Future Generation Computer Systems 78 (2018) 369-378

Contents lists available at ScienceDirect 4
FiGICIS!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs e

Modular and generic loT management on the cloud

Konstantinos Douzis?, Stelios Sotiriadis **, Euripides G.M. Petrakis®?, Cristiana Amza

@ CrossMark

b

2 Department of Electronic and Computer Engineering, Technical University of Crete (TUC), Chania, Crete, GR-73100, Greece
b The Edward Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Bahen Centre for Information Technology, St. George

Campus, 40, Toronto, ON M5S 2E4, Canada

HIGHLIGHTS

It supports fast incoming traffic (POST data around 1.7 s per event).

We developed a Sensor Data Collection Service to support generic IoT data collection.
The service separates IoT devices and cloud system with NoSQL data storage support.
It supports vendor agnostic and on the fly data collection from IoT devices.

ARTICLE INFO ABSTRACT

Article history:

Received 15 January 2016
Received in revised form

21 May 2016

Accepted 27 May 2016
Available online 18 June 2016

Keywords:

Cloud computing

Internet of Things

FIWARE

Cloud services

Sensor data collector

Internet of Things Management

Cloud computing and Internet of Things encompass various physical devices that generate and exchange
data with services promoting the integration between the physical world and computer-based systems.
This work presents a novel Future Internet cloud service for data collection from Internet of Things devices
in an automatic, generalized and modular way. It includes a flexible API for managing devices, users and
permissions by mapping data to users, publish and subscribe context data as well as storage capabilities
and data processing in the form of NoSQL big data. The contributions of this work include the on the fly
data collection from devices that is stored in cloud scalable databases, the vendor agnostic Internet of
Things device connectivity (since it is designed to be flexible and to support device heterogeneity), and
finally the modularity of the event based publish/subscribe service for context oriented data that could be
easily utilized by third party services without worrying about how data are collected, stored and managed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the years various services and applications have been
developed in the concept of future Internet (FI) [1,2]. In particular
such services are available by different cloud platform nodes such
as FIWARE lab' that is a non-commercial sandbox environment.
The services follow the form of RESTFul architecture [3] that allow
to talk to each other easily and in a decoupled way. In addition, the
Internet of Things (IoT) involves various sensors that are embedded
to every day devices and monitor data produced by humans or
by the environment in an automatic way [4]. The combination of
cloud computing and IoT generates a new opportunity for wide

* Corresponding author.
E-mail addresses: kostasdouzis@gmail.com (K. Douzis),
s.sotiriadis@intelligence.tuc.gr (S. Sotiriadis), petrakis@intelligence.tuc.gr
(E.G.M. Petrakis), amza@ece.utoronto.ca (C. Amza).

1 https://www.fiware.org/lab/.

http://dx.doi.org/10.1016/j.future.2016.05.041
0167-739X/© 2016 Elsevier B.V. All rights reserved.

discovery [5] and such data, since more and more FI applications
are available. The development of such applications that are using
cloud resources becomes more efficient (scalable storage) and
creates a significant impact on the economic benefits e.g. because
of cloud elasticity and pay on demand model [6]. In addition, the
data transmission speed and the large volume of data (since cloud
has the ability to store and process it) make it even more attractive.

In this work we focus on the FI concept and especially on
the FIWARE platform? that offers public services followed by
simple application programming interfaces (APIs) to facilitate
the process of developing smart applications. FIWARE motivates
new entrepreneurs and software developers to implement such
applications in health, environment and smart city concepts by
providing Generic Enablers (GEs) [7] that are the building blocks of
FI applications [4]. In the general concept of a smart city many IoT
devices and sensors are associated with cloud computing services.

2 https://www.fiware.org.

http://dx.doi.org/10.1016/j.future.2016.05.041
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.05.041&domain=pdf
mailto:kostasdouzis@gmail.com
mailto:s.sotiriadis@intelligence.tuc.gr
mailto:petrakis@intelligence.tuc.gr
mailto:amza@ece.utoronto.ca
https://www.fiware.org/lab/
https://www.fiware.org
http://dx.doi.org/10.1016/j.future.2016.05.041

370 K. Douzis et al. / Future Generation Computer Systems 78 (2018) 369-378

For example in cases of data processing produced in order to
avoid natural disasters (fires, floods, etc.), control of environmental
conditions, energy saving, control of patient status and others. The
sheer volume of data generated by sensors, has forced the transfer
of the Internet of Things concept entirely on cloud computing
since traditional systems could not handle the large volume of data
as well as to guarantee remote access to other systems, e.g. for
integration purposes.

The FIWARE lab? provides software to developers that use such
services to develop smart applications/services within the smart
city and thus including idea of the Internet of Things. Already
in recent years, the community of FIWARE has taken important
steps in the development of such services that help in creating
more complex applications, however all these services are oriented
with vendors, IoT devices and protocols. Having said that, this
work proposes a Sensor Data Collection (SDC) cloud service that
focuses on the problem of collecting data from different devices
and their sensors, thus moving to a vendor agnostic solution. SDC
developed as a gateway among IoT devices and cloud, enabling the
collection of the different sensor signals that are eventually sent
to various other services. The service is designed to be extensible
and generalized, so [oT devices could be easily connected and
communicated without any programming intervention. Also, it is
modular based on the service oriented architecture [8], that allows
(a) support of multiple sensors belonging to different domains (for
example medical, environmental, etc.), and (b) support of network
gateway devices.

The work is organized as follows. Section 2 presents the mo-
tivation and Section 3 the related approaches to this study, Sec-
tion 4 demonstrates the architecture of the SDC service, Section 5
presents an analysis of the implementation aspects and demon-
stration of the service API and Section 6 presents the experimen-
tal analysis based on the simulation of two IoT devices that are
(a) the Netatmo environmental sensor? and the Zephyr HxM Blue-
tooth Heart Rate Monitor medical sensor.” Finally, in Section 7 we
conclude with the summary of this work and the future research
directions.

2. Motivation

This work is based on FIWARE that is a non-commercial plat-
form that offers general purpose services called Generic Enablers
(GEs) that are in the form of APIs. In particular, GEs are provided
by cloud computing infrastructure as SaaS [9] and if combined can
constitute a special-purpose service called Specific Enablers (SEs),
which could be used for developing solutions for more complex
problem. FIWARE enables developers to obtain services as infras-
tructure (IaaS), creating virtual machines and allocating computing
resources in the FIWARE lab [10].

FIWARE lab is based on the Openstack [11] platform that is an
open source software, which allows the creation of a cloud com-
puting systems. The latter are designed according to Openstack
standards, thus consisting of a centralized architecture encompass-
ing various smaller pieces of services that are responsible for con-
trolling and managing the high volume computing resources [12].
In this work we utilize an OpenStack system and FIWARE GEs to
propose an architecture for a sensor data collection service on the
cloud. The solution is modular, decentralized and reusable [13]
thus allows IoT devices to easily attach to the service. We are mo-
tivated by the works in publish/subscribe systems in clouds and
inter-clouds as in [14-18] and [19]. The basic characteristic of the

3 https://www.fiware.org.
4 https://www.netatmo.com/en-US/site.
5 http://[www.zephyranywhere.com.

proposed service is the simplicity of use at any time requested by
the user. Such reusable services are very important in a cloud com-
puting because it allows developers to model complex systems.
Another important advantage is the modularity, that is to say the
replacement of one individual service (GE) in case of a new version
or a failure.

We implement our service within the IoT concept based on a
service centric architecture as in [20] that is based on the fact that a
large problem can be solved optimally and efficiently if it is divided
into smaller parts. The advantages of such modular architectures
are:

i. The services are reusable and can be made available on a larger

scale.

ii. It provides faster and more efficient debugging and leads to
improved fault tolerance.

iii. It involves shorter time with regard to the distribution of new
products and applications.

iv. The services are not bounded to the system, thus can be easily
replaced.

v. In case of integrating to a new system it does not require
changes to the internal procedures of the service.

The SDC service has been developed in the form of the so called
protocol adapters® that are implementations developed specifi-
cally for communication protocol (for example Wi-Fi, ZigBee, Blue-
tooth, etc.) as well as for specific devices. These services provide
APIs, with functionalities such as data sending and alerting in case
that a stimulus is generated from the systems. Also, it is possible
to retrieve the characteristics of a device. Usually, the resulting re-
sponse in a method that calls the service APl is a standard data JSON
(JavaScript Object Notation).

In this work we aim to develop a more generalized service that
will allow data collection and storage from various IoT devices
without worrying about protocols or device specifications. Thus,
we aim to “transform” sensors to flexible APIs so data could easily
be flown over the Internet to other services. Two main issues that
the SDC service is focused are as follows.

i. The issue of having many different communication protocols
between devices and network gateway. The main communi-
cation protocols on modern sensors are the Wi-Fi, Bluetooth,
ZigBee, etc. Thus there is a need for a service that implements
interfaces according to these standards, so as to allow easy inte-
gration and communication between services and IoT devices.

i. There is a huge variety of devices because companies provide

proprietary APIs to collect data from the sensors, so the im-

plementation of a service for commercial sensors seems quite

tricky.

The large volume of data produced by devices requires a new

solution for scalable data storage. In addition, big data that are

collected from different devices have different schemas thus a

more sophisticated way is required for data storage.

—

iii.

The motivation of our work is based on the fact that to the
best of our knowledge there is not a FIWARE service capable of
managing, storing and sharing information in such way. Users
who use this service may be persons, services and applications
developed in FIWARE and other development environments. The
proposed solution manages users and sensors for the immediate
updating and subscribes users on data updates for each sensor.
The basic functions supported are (a) add, remove and update
sensors by the administrator, (b) add, remove and update user
subscriptions, (c) add, remove and update user rights in sensors
assistance from the administrator, (d) update subscribers’ sensors,

6 http://catalogue.fiware.org/enablers/protocol-adapter-mr-coap.

https://www.fiware.org
https://www.netatmo.com/en-US/site
http://www.zephyranywhere.com
http://catalogue.fiware.org/enablers/protocol-adapter-mr-coap

K. Douzis et al. / Future Generation Computer Systems 78 (2018) 369-378 371

(e) identification and delete users from the administrator and
(f) database support with historical data belonging to different
Sensors.

Having said that, the contribution of this work includes the
following.

i. The proposed architecture is dynamic and expandable, for ex-
ample it could be easily integrated with services such as data
analysis and processing.

ii. The service itself could be used easily, is generalized to support
multiple IoT devices and protocols and provides a flexible REST-
Ful API [3]. This allows third party services and users to take
advantage of the cloud technology and subscribe to IoT devices
and their data remotely and on demand.

iii. The service is modular by separating front-end (IoT devices)
and back-end (cloud system) and supports big data storage
since it includes a scalable NoSQL database.

iv. It is compatible with any service that supports a REST API
e.g. with FIWARE services, thus it hides the internal service im-
plementation details, it is stateless and therefore easily scalable
and provides loosely coupling.

Section 3 presents the works and technologies directly related
with our study.

3. Related works

As mentioned before, FIWARE platform provides software
developers the necessary tools to build FI applications within the
context of the smart city and of the IoT. FIWARE offers important
benefits over the traditional systems including (a) elasticity as the
platform could allow various levels of resource provisioning, (b)
there is no need for software updates and maintenance, (c) increase
accessibility and collaboration in terms of availability of services
to 3rd party users and developers, (d) centralized security offered
by the FIWARE platform [21], (e) remote access from everywhere
and anywhere through its powerful API that allows technology
shift to seamless application development, and (f) customization
and user tailored orientation through user personalized features
(e.g., shared cloud storage collections for users) as described in [13]
and [22].

In this work we utilize the following FIWARE GEs in order to
integrate our solution:

i. Identity Management GE: This service covers certain aspects of
users’ access to networks, services and applications. Moreover,
it is used for the authentication of third party service so as to
gain access to personal data stored in a secure environment.
The KeyRock identity management’ includes REST API inter-
faces for use by application developers. In our case the SDC ser-
vice must register to the KeyRock identity manager. It provides
secure and private authentication from users to devices, net-
works and services, authorization and trust management, user
profile management, privacy preserving disposition of personal
data, Single Sign-On (SSO) to service domains and Identity Fed-
eration towards applications. Identity Management is used for
authorizing foreign services to access personal data stored in a
secure environment.

ii. JSON Storage GE: This GE supports information storage in
JSON format through more abstract base type Mongo DB.®
The service includes an API designed based on REST architec-
ture. This GE provides NoSQL database management services
through a REST APL. Its users can perform CRUD (Create-Read-
Update-Delete) operations on resources by using the basic
HTTP methods (POST, GET, PUT, DELETE). In addition, it allows
users to query over the stored resources.

7 http://catalogue.fiware.org/enablers/identity-management-keyrock.
8 https://[www.mongodb.org.

Admin

Event Sender Interface

Event Receiver

Targeting &
< " Profiling
VOIP /
WehRTC ——
BB
Health
Monitoring

Event Log

Fig. 1. Event Service SE modular architecture.

iii. Publish/Subscribe Context Broker-Orion Context Broker GE:
The Orion Context Broker provides a publish/subscribe mech-
anism. Using the Orion Context Broker, users can subscribe
to context elements (e.g., a room whose temperature and at-
mospheric pressure are measured) and get updated on con-
text changes. In addition, they can use predefined conditions
(e.g., an interval of time has passed or the context element?s at-
tributes have changed) so they get context updates only when
the condition is satisfied. This module allows users to subscribe
to other users gesture collections to use them for building ap-
plications or to subscribe to a user who is broadcasting infor-
mation.

In this work we utilize the subscription request solution and
we create a different entity for each sensor added to the system.
Then users have the ability to make subscriptions to many fea-
tures that are mapped to different sensors. In addition, by set-
ting predetermined time interval or configuring an on change
parameter they can get data directly from the context broker.
After a successful subscription, the user receives a response
from the context broker with a unique subscription identifi-
cation (id) since the system supports multiple requests from
different users.

iv. Event Service Specific Enabler'®: This SE is based on two enti-
ties namely event senders and event receivers.

e Event Senders: are system components that issue events in
order to inform other system components of user interac-
tions or system changes.

e Event Receivers: are system components that receive events
in order to react to user interactions or changes with other
parts of the system (see Fig. 1).

The Event Service SE is a web service that provides a REST-
ful interface to be accessed by the event senders and receivers.
Additionally an XML-RPC interface has been envisioned to ex-
tend the supporting interfaces. The interfaces follow the nota-
tion of the OMA NGSI-9/10 standards. It forwards events to the
embedded event database, log file(s), and all subscribed event
receivers. It provides a web-based interface for the administra-
tor to subscribe/configure event receivers and to check on the
event database.

9 http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-

context-broker.
10 http://fistarcatalogue.fiware.eng.it/enablers/event-service.

http://catalogue.fiware.org/enablers/identity-management-keyrock
https://www.mongodb.org
http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
http://fistarcatalogue.fiware.eng.it/enablers/event-service

372 K. Douzis et al. / Future Generation Computer Systems 78 (2018) 369-378
Producers Front-End Back-End Consumers
Users/Developers
Sensor Data : ; - a8
i N Appleation Logic Publish/Subscribe o)
@ Sensor > Collector > o < Service =aa
A—I = N
Somae Application:
- Service _y | Identfication |t s
£ User @ < Senice [=
Fig. 2. The reference architecture for sensor data collection in IoT systems.
Table 1 4.1. Reference architecture

Application Programming Interface (API) of Event Service SE.

Interface Description

INGSI10/updateContext
/NGSI10/queryContext
INGSI10/subscribeContext
INGSI10/updateContextSubscription
/NGSI10/unsubscribeContext

/oauth2/access_token

Create/update new event/context
Query for existing event/context
Subscribe to event/context

Update subscription to event/context
Unsubscribe to event/context

Get OAuth2 access token

However, security considerations have resulted in the ex-
tension of the service, as the current version does not guarantee
the security of potentially sensitive data and how it is managed
and stored (see Tables 1-7).

Also, it does not necessarily ensure data security due to non-
use encryption algorithms (AES) for local storage. By contrast,
during the conceptualization of the SDC model we use specific
services offered by the FIWARE platform for the identification
of users and data storage to ensure system security. By using re-
mote storage e.g. utilizing the JSON Storage GE the SDC service
made possible the creation of a public repository, where all in-
stances can access through the SDC provided API. In this public
repository is stored information about all the sensors’ schemas
available in the market (e.g. Kinect, Zephyr, Atmo, etc.). This
was not possible in the Event Service SE because of the local
storage. Therefore, the main differences of the SDC service with
service Event Service SE are:

i. Identification of users who have an account in the FIWARE,
by external authorized FIWARE services.

ii. Remote Storage data service using a special storage service
with a public repository where every instance of the service
can access.

iii. JSON Storage GE uses No-SQL database Mongo DB. So no fur-
ther processing time for parsing and then insertion of the
parsed JSON data to a relational SQL database.

iv. Ability to restrict users from specific sensors, as not every
user can subscribe to specific sensors that determine the
“administrator” of the instance.

v. When a new instance is been deployed is ready to use with-
out any further configuration.

4. Architecting the Sensor Data Collection (SDC) cloud service

This section presents the reference architecture (Section 4.1) as
a best practice model for IoT systems, the SDC architecture that de-
rives from the reference model (Section 4.2) and the identification
of the possible users (Section 4.3).

The reference architecture follows the service centric concep-
tualization model as presented in [22]. The reference architecture
modules include producers (IoT devices), front-end (data collec-
tors), back-end (resources for data storage and analysis) and con-
sumers (third party users) and it is demonstrated in Fig. 2.

The architecture is divided into four parts that interact with
each other in order to implement a generic IoT solution. The
architecture parts are (a) the producers that include sensors that
generate the information (e.g. data collection), (b) the front-end
side, that plays the role of a gateway between the data sent
by the sensor and the data managed by the application, (c) the
back-end is the actual system and includes the general purpose
services for user authentication, creates subscription, data storage
application and others (these integrate the application logic, which
makes use of standards, controls and conditions for the transfer
of information on individual services) and (d) the consumers are
either end users or other applications that communicate with the
SDC APIL The architecture of the SDC service is derived from the
reference model and is described below.

4.2. Architecture of the Sensor Data Collection (SDC) cloud service

This section presents the architecture of the SDC service that is
based upon the following concepts.

i. Requires to maintain user data security based on validated user
identification service.

ii. Provides scalable remote storage of user data, sensors and
licenses by using a JSON storage service for secure and quick
retrieval of data stored in the service.

iii. It is build upon the RESTFul architecture for efficient and flex-
ible communication with other services. This will facilitate the
development of more complex services and applications with
extra functionality. Also it uses the JSON standard for informa-
tion exchange.

iv. It exploits the benefits of cloud computing in the development
of services such as elasticity, flexibility, and low infrastructure
and maintenance costs.

To design the system we use the top-down approach, that is to
begin with the overall system architecture and then analyze in de-
tail the subsystems that compose it [8]. The overall architecture
is derived from the reference architecture and consists of differ-
ent modules. The user interface (Front-End) is connected directly
to the system management interface (Back-End) and follows Users
(Users) application following the conceptual model of Fig. 2. Start-
ing with the front-end this part is responsible for the connection of
sensors and export of data to the cloud. As mentioned in the intro-
duction, the communication protocol used by the sensors to com-
municate with the SDC service varies from sensor to sensor, thus

Table 2

Users’ interactions in API's functionality.

K. Douzis et al. / Future Generation Computer Systems 78 (2018) 369-378 373

Functionality

Administrator Consumer

Retrieve all the schemas of available sensors.
Retrieve a specific sensor’s schema.
Create, update and delete a sensor’s schema.

Retrieve a specific connected sensor or all the connected sensors.
Delete a specific connected sensor and retrieve the logged data of a specific sensor.
All the methods for user management (described in Section 4).

Create, update and delete a subscription.

Retrieve all the subscriptions of the users, retrieve a specific subscription or delete a subscription.
Retrieve the logged data of all the subscriptions of the user.

Retrieve the permission of a specific sensor.

Create, update or delete a permission for a specific sensor.
Retrieve the context notifications of sensors’ data in real time.

Sending sensor’s data to the system.

<!

AN

AN N N N N N N N NN
ANl A

Table 3
Interfaces for sensor management.
Method (HTTP) Interface Description
GET [sensors Retrieve all the schemas of available sensors.
GET [/sensors/sensorld Retrieve the specific sensor’s schema with id sensorld.
POST /sensors Create a new sensor’s schema, stored in the public repository.
PUT [sensors/sensorld Update the schema of a stored sensor.
DELETE /sensors/sensorld Delete the schema of a stored sensor.
GET /connected Retrieve the schemas of all connected sensors.
GET [connected/sensorld Retrieve the schema of a specific connected sensor.
DELETE /connected/sensorld Delete/Disconnection of a specific sensor.
GET /log/sensorld Retrieve of the data been sent from the sensor with id sensorld.
Table 4
Interfaces for user management.
Method (HTTP) Interface Description
GET Jusers Retrieve all the users of the instance.
GET users/userld Retrieve the specific user with id userld.
DELETE |users/userld Delete the specific user with id userld.
POST Jusers/admin Give a consumer administrator rights.
GET users/authorized Retrieve all the authorized users of the instance.
GET Jusers/unauthorized Retrieve all the unauthorized users.
POST Jusers/authorize Authorize a user to be able to access the instance.
Table 5
Interfaces for users’ subscriptions management.
Method (HTTP) Interface Description
GET /subscriptions Retrieve all the users’ subscriptions.
GET [subscriptions/subld Retrieve the specific subscription with id subld.
GET [subscription/log Retrieve all the logged data from subscriptions of the user.
DELETE [subscriptions/subld Delete the specific subscription with id subld.
GET [subscription Retrieve the subscription of the user who calls the interface.
POST [subscription Create a new subscription for the user.
PUT [subscription Update the subscription for the user.
DELETE [subscription Delete the subscription for the user.
Table 6
Interfaces for sensors’ permissions/licenses management.
Method (HTTP) Interface Description
GET /sensors/sensorld/permission Retrieve the permission for the sensor with id sensorld.
POST /sensors/sensorld/permission Create the permission for the sensor with id sensorld.
PUT /sensors/sensorld/permission Update the permission for the sensor with id sensorld.
DELETE /sensors/sensorld/permission ~ Update the permission for the sensor with id sensorld.

Table 7

Interfaces for sensors’ data.
Method (HTTP) Interface Description
GET /contextNotifications The user is informed in real time for sensor data to which he has been subscribed.
POST /event Administrator has the ability to send sensor data to the system.

374 K. Douzis et al. / Future Generation Computer Systems 78 (2018) 369-378

Context Management

Publish/
\ Subscribe Orion
Context Broker
GE
Context
Updates

e
|
|

o

=)

A thenticatian

KeyRock Identity A
Management GE ¢ |

Application Logic

Storage
User Sensor SenS(.)r/.
information Information Subscriptio
n Log
JSON storage GE
=3
Input Events| ;- -

— h e
=

Raw sensor data

Fig. 3. The sensor data collection service architecture.

it is necessary to use a mechanism that will properly encode the
data according to the standards set by the SDC service. This part in-
cludes the service functions implemented as insert/delete/update
description/schemas of sensors and connect/disconnect of sensor.
It further includes the method by which data are sent and related
with administrator rights.

The back-end part is the system management interface that
consists of general purpose services that we develop for the
processing and storage of data and are the same for all sensors
that interact with the system. More specifically, these are the
Publish/Subscribe Orion Context Broker GE and JSON Storage GE
[23], which are responsible for managing user subscriptions and
storing information and data respectively. Furthermore, this part
contains the mechanism for identification of users that enter
the application, for example the KeyRock Identity Management
GE. Finally the Application Logic orchestrates the transferring
of the information to the appropriate individual parts (storage,
identification and information manager). Fig. 3 demonstrates the
detailed architecture of the service. The four segments include user
identification (authentication process), management information
framework (context management), application logic and storage.

The modules of Fig. 3 are described as follows.

—

. The user identification (authentication) takes place on two lev-
els, first through KeyRock Identity Management GE and then
through the SDC service. In fact, the system administrator is re-
sponsible for identifying the consumer to access the functions
of the SDC. This is due to the fact that the administrator should
have full control of the instance which was created.

. The context management module ensures all the necessary
processes such as creation of entity sensor (entity creation
process), entity framework renewal (update context), create/
update/delete user subscriptions and entity deletion/sensor. All
these functions are included in RESTFul API offered by the pub-
lish subscribe Orion Context Broker GE.

The application logic module includes the control, regulation

and necessary API calls that the system is operating.

iv. The storage is used to store information about users (adminis-

trator and consumers), sensors and additional stored data his-

tory that have been sent from a sensor and user subscriptions
history.

—
=

=

iii.

An important aspect of a generic [oT system is the orchestration
of users with regard to their privileges for data accessibility.
Section 4.3 details such conceptualization.

4.3. Users orchestration

Here we identify the various user categories that interact with
the SDC and are either persons or IoT devices. Also we include ser-
vices and applications that require to integrate functions of the SDC
service in their own functionality offered via the API. In particular,
users entering the system are twofold; the administrator and the
consumer. The first user who enters the system automatically re-
ceives administration rights, that is responsible for entering data
into the system, as well as the management of sensors and users.
The administrator is therefore unique for each instance of the SDC
service. On the other hand, the consumer is able to collect data from
several sensors simultaneously or when sensors change some fea-
tures (attributes) either on a threshold change or based on an inter-
val. The user accessibility requirements are divided among admin-
istrator and consumers and depending on the functionality that the
developer wants to map to each user.

Initially, the administrator is enrolled into the cloud platform
and is the first user who logs into the system. The role of the
administrator includes the following parameters.

i. He is unique for each instance of the SDC service and is
responsible for the identification of users after the users have
been identified by KeyRock IDM GE. If the user is not identified
by the administrator he has no access to any function the APL

ii. He has the ability to allow certain users to make subscriptions
to specific sensors. Permission of each sensor can include
multiple users simultaneously and is unique.

iii. He has the ability to create a subscription. He can also renew or
delete the subscription. In case of renewal he can only change
the type of subscription and not the sensors’ data that wants to
be informed.

iv. He is responsible for sending the sensors’ data to the system.

v. He can create a new sensor schema, update or delete a
particular sensor schema.

vi. He can authorize a user with administration rights.

The consumers are also enrolled into the cloud platform and
their role includes the following parameters.

i. To access any of the following functions to be initially identified
by KeyRock Identity Management GE with the email address
and password, and secondly from the administrator of the
instance.

K. Douzis et al. / Future Generation Computer Systems 78 (2018) 369-378 375

ii. To make a subscription to the sensor’s data first need to have
the permission of the administrator.

iii. Has the ability of subscription to all sensors depending on the
administrator’s approval. He can also create, renew or delete
the subscription. In case of renewal he can only change the
type of subscription and not the sensors’ data that wants to be
informed.

Section 5 details the implementation aspects and configura-
tions of the SDC service.

5. Implementation of the sensor data collection cloud service

This section presents the implementation of the solution and
the RESTFul API. We detail the methods and the functionality
that each of which performs. To characterize the API, we clas-
sify its functionalities into five categories similar to the require-
ments analysis phase. These categories of the API methods are
(a) the management of sensors, (b) the management of users,
(c) the management of subscriptions, (d) the management of li-
censes/permissions and (e) the management of sensor data. Fi-
nally, we present a discussion of the implementation of the user
authentication functionality.

5.1. Management of sensors

This section presents the functionalities of the module related
with the management of devices (and their sensors) e.g. on how
to create, read, update and delete sensors. These are presented in
the form of the method (e.g. GET/sensors) and the explanation of
its functionality.

For example, if the administrator of the instance wants to
create a sensor Atmo with attributes temperature and pres-
sure then he will send an HTTP POST request to the address
147.27.50.119/api/sensors with payload:

“name”: “Atmo”, “attributes”:[{*name”:“temperature”,“type”:

”.

“celsius”},{*“name”:“pressure”,“type”:“bar"}] }

Also, along with the payload user must send additional info in the
header of the request. Content-Type must be “application/json”
and Authorization must be Basic base64(username:password). The
base64'' function encodes the string username:password into
another string which we have to attach in Authorization header.

Response Description

JsonException The payload is not in JSON format.
DataFormatException The payload data is not in the proper
format like above or the name of
attributes are not unique.

Some error occurred in the exchange of
data between the services.

CurlException

5.2. Management of users

This section presents the functionalities of the module related
with the management of users e.g. on how to retrieve, authorize
and delete users. These are presented in the form of the method
(e.g. GET/users) and the explanation of its functionality.

For example, if an unauthorized user wants to access the inter-
faces of the API, administrator of the instance must send an HTTP
POST request to the address 147.27.50.119/api/user/authorize
with payload:

11 https://en.wikipedia.org/wiki/Base64.

{“email”: “123@emailservice.com "}.
The email provided in the payload maps to the unauthorized user.

Response Description

JsonException The payload is not in JSON format.
NotFoundException No user with this email.
NotAllowedException If the user has already been authorized
or the email belongs to the
administrator of the instance.

Some error occurred in the exchange of
data between the services.

CurlException

5.3. Management of subscriptions

This section presents the functionalities of the module related
with the management of subscriptions e.g. on how to create,
retrieve, update and delete user’s subscription. These are presented
in the form of the method (e.g. GET/subscriptions) and the
explanation of its functionality.

For example, if a user wants to watch two attributes of sensor
test1 whenever the attribute a1 changes, then he will send an HTTP
POST request to the address 147.27.50.119/api/subscription with
payload:

{ “subAttributes”:[{*name”:"“a1”,"“sensorid”:
“test1},{“name”:"“a2”,“sensorid”:“test1"}],
“subType”:“ONCHANGE”, “condAttributes”:[{*name”:*“a1",
“sensorid”:“test1”}] }

Otherwise, if the user wants to watch the two attributes of
sensor test1 every 3 s then he sends a payload:

{ “subAttributes”:[{*name”:“a1”,"sensorid”:“test1"},
{“name”:“a2”,“sensorid”:“test1”}], “subType”:
“ONTIMEINTERVAL”, “interval”:“3"” }

Also, along with the payload user must send additional info in the

header of the request. Content-Type must be “application/json”

and Authorization must be Basic base64(username:password).

Response Description

JsonException The payload is not in JSON format.
DataFormatException The payload data is not in the proper
format like above.

CurlException Some error occurred in the exchange of
data between the services.
SubscribeException If the user has not got permission to

subscribe to the specific sensor/s.

5.4. Management of permissions/licenses

This section presents the functionalities of the module related
with the management of permissions e.g. on how to create, re-
trieve, update and delete sensors’ permissions. These are presented
in the form of the method (e.g. GET/permissions) and the explana-
tion of its functionality.

For example, if the administrator gives permission to a con-
sumer with email=d@e.com so as to subscribe to the sensor with
sensorld Atmo, the HTTP POST request is : “users”:
[dem2@emailservice.com].

Response Description

JsonException The payload is not in JSON format.

NotFoundException The user or the sensor cannot be found.

CurlException Some error occurred in the exchange of
data between the services.

PermissionException The sensor has already a permission
attached.

https://en.wikipedia.org/wiki/Base64
mailto:123@emailservice.com
mailto:d@e.com
mailto:dem2@emailservice.com

376 K. Douzis et al. / Future Generation Computer Systems 78 (2018) 369-378

Context Management Redquest Updates
Publish/

4 Application Logic

Subscribe Orion [ESEESS notifyCon
Context Broker textphp .
(¢]3 og‘a’
Context
Updates y
text
HTTP GET request
html FEgle
/contextNotifications
respnse

-

Fig. 4. Context notifications on real time.

5.5. Management of sensors’ data

This section presents the functionalities of the module related
with the management of sensors’ data e.g. on how to get context
notifications and send sensor’s data as an event. These are pre-
sented in the form of the method (e.g. GET/contextNotifications)
and the explanation of its functionality. (See Fig. 4.)

For example, if a user has a subscription with subid =
553e93a498702c804cc and the subscribed attributes are the
temperature and pressure of the Atmo sensor, the JSON with which
the system response is like below:

{“subscriptionld”:“553e93a498702c804cc”, “originator”:

“localhost”,“contextResponses”:
[{“contextElement”:{*type”:“Sensor”,“isPattern”:“false”,

“id”:“Atmo”,“attributes”:
[{“name”:“temperature_Atmo”,"“type”:“celsius”,“value”:“24"},

“name”:“pressure_Atmo”,“type”:“bar”,“value”:“70"}]},
“statusCode”:{“code”:“200",“reasonPhrase”:“OK"}}]}

Otherwise, if the administrator (or a front-end service) sends
data from the sensor Atmo about the attributes temperature and
pressure, then he will send an HTTP POST request to the address
147.27.50.119/api/event with payload:

. ”

{“id”: “Atmo”, “attributes”:[{“name”:“temperature”,
:“celsius”,“value”:“20"},

",

“name”:“humidity

type”

” ",

J‘type”:“percentage”,“value”:“75"}] }

Also, along with the payload user must send additional info in the
header of the request. Content-Type must be “application/json”
and Authorization must be Basic base64(username:password).

Response Description

JsonException The payload is not in JSON format.

NotFoundException The user who wants to get the
notifications has no subscription
stored or the sensor from which the
administrator wants to send data
cannot be found.

CurlException Some error occurred in the exchange of

data between the services.

5.6. Implementation of the user authentication functionality

This section presents the user authentication middleware
that is offered by the SDC service. The middleware is called
HttpBasicAuth and allows us to identify the user at every call of a
method of API. Whenever the user makes call to a method of the
APJ, it requires to provide credentials (in the form of username and
password). The username and password are encoded in the form

of base64 (username: password) and be placed as a header to the
HTTP request made by the user. We implement the SDC to utilize
two middlewares, (a) the first is used for identification and (b) the
second for caching (see Fig. 5).

The authentication middleware consists of functions to au-
thenticate and store the user who uses a method of the pro-
vided API. Originally the middleware specifies that the requested
address URL/api/ does not require user authentication. After a
function of the middleware is called to authenticate the user
through the appropriate method of the KeyRock Identity Man-
agement GE https://account.lab.fiware.org/api/v1/tokens.json?
email=123@gmail&password=123 using the user’s email and pass-
word. According to the API of the KeyRock the call this method has
resulted in the identification of the user and gives a response to the
user with a session token and a status code 200 OK.

Once the user is identified it checks if this user has already been
stored in the Users collection through the caching middleware.
This middleware utilizes the higher chance of the administrator’s
credentials to be checked for a small period of time after the first
sensor’s update to the SDC. With this methodology we save time
for the administrator’s credentials to be retrieved from the cached
data instead of the stored data in JSON Storage GE. If the user has
already been stored after the identification, then the execution of
middleware ends and the program shifts to the execution of the
APL If the user is not stored in the Users collection then first a
check is made to determine whether it has rights as administrator
or not and then is being stored in the collection. At that point the
execution of the middleware ends and the API calls the requested
method for execution.

6. Experimental analysis

This section presents the experimental analysis of the work
in order to demonstrate the effectiveness of the proposed
solution. We utilize two IoT devices that are (a) the Netatmo
(Environmental sensor)'? and (b) the Zephyr HxM Bluetooth Heart
Rate Monitor (medical sensor).'* The Netatmo sensor is monitoring
climatic changes (temperature, humidity, pressure, etc.) The device
supports services for storage and processing of data to a private
cloud infrastructure. The sensor is met in applications for remote
environmental control and anticipation of natural disasters such
as fire or frost. The Zephyr HXM Bluetooth Heart Rate Monitor
uses the Bluetooth communication protocol, and sends to a
mobile device medical data of the person who wears it. It can
take measurements such as heart rate, speed, distance and time
between two peaks in an electrocardiogram.

12 https://www.netatmo.com/en-US/site.
13 http://www.zephyranywhere.com.

https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://www.netatmo.com/en-US/site
http://www.zephyranywhere.com

K. Douzis et al. / Future Generation Computer Systems 78 (2018) 369-378 377

KeyRock
IDM GE
Authenticate the
user with his
email and
password
o HTTP REQUEST Authenticati HTTP Response o
i) SDC Specific P
B ————— —_— —_— e
: Enabler AP
Middicware Call function getAllSensors()

User Method: GET/
sensors

collection

Check if user
exists in T
users

JSON

Storage GE

User

Check if user is
authorized by
administrator

JSON

Storage GE

Fig. 5. Utilization of authentication middleware for user identification.

Table 8
Experimental results for simulations of sensors Zephyr and Atmo. All the
measurements are in seconds.

Device Zephyr Atmo Results Zephyr Results Atmo
1st phase 15 15 1.6 1.6
2nd phase 10 10 1.6 1.6
3rd phase 5 5 1.7 1.7
Random Random
4th phase (2-4) (2-4) 1.8 1.8

We test the performance of the SDC by simulating the two IoT
devices and we check whether can the SDC respond fully functional
on a continuous sensor data. The experiment we conducted is
performed in four phases. Each phase includes two users who
subscribe to data provided by two sensors in the system, the
Zephyr is medical sensor and measures the heart rate in bpm (beats
per minute) and environmental Atmo sensor, which measures the
temperature in centigrades and humidity in percentage.

We decided that the experimental analysis will apply for the
method POST/event of the provided API. This method transfers
the incoming data to the most internal services (e.g. JSON Storage,
Identity Management, etc.), so we know that this method will have
the slowest response time of all the methods in the provided APIL.
Hence, it is so crucial to measure the performance of the proposed
solution. To simulate the operation of these sensors we created a
simulation software for each sensor and we send sensor data to a
5 min window at a time been set by each phase of the experiment.
The time data refresh intervals of the sensors cover a wide range of
15 s in the first phase until 2 s in 4th phase. Table 8 demonstrates
the experimental analysis and results.

Notably, the lower limit to determine the time was 2 s as a
shorter period would mean unexpected behavior of the SDC (the
execution of the method POST/event has an average response time
of 1.6-1.8 s), probably data loss or maybe memory overflow of
the server. The Publish/Subscribe Context Broker GE by default
is configured not to use a thread pool for the incoming requests,
so if many incoming requests need to be handled in a narrow
time window, equivalent number of threads needs to be created.
That extreme situation, would probably mean that the server could
crash out of memory.

Below we present the results of the experiment, which is the
time difference between the time that the call is made in the SDC

(call POST/event) for sending sensor data and timing data that
is displayed to the user (GET/contextNotifications). So “Results
Zephyr” column indicates the time difference between the call
POST /event has been made and the time that the users see the
Zephyr's updated data in the browser.

With regard to the response times of Table 8, we conclude that
there are small time differences between “Zephyr” and “Atmo”
among the four phases. That difference can be justified due to
the continuous data burden. The more the incoming requests are
pushed into the service the more likely is the time difference to
be wider. The average response time for the method POST/event
to be executed is around 1.7 s. This delay can be justified by the
sequential requests been made to the Context Broker GE with an
average response time 700 ms and the two requests been made to
the JSON Storage GE with an average time of 400 ms. Finally, if we
include in these the delays due to the network it is apparently that
the time delay of 1.6-1.8 s could be considered as realistic.

7. Conclusions

The SDC service was developed to allow efficient, fast and on the
fly IoT data collection and storage to a cloud system. Our solution
allows the efficient management of users and sensors and an on the
fly updating of the subscribers (users) with regard to data updates
of each sensor. We take advantage of the benefits offered from the
combination of these technologies. The next list demonstrates the
basic functionality of the services.

e The service allows to add/remove/update sensors by the
administrator.

o It allows to add/remove/update user subscriptions easily using
the APL

e Administrator can add/remove/update user rights for sensors.

It includes a database with historical data for system sensors.

e The service is expandable and can be added to other services
that require to expand their functionality such as data analysis
tools.

e The architecture is modular and the solution is easy to use,
based on the RESTFul API that is available for utilization over
the Internet.

e The solution is generalized, easy to use and compatible with FI-
WARE thus could be easily integrated to other cloud applica-
tions.

378 K. Douzis et al. / Future Generation Computer Systems 78 (2018) 369-378

The future research directions include the definition of patterns
to specific sensor data thus the users could be notified according to
patterns and rules. For example, if the temperature of an internal
space continuously rises over 5 min then the user is alerted. An-
other aspect is to ensure further security in the data management
by the service. Finally, we aim to explore scaling behavior of the
JSON storage module in order to experiment how big data affects
performance of the system.

References

[1] A. Galis, A. Gavras, The Future Internet: Future Internet Assembly 2013 Vali-
dated Results and New Horizons, Springer Publishing Company, Incorporated,

%F)%?)firiadis, N. Bessis, N. Antonopoulos, Towards inter-cloud schedulers:

A survey of meta-scheduling approaches, in: P2P, Parallel, Grid, Cloud and

Internet Computing, 3PGCIC, 2011 International Conference on, Oct. 2011, pp.

59-66.

S. Schreier, Modeling restful applications, in: Proceedings of the Second

International Workshop on RESTful Design, WS-REST'11, ACM, New York, NY,

USA, 2011, pp. 15-21.

S. Sotiriadis, E. Petrakis, S. Covaci, P. Zampognaro, E. Georga, C. Thuemmler,

An architecture for designing future internet (fi) applications in sensitive

domains: Expressing the software to data paradigm by utilizing hybrid cloud

technology, in: Bioinformatics and Bioengineering, BIBE, 2013 IEEE 13th

International Conference on, Nov. 2013, pp. 1-6.

S. Sotiriadis, N. Bessis, Y. Huang, P. Sant, C. Maple, Towards decentralized

grid agent models for continuous resource discovery of interoperable grid

virtual organisations, in: Digital Information Management, ICDIM, 2010 Fifth

International Conference on, July 2010, pp. 530-535.

[6] D. Petcu, Consuming resources and services from multiple clouds, J. Grid
Comput. 12 (2) (2014) 321-345.

[7] J. Brogan, C. Thuemmler, Specification for generic enablers as software, in:
Information Technology: New Generations, ITNG, 2014 11th International
Conference on, April 2014, pp. 129-136.

[8] J. Bih, Service oriented architecture (soa) a new paradigm to implement
dynamic e-business solutions, Ubiquity (August) (2006) 4:1-4:1.

[9] V. Chang, The business intelligence as a service in the cloud, Future Gener.
Comput. Syst. 37 (0) (2014) 512-534. Special Section: Innovative Methods
and Algorithms for Advanced Data-Intensive Computing Special Section:
Semantics, Intelligent processing and services for big data Special Section:
Advances in Data-Intensive Modelling and Simulation Special Section: Hybrid
Intelligence for Growing Internet and its Applications.

[10] T. Zahariadis, A. Papadakis, F. Alvarez,]J. Gonzalez, F. Lopez, F. Facca, Y. Al-
Hazmi, Fiware lab: Managing resources and services in a cloud federation
supporting future internet applications, in: Proceedings of the 2014 [EEE/ACM
7th International Conference on Utility and Cloud Computing, UCC'14, IEEE
Computer Society, Washington, DC, USA, 2014, pp. 792-799.

[11] A. Corradi, M. Fanelli, L. Foschini, {VM} consolidation: A real case based on
openstack cloud, Future Gener. Comput. Syst. 32 (0) (2014) 118-127. Special
Section: The Management of Cloud Systems, Special Section: Cyber-Physical
Society and Special Section: Special Issue on Exploiting Semantic Technologies
with Particularization on Linked Data over Grid and Cloud Architectures.

[12] S. Sotiriadis, N. Bessis, An inter-cloud bridge system for heterogeneous cloud
platforms, Future Gener. Comput. Syst. 54 (C) (2016) 180-194.

[13] S. Sotiriadis, N. Bessis, E. Petrakis, An inter-cloud architecture for future
internet infrastructures, in: F. Pop, M. Potop-Butucaru (Eds.), Adaptive
Resource Management and Scheduling for Cloud Computing, in: Lecture Notes
in Computer Science, Springer International Publishing, 2014, pp. 206-216.

[14] A. Antonic, M. Marjanovic, K. Pripui, LP. Arko, A mobile crowd sensing
ecosystem enabled by cupus: Cloud-based publish/subscribe middleware for
the internet of things, Future Gener. Comput. Syst. 56 (2016) 607-622.

[15] C. Esposito, M. Ficco, F. Palmieri, A. Castiglione, A knowledge-based platform
for big data analytics based on publish/subscribe services and stream
processing, Knowl.-Based Syst. 79 (2015) 3-17.

[16] X. Xie, H. Wang, H. Jin, F. Zhao, X. Ke, L.T. Yang, Dta: Dynamic topology
algorithms in content-based publish/subscribe, Future Gener. Comput. Syst.
54(2016) 159-167.

[17] C. Esposito, M. Ficco, F. Palmieri, A. Castiglione, Interconnecting federated

clouds by using publish-subscribe service, Clust. Comput. 16 (4) (2013)

887-903.

2

3

[4

[5

[18] X. Ma, Y. Wang, Q. Qiu, W. Sun, X. Pei, Scalable and elastic event matching
for attribute-based publish/subscribe systems, Future Gener. Comput. Syst.
36 (2014) 102-119. Special Section: Intelligent Big Data ProcessingSpecial
Section: Behavior Data Security Issues in Network Information Propagation-
Special Section: Energy-efficiency in Large Distributed Computing Architec-
turesSpecial Section: eScience Infrastructure and Applications.

[19] A. Sfrent, F. Pop, Asymptotic scheduling for many task computing in big data
platforms, Inform. Sci. 319 (2015) 71-91. Energy Efficient Data, Services and
Memory Management in Big Data Information Systems.

[20] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design,
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[21] A.G. Vazquez, P. Soria-Rodriguez, P. Bisson, D. Gidoin, S. Trabelsi, G. Serme,
Fi-ware security: Future internet security core, in: Proceedings of the 4th
European Conference on Towards a Service-based Internet, ServiceWave’'11,
Springer-Verlag, Berlin, Heidelberg, 2011, pp. 144-152.

[22] A. Preventis, K. Stravoskoufos, S. Sotiriadis, E.G.M. Petrakis, Personalized
motion sensor driven gesture recognition in the fiware cloud platform,
in: Proceedings of the 2015 14th International Symposium on Parallel and
Distributed Computing, ISPDC'15, IEEE Computer Society, Washington, DC,
USA, 2015, pp. 19-26.

[23] A. Preventis, K. Stravoskoufos, S. Sotiriadis, E.G.M. Petrakis, Interact: Gesture
recognition in the cloud, in: Proceedings of the 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing, UCC'14, IEEE
Computer Society, Washington, DC, USA, 2014, pp. 501-502.

Konstantinos Douzis is an undergraduate student in the
Technical University of Crete (TUC), and a member of the
Intelligent Systems Laboratory. He has worked in the areas
of Cloud Computing and Internet of Things. He has also
expertise in FIWARE systems and modeling novel future
Internet applications.

Stelios Sotiriadis received his Ph.D. in Inter-Clouds from
the University of Derby, UK. He is currently a research
fellow in the University of Toronto and a research
collaborator at the Technical University of Crete (TUC),
and a member of the Intelligent Systems Laboratory. His
research interests are related to Clouds, Internet of Things,
Future Internet Application development, inter-clouds
and cloud federations, high performance computing
systems and grids.

Euripides G.M. Petrakis is Professor and Laboratory Di-
rector of the intelligent Systems Laboratory (InteLLigence)
that is a unit of the School of Electronic and Computer
Engineering, Technical University of Crete, Chania, Crete,
Greece. His major research interests are related with
Clouds, Internet of Things, Future Internet, Semantic Web,
Medical information systems and Multimedia and Web In-
formation Systems.

Cristiana Amza received her B.S. degree in Computer
Engineering from Bucharest Polytechnic Institute in 1991,
the M.S. and the Ph.D. degrees in Computer Science
from Rice University in 1997 and 2003 respectively. Her
research interests are in the area of distributed and parallel
systems, with an emphasis on designing, prototyping
and experimentally evaluating novel algorithms and tools
for self-managing, self-adaptive and self-healing behavior
in data centers and Clouds. She joined the Department
of Electrical and Computer Engineering at University of
Toronto in October 2003 as an Assistant Professor and
became an Associate Professor in July 2009. She is actively collaborating with
several industry partners, including Intel, NetApp, Bell Canada, and IBM through
IBM T.J. Watson, Almaden and IBM Toronto Labs.

http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref1
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref6
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref8
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref9
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref10
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref11
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref12
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref13
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref14
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref15
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref16
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref17
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref18
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref19
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref20
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref21
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref22
http://refhub.elsevier.com/S0167-739X(16)30166-2/sbref23

