Performance figures of the proposed scalers for n = 8 and n = 16; the values normalized with
respect to the DR are presented in parentheses.

90nm ASIC Virtex 4 FPGA
D (ns) A (×103µm2) P (mW) D (ns) A (slices)

n 8 16 8 16 8 16 8 16 8 16

3 moduli set: for the Proposed m2 = 22n (DR = 4n− 1-bit); for [15] m2 = 2n (DR = 3n− 1-bit)

Proposed 0.74 (0.024) 0.92 (0.015) 5.6 (0.18) 12.2 (0.19) 9.8 (0.32) 19.4 (0.31) 6.1 (0.20) 7.0 (0.11) 210 (6.77) 324 (5.14)
[15] 0.73 (0.031) 0.83 (0.018) 6.4 (0.28) 13.7 (0.29) 11.7 (0.51) 23.7 (0.50) 5.29 (0.23) 6.34 (0.13) 191 (8.30) 380 (8.09)

4-mod A (m2 = 2n, m4 = 2n+1 − 1, DR = 4n-bit)

Proposed 2.25 (0.070) 2.78 (0.043) 17.5 (0.55) 40.6 (0.63) 85.8 (2.68) 213.5 (3.34) 17.75 (0.55) 21.10 (0.33) 503 (15.72) 1084 (16.94)
RC [22]�Sc�FC 2.86 (0.089) 3.5 (0.055) 21.6 (0.68) 51.2 (0.8) 117.8 (3.68) 294.5 (4.6) 21.88 (0.68) 26.50 (0.41) 569 (17.78) 1120 (17.50)

4-mod B (m2 = 2n, m4 = 2n+1 + 1, DR = 4n+ 1-bit)

Proposed 4.11 (0.125) 4.71 (0.072) 32.6 (0.99) 73.0 (1.12) 149.1 (4.52) 318.6 (4.9) 26.16 (0.79) 34.02 (0.52) 688 (20.85) 1312 (20.18)
RC [22]�Sc�FC 4.70 (0.142) 5.70 (0.088) 38.7 (1.17) 88.2 (1.36) 206.6 (6.26) 476.9 (7.34) 31.62 (0.96) 37.79 (0.58) 706 (21.39) 1362 (20.95)

4-mod C (m2 = 22n, m4 = 22n+1 − 1, DR = 6n-bit)

Proposed 1.65 (0.034) 1.86 (0.019) 18.7 (0.39) 38.4 (0.4) 66.7 (1.39) 127.8 (1.33) 12.02 (0.25) 14.47 (0.15) 455 (9.48) 887 (9.24)
RC [25]�Sc�FC 2.47 (0.051) 2.83 (0.029) 29.9 (0.62) 62.2 (0.65) 151.3 (3.15) 290.7 (3.03) 18.55 (0.39) 22.64 (0.24) 698 (14.54) 1199 (12.49)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

4 8 16 24

Im
p
ro

v
e

m
e
n
t

n (bits)

ASIC FPGA U-G Model

(a) Area×Delay 3-moduli

0,0

0,5

1,0

1,5

2,0

2,5

3,0

4 8 16 24

Im
p
ro

v
e
m

e
n
t

n (bits)

ASIC FPGA U-G Model

(b) Area×Delay 4-moduli

Fig. 7: Comparison with the state of the art of the delay-area product; values normalized with respect to the
DR for the ASIC and FPGA (a line designed using the U-G model is superimposed): a) for the 3-moduli set,
in relation to [15]; b) for the 4-moduli set, in relation to the RC�Sc�FC approach; an improvement metric
greater than 1 indicates that the proposed scaler is more efficient than the related state of the art.

with the U-G model. Analyzing the results obtained
for the ASIC, normalized with respect to the DR, the
proposed scaler in comparison with [15] is 22.5% and
16.7% faster for n = 8 and n = 16, respectively, and
the area is reduced by more than 30% on average. The
proposed scalers also reduce the power consumption
of the ASICs by approximately 18%, on average. The
results in Table 5 also show that improvements of
the same order are obtained for the area and delay
when the proposed scalers for the 3-moduli set are
implemented on FPGAs, i.e., for larger values of n.

Fig. 7 depicts the area-delay product improvements
achieved using the proposed scalers, comparing the
experimental results obtained for ASIC and FPGA
with the estimates presented in Tables 2 and 3. As
observed in these tables, the scalers proposed are
compared with [15] for the 3-moduli set and with
RC�Sc�FC method [25] for the 4-mod C set . The
experimentally obtained results show that the im-
provements for the 3-moduli set follow the same trend

and are in line with the prediction from the U-G
model, except for scalers with a low n implemented
on FPGAs. A maximum area-delay product improve-
ment of approximately 57% is achieved for both the
ASIC and the FPGA (n = 24), where we used the U-G
model to estimate that this improvement would be ap-
proximately 48%. The minimum improvement for the
ASIC (approximately 33%) occurs for n = 16, the case
for which the deviation between the estimated and
experimental results is the greatest (approximately
14%). The improvements obtained by implementing
the proposed scalers for n = 4, 8 in FPGAs are
negligible results that were not accurately estimated
using the U-G model. This inaccuracy primarily arises
because the logic is implemented on look-up-tables in
memory and also because the interconnections, which
are not considered in the U-G model, dominate the
cost and performance in these cases.

The estimated advantage of using the proposed
RNS scaler for the 4-mod C versus RC�Sc�FC [25]

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 12

0,0

0,5

1,0

1,5

2,0

2,5

3,0

4 8 16 24

Im
p
ro

v
e
m

e
n
t

n (bits)

3-mod 4-Mod A 4-Mod B 4-mod C

(a) Area×Delay improvement

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4 8 16 24

Im
p

ro
v
e

m
e

n
t

n (bits)

3-mod 4-Mod A 4-Mod B 4-mod C

(b) Energy per scaling improvement

Fig. 8: Comparison with the state of the art for the ASIC; values normalized with respect to the DR for the 3-
moduli set (following [15], with x = n) and for the several 4-moduli sets (following the RC�Sc�FC approach):
a) area-delay product; b) energy per scaling; an improvement greater than 1 indicates that the proposed scaler
is more efficient.

is also experimentally evaluated. As observed in the
last lines of Table 5, the delay of the proposed scaler
is approximately 33% lower and the area is approx-
imately 37% smaller when the proposed scalers are
implemented in ASIC. Similar values were obtained
for FPGA, i.e., 35% and 30%, respectively. These re-
ductions are even higher than those predicted using
the U-G model. Moreover, an impressive reduction in
power consumption was achieved by implementing
the proposed scalers on ASICs: more than 50% for
both values of n considered. This is an important
aspect in designs that face power restrictions. For the
4-mod C set, the proposed scaler provides an area-
delay product improvement that is always higher than
100% and reaches 146%, as observed in Fig. 7b). The
U-G model overestimated the required area and the
imposed delay for the proposed scaler. For some oper-
ators that include constant values, the synthesis tools
can simplify the arithmetic circuits, and the impact of
the interconnections, which is not considered in the U-
G model, is more significant when the more complex
RC�Sc�FC [25] scaling architecture is implemented.

Fig. 8 depicts the improvements that were obtained
in the experiments by designing ASICs for all of the
scalers considered in this paper and for different val-
ues of n. The values of the improvements for energy
are obtained by applying on (44) the experimental
results for the power-delay product. For ASIC, the
proposed scalers improve the area-delay product for
the augmented 3-moduli set by approximately 45%,
on average. This figure increases to more than 55%,
reaching a maximum of 60% (n = 16) in the case of the
4-mod A set. For the 4-mod B set, the maximum and
average values for the improvement in the area-delay
product are 46% and 38%, respectively. As observed
from the results depicted in Fig. 7b, the corresponding
average improvement figure for the 4-mod C set is
much higher, approximately 140%. The simplicity of

the multiplicative inverse on the second level of this
particular scaler leads to the simplified architecture in
shown Fig. 6. For this simple architecture, the relative
weight of avoiding computations to perform the re-
verse and forward conversions is more pronounced
and, as predicted with the UG-model, leads to even
more significant improvements.

By analyzing Fig. 8b, similar conclusions are
reached for the improvements in energy per conver-
sion. Using this metric, the average improvements
increase to 54%, 68%, 58%, and 224% for the aug-
mented 3-moduli, 4-mod A, 4-mod B and 4-mod C
sets, respectively.

Fig. 9 presents the values of the area-delay product
and energy per scaling, normalized with respect to the
DR, that were experimentally obtained by implement-
ing the proposed scalers on ASICs. Semi-log graphs
are adopted by plotting the large range of values
obtained for the area-delay product and energy per
scaling on a logarithm to base 2 scale. The area-delay
product per bit required by the scaler for the 3-moduli
varies between 120 × 10−18m2s and 190 × 10−18m2s,
when the value of n increases. For the 4-mod C set,
these figures are approximately four times greater,
which represents the penalty of introducing the sec-
ond level into the scaler architecture. As observed in
Fig. 9a, the value of the area-delay product per bit for
the mod-4 A set is approximately twelve times greater
than that obtained for the 3-moduli set (n = 24). This
number further increases to more than thirty times
as large if we compare the area-delay product per bit
of the scalers for the mod-4 B set and the 3-moduli
set. The energy per bit evolution, represented as pJ
in Fig. 9b, follows the same trend as the area-delay
product, where the scalers of the 3-moduli set and
the 4-mod C moduli set are the most efficient.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 13

1,0

4,0

16,0

64,0

256,0

1024,0

4096,0

4 8 16 24

A
D

/D
R

 [
x
1
0

-1
8
m

2
s
]

n (bits)

3-mod 4-mod A 4-mod B 4-mod C

(a) Area×Delay

1,0

2,0

4,0

8,0

16,0

32,0

4 8 16 24

E
n
e
rg

y
/D

R
 [
p
J
]

n (bits)

3-mod 4-mod A 4-mod B 4-mod C

(b) Energy per scaling

Fig. 9: Performance; values normalized with respect to the DR on the ASIC for the 3-moduli set and several
4-moduli sets: a) area-delay product; b) energy per scaling.

7 CONCLUSIONS

This paper proposes efficient and accurate 2n RNS
scalers for important classes of moduli sets that have
large dynamic ranges, such as a traditional 3-moduli
set that has been augmented with the exponent of the
power of two modulo increased by x or extended by
an additional modulo m4 ({2n−1, 2n+x, 2n+1[,m4]}).
The new adopted approach is neither so general that
it precludes an efficient solution nor so narrow that
it only fits a single moduli set. It performs scaling
directly in the RNS domain by operating both hier-
archically and individually at the channel level and
does not require reverse and forward conversions.
From those formulations, simple memoryless VLSI
architectures were proposed for several moduli sets
of the considered classes. The proposed scalers were
evaluated based on a technologically agnostic unit-
gate model and tested experimentally by synthesizing
both those scalers and those presented in the related
state of the art using FPGA and ASIC technologies.
The obtained experimental results suggest that signif-
icantly more flexible and efficient scalers are achieved.
For a 90 nm CMOS ASIC technology and considering
the merit area-delay product, the experimental results
show that relative improvements of up to 57% and
146%, respectively, are achieved with the proposed
scalers for the 3-moduli set with a dynamic range
of (4n − 1)-bit and the 4-mod set with a dynamic
range of (6n)-bit. These improvements are further
increased to 64.9% and 263% when the energy re-
quired per scaling is measured. The proposed unified
scaling architectures allow not only the design of static
scalers targeting different moduli sets but also the
dynamic configuration of the RNS scalers to efficiently
support several augmented and extended moduli sets
in FPGAs. A final conclusion to be drawn from this
work is that the proposed scalers are not only flexible
and cost-effective but also represent a step forward in
the design of energy-constrained devices, particularly
mobile systems.

ACKNOWLEDGMENTS

First and foremost, my deepest thanks to my lovely
daughter Ana Cristina, whose courage and tenacity
inspired me to write this paper during a quite difficult
time of her life.

I would like to acknowledge Dr. Samuel Antão for
his help in obtaining the experimental results.

This work was supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT)
with reference UID/CEC/50021/2013, and project
EXPL/EEI-ELC/1572/2013.

REFERENCES
[1] P. Mohan, Residue Number Systems: Algorithms and Architectures.

New York: Kluwer Academic Publishers, 2002.
[2] S. Antao and L. Sousa, “The CRNS framework and its ap-

plication to programmable and reconfigurable cryptography,”
ACM Transactions on Architecture and Code Optimization, vol. 9,
no. 4, pp. 1–25, January 2013.

[3] M. Esmaeildoust, D. Schinianakis, H. Javashi, T. Stouraitis, and
K. Navi, “Efficient RNS implementation of elliptic curve point
multiplication over GF(p),” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 21, no. 8, pp. 1545–1549,
2013.

[4] G. Cardarilli, A. Re., R. Lojacono, A. Nannarelli, and M. Re,
“RNS implementation of high performance filters for satellite
demultiplexing,” in IEEE Aerospace Conference, vol. 3, 2003, pp.
1365–1379.

[5] G. Bernocchi, G. Cardarili, A. Nannarelli, and M. Re, “Low
power adaptive filter based on RNS components,” in 12th IEEE
International Symposium on Circuits and Systems (ISCAS), 2007,
pp. 3211–3214.

[6] R.Conway and J. Nelson, “Improved RNS FIR filter archi-
tectures,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 51, no. 1, pp. 26–28, 2004.

[7] M. Griffin, F. Taylor, and M. Sousa, “New scaling algorithms
for the chinese remainder theorem,” in Twenty-Second Asilomar
Conference on Signals, Systems and Computers, vol. 1, 1988, pp.
375–378.

[8] M. Griffin, M. Sousa, and F. Taylor, “Efficient scaling in the
residue number system,” in International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), vol. 2, 1989, pp.
1075–1078.

[9] Z. Ulman and M. Czyzak, “Highly parallel, fast scaling of
numbers in nonredundant residue arithmetic,” IEEE Transac-
tions on Signal Processing, vol. 46, no. 2, pp. 487–496, 1998.

[10] M. Shenoy and R. Kumaresan, “A fast and accurate RNS
scaling technique for high speed signal processing,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 37,
no. 6, pp. 929–937, 1989.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2401026, IEEE Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 62, NO. 12, DECEMBER 2013 14

[11] F. Barsi and M. Pinotti, “Fast base extension and precise scaling
in RNS for look-up table implementations,” IEEE Transactions
on Signal Processing, vol. 43, no. 10, pp. 2427–2430, 1995.

[12] A. Garcia and A. Lloris, “A look-up scheme for scaling in the
RNS,” IEEE Transactions on Computers, vol. 48, no. 7, pp. 748–
751, 1999.

[13] K. Yinan and B. Phillips, “Fast scaling in the residue num-
ber system,” IEEE Transactions on Very Large Scale Integration
(VLSI), vol. 17, no. 3, pp. 443–447, 2009.

[14] S. Ma, J. Hu, Y. Ye, L. Zhang, and X. Ling, “A 2n scaling
scheme for signed RNS integers and its VLSI implementation,”
Science in China Series F: Information Sciences, vol. 53, no. 1, pp.
203–212, 2010.

[15] C. H. Chang, J. Low, and S. Yung, “Simple, fast, and exact
RNS scaler for the three-moduli set {2n−1, 2n, 2n+1},” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 58,
no. 11, pp. 2686–2697, 2011.

[16] T. Tay, C. H. Chang, and J. Low, “Efficient VLSI implementa-
tion of 2n scaling of signed integer in RNS {2n − 1, 2n, 2n +
1},” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 21, no. 10, pp. 1936–1940, 2013.

[17] J. Y. S. Low and C. H. Chang, “A VLSI efficient programmable
power-of-two scaler for {2n − 1, 2n, 2n + 1} RNS,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 59,
no. 12, pp. 2911–2919, 2012.

[18] M. Sheu, S. Lin, Y. Chen, and Y. Chang, “High-speed and
reduced-area RNS forward converter based on (2n−1, 2n, 2n+
1) moduli set,” in IEEE Asia-Pacific Conference on Circuits and
Systems, vol. 2, 2004, pp. 821–824.

[19] Y. Wang, X. Song, M. Aboulhamid, and H. Shen, “Adder based
residue to binary number converters for (2n − 1, 2n, 2n +1),”
IEEE Transactions on Signal Processing, vol. 50, no. 7, pp. 1772–
1779, 2002.

[20] D. Gallaher, F. Petry, and P. Srinivasan, “The digital parallel
method for fast RNS to weighted number system conversion
for specific moduli (2k − 1, 2k, 2k + 1),” IEEE Trans. Circuits
Syst. II, vol. 44, no. 1, pp. 53–57, 1997.

[21] R. Chaves and L. Sousa, “{2n + 1, 2n+k, 2n − 1} : a new
RNS moduli set extension,” in Euromicro Symposium on Digital
System Design (DSD), 2004, pp. 210–217.

[22] P. V. Mohan and A. B. Premkumar, “RNS-to-binary converters
for two four-moduli sets {2n − 1, 2n, 2n + 1, 2n+1 − 1} and
{2n−1, 2n, 2n+1, 2n+1+1},” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 54, no. 6, pp. 1245–1254, 2007.

[23] L. Sousa, S. Antao, and R. Chaves, “On the design of RNS
reverse converters for the four-moduli set {2n + 1, 2n −
1, 2n, 2n+1 + 1},” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 21, no. 10, pp. 1945–1949, 2013.

[24] K. Gbolagade, R. Chaves, L. Sousa, and S. Cotofana, “An
improved RNS reverse converter for the {22n+1−1, 2n, 2n−1}
moduli set,” in IEEE International Symposium on Circuits and
Systems (ISCAS), 2010, pp. 2103–2106.

[25] A. S. Molahosseini and K. Navi, “A reverse converter for the
enhanced moduli set {2n − 1, 2n + 1, 22n, 22n+1 − 1} using
CRT and MRC,” in IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2010, pp. 456–457.

[26] L. Sousa and S. Antao, “MRC-based RNS reverse converters
for the four-moduli sets {2n + 1, 2n − 1, 2n, 22n+1 − 1} and
{2n+1, 2n−1, 22n, 22n+1−1},” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 59, no. 4, pp. 244–248, 2012.

[27] Y.-C. Kuo, S.-H. Lin, M. hwa Sheu, J.-Y. Wu, and P.-S. Wang,
“Efficient VLSI design of a reverse RNS converter for new
flexible 4-moduli set (2p+k, 2p + 1, 2p − 1, 22p + 1),” in IEEE
International Symposium on Circuits and Systems (ISCAS), 2009,
pp. 437–440.

[28] G. Chalivendra, V. Hanumaiah, and S. Vrudhula, “A new
balanced 4-moduli set {2k, 2n − 1, 2n + 1, 2n+1 − 1} and its
reverse converter design for efficient FIR filter implementa-
tion,” in ACM 21st edition of the Great Lakes Symposium on VLSI
(GLSVLSI), 2011, pp. 139–144.

[29] H. Pettenghi, J. Ambrose, R. Chaves, and L.Sousa, “Method for
designing multi-channel RNS architectures to prevent power
analysis SCA,” in IEEE International Symposium on Circuits and
Systems (ISCAS), 2014, pp. 2233–2236.

[30] A. S. Molahosseini and K. Navi, Applications of Digital Signal
Processing. InTech, 2011, ch. Study of the Reverse Converters
for the Large Dynamic Range Four-Moduli Sets, pp. 337–350.

[31] R. Zimmermann, “Efficient VLSI implementation of modulo
2n ± 1 addition and multiplication,” in 14th IEEE Symposium
on Computer Arithmetic (ARITH), 1999, pp. 158–167.

[32] G. Dimitrakopoulos, D. G. Nikolos, H. Vergos, D. Nikolos, and
C. Efstathiou, “New architectures for modulo 2n− 1 adders,”
in 12th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), 2005, pp. 1–4.

[33] H. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-one
modulo 2n+1 adder design,” IEEE Transactions on Computers,
vol. 51, no. 12, pp. 1389–1399, 2002.

[34] P. Matutino, R. Chaves, and L. Sousa, “Arithmetic-based
binary-to-RNs converter modulo 2n ± k for jn-bit dynamic
range,” IEEE Transctions on Very Large Scale Integration (TVLSI)
Systems, 2014.

Leonel Sousa received a Ph.D. degree in
Electrical and Computer Engineering from
the Instituto Superior Tecnico (IST), Univer-
sidade de Lisboa (UL), Lisbon, Portugal, in
1996, where he is currently Full Professor.
He is also a Senior Researcher with the
R&D Instituto de Engenharia de Sistemas e
Computadores (INESC-ID). His research in-
terests include VLSI architectures, computer
architectures, parallel computing, computer

arithmetic, and signal processing systems. He has contributed to
more than 200 papers in journals and international conferences, for
which he got several awards - such as, DASIP’13 Best Paper Award,
SAMOS’11 ’Stamatis Vassiliadis’ Best Paper Award, DASIP’10 Best
Poster Award, and the Honorable Mention Award UTL/Santander
Totta for the quality of the publications in 2009. He has contributed
to the organization of several international conferences, namely
as program chair and as general and topic chair, and has given
keynotes in some of them. He has edited two special issues of
international journals, and he is currently Associate Editor of the
IEEE Transactions on Multimedia, IEEE Transactions on Circuits and
Systems for Video Technology and Springer JRTIP, and Editor-in-
Chief of the Eurasip JES. He is Fellow of the IET, a Senior Member
of both IEEE and ACM, and Member of IFIP WG10.3 on concurrent

