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a b s t r a c t

Parameter-tuning is a challenging task when generating digital terrain models from airborne laser
scanning (light detection and ranging, LiDAR) data. To address this issue, this paper presents a filtering
method for near-infrared laser scanning data that exploits the principle of entropy maximization as
the optimization objective. The proposed approach generates ground elevation of point cloud by
constructing a triangulated irregular network, calculates the entropy of the elevation from different parts,
and automatically separates ground and non-ground points by the principle of entropy maximization.
Experimental results from different ground surfaces show that the proposed entropy-based
filtering method can effectively extract bare-earth points from the point cloud without adjusting
thresholds.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, airborne laser scanning (light detection and
ranging, LiDAR) technology, which commonly employs near infra-
red (NIR) band lasers (e.g. 960 nm or 1064 nm) in a pulsed mode,
has become an important means of constructing high-resolution
digital elevation models (DEMs) [1,2]. LiDAR has been applied to
various fields, such as oil exploration, forestry, geology, and
archaeology, because high-resolution DEMs are indispensable data
for these practical applications. However, constructing high-
resolution DEMs from LiDAR point clouds remains difficult, pri-
marily because accurately filtering non-ground points from point
cloud requires some thresholds to be manually adjusted.

Current filtering algorithms include mathematical morphologi-
cal filtering, gradient, interpolation, triangulated irregular network
(TIN), segmentation, and skewness balancing methods, amongst
many others. Lindenberger proposed mathematical morphological
filtering, which is mainly used opening and closing operator [3].
Determining the thresholds and moving window size were key
issues of the algorithm. Kilian presented an approach that
exploited multiple filtering by assigning different weights to differ-
ent window sizes [4], Zhang proposed a strategy that adaptively
adjusted thresholds by terrain steepness and window size [5].
Vosselman proposed gradient based filtering [6], where the filter-
ing process was determined by height difference and distance.

However, thresholds were still adjusted manually according to
the prior knowledge about the area of LiDAR point cloud data.
Axelsson proposed TIN-based filtering which initially used a sparse
TIN, and then iteratively estimated ground surface [7]. Kraus pro-
posed an interpolation-based method, which exploited least
square interpolation through adaptive weight functions [8]. The
segmentation-based filtering algorithm separated the non-ground
point cloud from the ground point cloud using a variety of segmen-
tation rules which were imposed on the depth image generated
from LiDAR point cloud data [9,10].

The algorithms discussed above can successfully filter non-
ground points from LiDAR point cloud. However, the procedures
require manually adjusted thresholds for different circumstances,
which is a strenuous task for generating DEM data. Therefore,
threshold-free filtering algorithms began to be considered by many
scholars. Bartels proposed an unsupervised method based on the
skewness of height information to achieve threshold-free filtering
[11,12]. However, the ground points after filtering still contained
non-ground points such as low vegetation and building walls.

This paper proposes a filtering method based on the entropy
maximization principle, which can separate non-ground points
from ground points cloud without manually adjusting thresholds.
The proposed method initially builds TIN from seed points by mov-
ing window, and then generates the height difference of the point
cloud data. The entropies of height difference can then be evalu-
ated and the ground and non-ground parts of the point cloud can
be divided by the principle of maximum entropy.
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Experimental results show that the entropy-based filtering
method separates non-ground from the point cloud without man-
ually adjusting thresholds, compared with traditional methods.

2. Shannon entropy-based filteringmethod for lidar point cloud

2.1. Shannon entropy maximization principle

Entropy is a concept from thermodynamics, which describes the
disorder of an irreversible process. Shannon redefined the entropy
concept of Boltzmann or Gibbs, which was considered as a mea-
sure of uncertainty, to apply to the information of a system [13].
If a system has n discrete statuses, then the entropy, S, of the sys-
tem can be defined the probability distribution of these statuses,

S ¼ �
Xn

i¼1

pi lnðpiÞ ð1Þ

where p = {pi} is the probability of the i-th status, andPn
i¼1pi ¼ 1;0 6 pi 6 1. Jaynes proposed the entropy maximization

principle [14], and entropy optimization is based on entropy maxi-
mization as the object function. Entropy optimization has been
extensively studied and applied in many research fields, especially
to achieve better results in the field of image segmentation.
However, the entropy optimization method has not been employed
for LiDAR point clouds filtering previously.

2.2. Shannon entropy-based filter principle for LiDAR point cloud filter

Filtering methods for LiDAR point cloud data identify the differ-
ent characteristics of the ground and the non-ground points based
on the point status information. Current filtering methods gener-
ally separate the ground and non-ground points by tuning a
threshold relevant to the characteristics considered. In contrast,
we propose a filtering method which employs entropy maximiza-
tion and avoids the need for a threshold.

Let x be an information type, such as height and intensity Fig. 1
shows an example probability distribution of the values. In general,
x is Xmin � Xmax, and there are n LiDAR points in the data cloud. The
data range can be equally divided into L levels, with

n ¼
XL

i¼0

ci ð2Þ

where ci is the number of the i-th level. The probability of the ith
level is

pi ¼
ci
n
; ð0 6 i 6 LÞ ð3Þ

and the entropy of status x can be evaluated by Eq. (1).
Assume that A represents the ground and B the non-ground

point cloud. The principle of the Shannon entropy-based filtering
is that some level, t, can divide the point cloud into A and B, such
that the sum of the entropies of A and B is maximized (see Fig. 1).

2.3. Implementation of entropy-based filtering

The height value is selected as the variable for filtering, and
entropy-based filtering was implemented (see Fig. 2) as follows:

(1) Preprocessing the point cloud.
Divide the point cloud (see Fig. 3a), extract seed points
(Fig. 3b–d) and construct the initial TIN from the seed points.

(2) Calculating the height difference.
Interpolate height values and calculate height difference.
The interpolation is based on each triangle of the TIN and
may be interpolated by the heights of the triangle vertices.

Height difference can be calculated by subtracting the inter-
polated height from the original height of a LiDAR point.

(3) Filter using entropy maximization.
The steps are shown in Fig. 4.
(i) The maximum height difference is set to be L.

Calculate pi(i 2 [0, L]) from Eq. (3) and create a his-
togram of height difference.

(ii) Assign the initial level, tinit, to divide ground and non-
ground points.

(iii) A and B are divided by level t. Create separate his-
tograms and calculate the Shannon entropies, SA(t),
SB(t), respectively. The entropy sum is just of the
two parts can be evaluated by SA+B(t) = SA(t) + SB(t).
Put the entropy sum into an entropy queue Q.

(iv) Increase the splitting level t by 1. If t is less than L,
then re-perform step (iii). If t is equal to L, then per-
form the subsequent step.

(v) Find the maximum entropy sum in the queue Q and
corresponding splitting level t, denoted by tOPT.

Fig. 1. Histogram of levels for a given information type.

(2) Calculate the height difference

Add Point Cloud

(1) Preprocess the point cloud

Ground point cloud

(3) Filter using entropy maximization

Height difference data

Yes

Reset grid size

Is the iteration number greater 
than the predefined one? 

No

Fig. 2. Flow chart of entropy-based filtering method.
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(vi) Filter the non-ground points by deleting the points of
which height difference is less than level tOPT.

(vii) The process is conducted iteratively (see Fig. 2). If the
iteration count is less than a predefined cut-off, then
reset the grid size and repeat steps (2) and step (3).

3. Experimental results

To evaluate our proposed method, we performed experiments
using six NIR band airborne laser scanning datasets which included
plain and slope with buildings, vegetation and small objects, as
indicated in Fig. 5. All points of these datasets had been labeled
Bare Earth or Object [15]. Filtering was implemented as discussed
above, using the height difference. After filtering, the remained
points were bare earth and thus the filtered points were objects.
The output from the proposed filtering method can be compared
against the reference for Type I and II errors.

Fig. 6 shows the resulting dataset after applying our proposed
filter system on the six sample datasets, Grey points represent
(predicted) bare earth, black ar non-ground, blue are Type I errors,
and red are Type II errors. The proposed entropy-based filtering
approach can adequately identify various objects, particularly large
buildings (e.g. buildings in Samples 12 or 41), low objects (e.g. low
cars in Sample 12, vegetation on slopes in Sample 51) and attached
objects (e.g. bridges in Sample 21). The substantial shape of the ter-
rain is retained, although a few non-ground points are not identi-
fied (e.g. a1, b1, c1 in Sample 12; a2 in Sample 21; a3, b3 in
Sample 41; a4 in Sample 51; and a6, b6 in Sample 61). On the other

(b) A window is gradually moved from the left to the 
right along the alignment of the grids. The size of the 
moving window is equal to the size of one grid. The 

length of moving step is one-third width of the 
moving window. 

(c)  A window is gradually moved from the 
bottom to the top along the alignment of the 

grids. The size of the moving window is equal to 
the size of a grid. The length of moving step is 

one-third height of the moving window. 

(d) Extracting The ground seed points. The green 
points are extracted by a non-overlapping 

window while the blue ones are extracted by 
overlapping window. 

(a) Divides the point cloud 
into grids

(Xmin,Ymin)

(Xmax,Ymax)

Fig. 3. Preprocessing the point cloud by moving window in the grids.

Height difference data

Set initial t

 t = t + 1

 t < l

Divide two parts by t, and 
compute entropy sum

Find the maximum 
Shannon entropy and 

corresponding splitting 
level topt

Compute the threshold and 
filter point cloud

Create histograms

Fig. 4. Flow chart for the proposed filtering method.
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hand, a small number of ground points are also erroneously
removed (e.g. d1 in Sample 12; b2 in Sample 21; c3, d3 in Sample
41; b4 in Sample 51; and a5 in Sample 54).

Fig. 7 also shows the errors arising from filtering. Type I errors
are approximately 1.4–6.8%, with an average of approximately
2.8%. Thus, the proposed entropy-based filtering method
successfully identifies ground points. The filtering method also

successfully distinguished most objects, such as buildings and
vegetation, from ground points. Type I errors arise primarily
due to terrain discontinuity. Type II errors range from 1.3% to
4.8%, with an average of approximately 3.3%. Type II errors for
three sample datasets (Samples 12, 21 and 61) are less than 3%
while other dataset (Samples 41, 51 and 54) are approximately
4.5%. This shows that the entropy-base filtering method can filter

(b) Sample 21(a) Sample 12

(c) Sample 41 (d) Sample 51

(e) Sample 54 (f) Sample 61

Fig. 5. Six airborne LiDAR data sets chosen for experimental verification of our proposed filtering methods. The data is part of the ISPRS dataset, which is acquired by NIR band
(960 nm or 1064 nm) laser [15].
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the objects such as large buildings, low vegetation and bridges.
Total error (a ratio of the count of incorrectly identified points
to the total number of points) ranges from 2.1% to 4.1%, with
an average of 2.9%.

Table 1 shows the total error comparison. The total errors of the
proposed filtering method are less than the minimal total error val-
ues of the eight classical filtering methods for most of the datasets
(Samples 21, 41, 51 and 54). The total errors of the proposed
method are also small values, for the two other datasets (Samples
12 and 61), which are still slightly large than the minimal total
error values of the eight classical methods. Thus, in general, the
NIR-band LiDAR point cloud can be accurately filter proposed
entropy-based filtering method.

a1

b1

c1

a2

d1

b2

(a) Sample 12 (b) Sample 21

(c) Sample 41 (d) Sample 51

(e) Sample 54 (f) Sample 61

a3

b3

a4

a6

b6

d3

c3

b4

c4

a5

Fig. 6. The datasets of Fig. 5 filtered by our proposed method showing the resultant ground dataset.

Fig. 7. Errors from the proposed filtering method.
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4. Conclusion

This paper proposes a filtering method for airborne LiDAR
points cloud based on Shannon entropy optimization. The pro-
posed entropy-based approach can filter the datasets without
requiring thresholds. Experiments on NIR-band airborne imaging
LiDAR show that the proposed method is accurate and feasible
for filtering non-ground from ground point clouds.
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Table 1
Total error comparation between the proposed filtering method and eight classical filtering methods [15]. The minimal values of the eight classical filtering methods are bold font
for a dataset.

Dataset Method

Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole Entropy-based

Sample 12 8.18 8.39 3.25 4.50 16.28 6.61 6.61 10.21 4.13
Sample 21 8.53 8.80 4.25 2.57 9.30 9.84 4.55 7.76 2.22
Sample 41 8.76 11.27 13.91 10.75 17.03 12.21 9.01 23.67 3.61
Sample 51 21.31 9.31 2.72 3.71 22.81 3.01 11.45 7.02 2.14
Sample 54 21.26 5.68 3.23 5.47 23.89 4.96 7.63 6.33 3.15
Sample 61 35.87 2.99 2.08 6.91 21.68 18.99 13.47 21.63 2.30
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