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study on the accuracy of genomic selection for laborious and 
expensive to phenotype quality traits as well as its selection 
response in comparison with phenotypic selection. More 
than 400 genotyped wheat lines were, therefore, phenotyped 
for protein content, dough viscoelastic and mixing proper-
ties related to baking quality in multi-environment trials 
2009–2016. The average prediction accuracy across three 
independent validation populations was r = 0.39 and could 
be increased to r = 0.47 by modelling major QTL as fixed 
effects as well as employing multi-trait prediction models, 
which resulted in an acceptable prediction accuracy for all 
dough rheological traits (r = 0.38–0.63). Genomic selec-
tion can furthermore be applied 2–3 years earlier than direct 
phenotypic selection, and the estimated selection response 
was nearly twice as high in comparison with indirect selec-
tion by protein content for baking quality related traits. This 
considerable advantage of genomic selection could accord-
ingly support breeders in their selection decisions and aid 
in efficiently combining superior baking quality with grain 
yield in newly developed wheat varieties.

Introduction

The genetic improvement of baking quality is one of the 
grand challenges in winter wheat breeding due to its com-
plex inheritance pattern, which is governed mainly by wheat 
storage proteins, foremost the prolamins gliadin and glu-
tenin (Payne 1987; Shewry et al. 1995, 2003) as well as their 
interaction with other fractions like the puroindolins that 
confer grain hardness (Bekes 2012a; Quayson et al. 2016; 
Würschum et al. 2016). The quality of these wheat stor-
age proteins can be determined by various measurements, 
amongst others by dough rheological tests that assess the 
viscoelastic and mixing properties during dough preparation 
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that are important for food-processing and baking of vari-
ous products like bread, cookies, and pastry. Baking tests 
and dough rheology are furthermore part of official variety 
test and registration in various countries to offer varieties 
with fitting combinations of quality characteristics. A major 
obstacle is thereby that the assessment of the associated 
traits often involve time-consuming, labour-intensive, and 
costly testing as well as the too low amount of grains that is 
available per genotype in early breeding generations, thus 
sophisticated quality tests have usually been postponed to 
the very last phases of variety development.

Hence, selection decisions for baking quality improve-
ment are beforehand guided by indirect phenotypic selection 
based on correlated traits like protein content. Protein quan-
tity assessed in this way explains however merely a limited 
part of the genetic variation observed for traits related to 
baking quality, for which loci associated with the composi-
tion of the wheat storage proteins gliadin and glutenin play 
a major role (Payne et al. 1987; Lukow et al. 1989; Rogers 
et al. 1989). A pre-selection of lines in early generations by 
markers linked to the known Glu-1 and Glu-3 glutenin loci is 
accordingly an interesting option (Eagles et al. 2002; Zheng 
et al. 2009; Krystkowiak et al. 2016), but there are few suc-
cessful reports of such an approach (Kuchel et al. 2007), 
and the respective markers have to be combined with addi-
tional small-scale tests to achieve a reasonable prediction 
accuracy for selection (Oury et al. 2010). Such a marker-
assisted selection focuses mainly on major quantitative trait 
loci (QTL) that explain a substantial but limited amount of 
the underlying genetic variance, while most traits of inter-
est in plant breeding show a polygenic inheritance and are, 
therefore, controlled mostly by many minor QTL.

Genomic selection has been implemented in recent years 
into many national and international wheat breeding pro-
grams (Guzmán et al. 2016a; He et al. 2016; Michel et al. 
2016) to additionally target these small effect loci influ-
encing quantitative traits with genome-wide distributed 
markers in genetically fingerprinted training and selection 
populations. Training populations in applied wheat breed-
ing programs are normally comprised of advanced breed-
ing material that has been thoroughly phenotyped for grain 
yield, disease resistances and numerous milling and baking 
quality traits (Guzmán et al. 2016a; He et al. 2016; Michel 
et al. 2016). The phenotypic information of the selection 
population is on the other hand very limited, and genomic 
estimated breeding values for numerous traits of interest can 
be derived for these genotypes via their genetic relationship 
with the training population in order to support breeders in 
their selection decisions (Heffner et al. 2009; Heslot et al. 
2015). This promising selection method could be especially 
valuable for baking quality related parameters such as dough 
rheological traits whose assessment requires costly, labour-
intensive and time-consuming tests. The aims of this study 

were thus (1) to investigate the prospect of genomic selection 
for these laborious to phenotype quality traits, (2) enhanc-
ing this approach by integrating prior knowledge about trait 
correlations and genetic architecture, and (3) compare the 
selection response of direct and indirect phenotypic with 
genomic selection.

Materials and methods

Plant material and phenotypic data

We analyzed a population of 840 genotyped winter bread 
wheat lines (Triticum aestivum L.), which was derived from 
multiple families and selected by the pedigree method until 
the  F4:6 and  F5:7 generation or generated by the double hap-
loid method. Different subpopulations of these lines were 
phenotyped in multi-environment trials at locations in Aus-
tria, Hungary, Serbia, Croatia, Romania and Turkey from 
2009 to 2016. Grain samples were collected and milled from 
401 lines with a Quadrumat Junior milling system accord-
ing to the method AACC26-50 approved by the American 
Association of Cereal Chemists (AACC 2000). The result-
ing flour samples were employed to create a dough rheo-
logical profile of each line, starting with the dough-mixing 
properties that were assessed by a Farinograph (Brabender 
GmbH and Co KG) equipped with a 300 g mixing bowl. The 
optimal water uptake of each flour sample was estimated 
in a preliminary test on a subsample of 100 g flour until it 
reached a dough consistency of 500 farinogram units (FU) 
according to the standard procedure AACCI 54e21 (AACC 
2000). The dough development time was measured as the 
time in minutes from the first water uptake until the dough 
began to soften due to intensive mixing in the main test. 
Dough stability was assessed as the timeframe between 
which the kneading curve first intersected and left the 500 
FU borderline, and the farino quality number was calcu-
lated as the time point when the dough consistency fell 30 
FU after reaching its peak. Thereafter, the Extensograph 
(Brabender GmbH and Co KG) was used to determine the 
viscoelastic properties of the flour samples according to 
AACCI 54-10.01 (AACC 2000) of which the extensibility 
(mm), resistance to extension at 50 mm in extensogram units 
(EU), and the area under the curve, i.e., the dough energy 
 (cm2) after a 135-min resting time were of prior interest in 
this study. The protein content (%) was determined by near 
infrared spectroscopy (NIRS; FOSS GmbH) for all 840 lines 
directly at harvest.

The measurement of baking quality by mixing and vis-
coelastic tests is typically costly, labour-intensive and time-
consuming, thus the obtained phenotypic records from the 
401 lines that were subject to dough rheological analysis 
were highly unbalanced between trials, and the data from 



479Theor Appl Genet (2018) 131:477–493 

1 3

different trials were mainly connected by several common 
check varieties replicated in each of the completely rand-
omized trial designs. The other 439 lines were on the other 
hand thoroughly tested in multi-environment trials, and 
orthogonally phenotyped for their protein content across 
various locations in the above-described target population 
of environments from 2009 to 2013. Hence, they provided 
an additional source of information for a rapidly to assess 
quality parameter that is routinely generated in many wheat 
breeding programs.

Statistical analysis of phenotypic data

The phenotypic analysis for the 401 lines with dough rheo-
logical profiles was conducted for each trial separately in 
order to determine the heritability based on:

where �2
G

 designates the genetic variance and MVD the 
mean variance of a difference of the BLUEs (Piepho and 
Möhring 2007). Trials with a heritability smaller than 0.1 
were excluded from further analysis. This liberal threshold 
was chosen due to the above-mentioned circumstances. 
However, in some trials none of the lines were replicated, 
thus an estimation of the data quality was not possible in 
these cases. They were nevertheless used with the other tri-
als for a one-step analysis across trials where each trait was 
analysed separately using a linear mixed model of the form:

where yij are the phenotypic records, � is the grand mean, 
and gi is the effect of the ith line. The effect of the jth trial tj 
was fixed and eij designates the residual effect. The residual 
variance incorporated both the trial by line interaction vari-
ance and the residual effect and could be estimated via the 
replicated entries within or across trials and was assumed 
to follow a normal distribution with � ∼ N(0, ��2

e
). Five 

different sets of lines with dough rheological profiles were 
thereby analysed separately: a basis population containing 
191 lines that was tested from 2009 to 2013, three inde-
pendent validation populations tested in the individual years 
2014–2016, respectively, and finally a dataset containing all 
401 lines tested from 2009 to 2016. The total number of 
lines in the three independent validation populations was 
210, with some lines occurring in several years (Table S1 
Online Resource 1).

The additional 439 lines tested in multi-environment tri-
als from 2009 to 2013, were analysed for their performance 
with regard to the protein content following a two stage 
analysis strategy. Each individual yield trial was first ana-
lysed with various models correcting for row and/or column 
effects as well as with an autoregressive variance–covariance 

(1)h2 = �2
G

/(

�2
G
+

1

2
MVD

)

,

(2)yij = � + gi + tj + eij,

structure (Burgueño et al. 2000). The best model was chosen 
by Akaike’s Information Criterion (AIC) to calculate best 
linear unbiased estimates (BLUE), while trials with a herit-
ability larger than 0.3 were used for an across trial analysis 
for each individual year 2009–2013 following formula (2). 
All phenotypic analyses were conducted using the statistical 
package ASReml 3 for the R programming environment (R 
Development Core Team 2016).

Genotypic data

DNA was extracted following the protocol by Saghai-
Maroof et al. (1984) using leaf samples that were collected 
from  F4:5 or doubled haploid lines by sampling minimum 
ten plants per line during early summer. All 840 lines were 
genotyped using the DarT genotyping-by-sequencing (GBS) 
approach. Quality control was applied by filtering out mark-
ers with a call rate lower than 90%, a minor allele frequency 
smaller than 0.05, and more than 10% of missing data. An 
MVN-EM algorithm (Poland et al. 2012) was employed to 
impute missing data of the remaining 7687 markers, and 
their pair-wise correlation was used as an ad hoc measure of 
linkage disequilibrium. One marker from each marker pair 
that exceeded the r2 = 0.8 threshold was dropped at random 
in order to remove strongly correlated predictor variables 
that would not contribute further to the prediction accuracy 
but elongate computation time, which resulted in a final set 
of 4598 markers.

A map position was available for 2637 of these mark-
ers with an average coverage of one marker every 1.8 cM. 
The usage of phenotypic data from the genotyped lines in 
a higher generation than the  F4:5 was expected to introduce 
a small error due to a minor change in average heterozygo-
sity, which was nevertheless seen to be acceptable consid-
ering the cost–benefit ratio of re-genotyping all lines in the 
advanced generations. Additionally, a subset of 444 lines 
was screened for their allelic state at the high-molecular 
weight glutenin subunit loci Glu-A1, Glu-B1, and Glu-D1 
by sodium dodecyl sulphate polyacrylamide gel electropho-
resis (SDS-PAGE). The missForest algorithm (Stekhoven 
and Bühlmann 2012) was used to impute the missing values 
of the other lines in a chromosome-wise manner, employing 
both the GBS and SDS-PAGE markers.

Single-trait genomic and marker-assisted selection

First we investigated the merit of predicting each single 
trait separately with marker effect estimations based on a 
ridge regression best linear unbiased prediction (RR-BLUP) 
model both for genomic and marker-assisted selection:

(3)� = �� + �� + �,
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where � is an Nx1 vector of BLUEs obtained in the pheno-
typic analysis, � is a vector of F fixed effects and � its cor-
responding N × F design matrix. � is a N × M matrix, which 
coded the M markers as either + 1 or − 1 for homozygous 
loci and 0 for heterozygous loci. Random marker effects 
were assumed to follow a normal distribution � ∼ N(0, ��2

u
) 

with variance �2
u
 and � ∼ N(0, ��2

e
). The basis population 

with the 191 lines tested from 2009 to 2013 was used to 
compare different selection strategies by 100 times sampling 
80% of the lines into an estimation set and using the left-over 
20% as validation set (Fig. 1).

Three options were considered for exploiting prior knowl-
edge about the genetic architecture of the dough rheological 
parameters by a marker-assisted selection strategy:

1. Prediction using the markers linked with the Glu-1 loci 
on chromosomes 1A, 1B, and 1D.

2. Performing a genome-wide associations study (GWAS) 
with the K model and previously determined population 
parameters (Yu et al. 2006; Zhang et al. 2010) in the 
estimation set with markers of known map position and 
subsequent prediction with the three most significant 
markers.

3. Combining the known Glu-1 loci markers with the de 
novo identified markers by GWAS.

The genome-wide distributed GBS markers opened 
together with the de novo found markers and prior knowl-
edge of the Glu-1 loci another two interesting options for a 
genomic selection approach:

1. Fitting the RR-BLUP model with all 4598 markers as 
random effects for predicting the various dough rheo-
logical traits.

2. Including the three marker sets used for marker-assisted 
selection as fixed effects into the RR-BLUP model, 
thereby excluding them from the random effects matrix.

The latter method has sometimes been termed weighted 
genomic best linear unbiased prediction (W-BLUP) and has 
shown a superior performance when major QTL are known 
(Bernardo 2014; Zhao et al. 2014; Arruda et al. 2016; Spin-
del et al. 2016). The prediction accuracy for both genomic 
and marker-assisted selection was calculated as the correla-
tion between the genomic estimated breeding values and 
the phenotypic observations, i.e., BLUEs, while using the 
estimation set as training population for different prediction 
model validation strategies (Fig. 1):

1. Prediction by fourfold cross-validation within the esti-
mation set used for the GWAS.

2. Prediction of the validation set, i.e., the left-out 20% of 
lines.

3. Forward prediction of lines tested in 2014–2016.

The forward prediction was thereby done for three inde-
pendent validation populations that consisted of 70, 79, and 
125 lines for which a dough rheological profile was gen-
erated in 2014, 2015, and 2016, respectively. It should be 
stressed out at this point that in the first scenario of cross-
validation within the estimation set used for the GWAS, pre-
dictors are selected before leaving observations out. The left-
out observations are however supposed to be unobserved for 
a correct application of cross-validation, and marker selec-
tion has to be conducted after leaving such validation data 
out (Hastie et al. 2009). Nevertheless, this wrong statistical 
method has been used in several recent publications about 
genomic selection in plant breeding. Hence, we like to high-
light the outcome of such a procedure in comparison with 
correctly applied cross-validation and independent valida-
tion in this study, especially as the potential consequences 
could be dramatically when prediction models are actually 
employed for conducting selection decisions in applied plant 
breeding programs. All models for the single-trait genomic 
and marker-assisted selection were fitted with the package 
rrBLUP (Endelman 2011) as implemented in the R program-
ming environment (R Development Core Team 2016).

Multi-trait genomic selection

The protein content can rapidly be determined for a large 
number of lines, and is thus routinely assessed in many 
wheat breeding programs. The large amount of available 
phenotypic data on protein content and the correlation with 

Fig. 1  Prediction scenarios used for the fourfold cross-validation 
within estimation set used for the GWAS in the basis population 
2009–2013 (BSP), prediction of the validation set of the 20% of lines 
left-out for the GWAS (VS), and the forward prediction of the three 
independent validation populations 2014–2016 (IVP)



481Theor Appl Genet (2018) 131:477–493 

1 3

other quality traits made it an interesting variable for exam-
ining different bivariate models including both protein con-
tent and dough rheological parameters. The benefit of this 
approach was investigated with a cross-validation approach 
using the entire population of 401 dough rheological ana-
lysed lines from 2009 to 2016. One-third of the lines were 
randomly sampled into a validation population, one-third 
comprised the training population, and the last third formed 
a population of additional lines, i.e., an additional source of 
information for each of the 100 cross-validation replicates. 
A genomic best linear unbiased prediction model (G-BLUP) 
was fitted for each single-trait to determine the baseline pre-
diction accuracy:

where � is an N × 1 vector of BLUEs obtained in the pheno-
typic analysis, � is an N × 1 vector of line effects with the 
genetic variance �2

G
 and � ∼ N(0,��2

G
) as well as the random 

effect design matrix �. The fixed effect matrix � and the 
corresponding vector � modeled merely the grand mean in 
this single-trait prediction case. Additionally, the shrinkage 
parameter given by �2 = �2

e
∕�2

g
 with the residual variance �2

e
 

that followed � ∼ N(0, ��2
e
) was recorded for each trait and 

cross-validation replicate. The necessary genomic relation-
ship matrix � was computed according to Endelman and 
Jannink (2012):

where � is a centered N × M marker matrix of the i lines 
with Wik = Zik + 1 − 2pk and pk being the allele frequency 
at the kth locus. The genomic relationship matrix � was 
utilized again for fitting a multi-trait model which always 
contained the protein content as correlated trait and the vary-
ing rheological traits of interest:

where � is an N × t vector of BLUEs for t traits obtained in 
the phenotypic analysis, �

t
 is the vector of N × t line effects 

with the corresponding random effect design matrix �
t
 and 

�
t
∼ MVN

(

0,𝛴g ⊗�
)

 with the completely unstructured 
variance–covariance matrix �g of the form:

where �2
g1

 and �2
g2

 are the genetic variance of the first and 

second trait, respectively, and �g12 is the genetic covariance 
between both traits. The variance of the residual effect fol-
lowed �

t
∼ MVN

(

0,𝛴e ⊗�
N

)

 where �
N

 is an identity matrix 
of dimension N × N and 

∑

e the completely unstructured 
variance–covariance matrix for the residual effect analogues 
to (7) though with residual variances and covariance 

(4)� = �� + �� + �,

(5)� = ��T∕2�(pk − 1)pk,

(6)�
t
= �

t
�
t
+�

t
�
t
+ �

t
,

(7)

(

�2
g1

�g12
�g12 �2

g2

)

,

between traits. The fixed effect part �
t
�
t
 of model includes 

now a fixed effect �
t
 with two levels for the respective traits.

However, multi-trait models suffer often from a high 
computational demand, very long computational times, 
and convergence problems that might increase when pre-
dictions are done with larger training population sizes than 
the ones in this study. Hence, we studied the possibility 
to exploit the correlation between the protein content and 
rheological parameters by combining their single-trait pre-
dictions by a selection index. For this purpose, genomic 
estimated breeding values were computed for the training 
and validation populations by model (4) for the protein 
content in a first step. The vector of derived genomic esti-
mated breeding values of the protein content was subse-
quently included as a fixed effect into model (4) when 
predicting the dough rheological traits. The final genomic 
estimated breeding values of each individual line for the 
respective dough rheological trait was computed by:

with gi being the random genetic effect of the ith line, xi 
being the genomic estimated breeding value for protein 
content of the ith line, and bProtein the estimated fixed effect 
of the protein content. The suggested method exploits the 
principle that the highly heritable and well predicted protein 
content (Michel et al. 2016) is associated with some of the 
involved rheological parameters (Zanetti et al. 2001; Bordes 
et al. 2008; Tsilo et al. 2013) in a given training population, 
while the correlation for other parameters will be less pro-
nounced and thus the index weight as regulated by bProtein 
will accordingly lose in importance in these cases.

The two presented multi-trait methods were compared 
among each other with the single-trait G-BLUP model in 
four scenarios, each reflecting a situation that might arise 
in a wheat breeding program:

1. Phenotypic data of dough rheological and correlated 
traits, i.e., protein content is only available for the train-
ing population.

2. The validation/selection population has already been 
phenotyped for protein content.

3. A large number of additional lines has been genotyped 
and phenotyped for protein content, though were not 
advanced for further testing. Nevertheless, these lines 
are an integral part of training populations in breeding 
programs with genomic selection, and have the ability to 
double the training population size of a correlated trait 
such as protein content in multi-trait prediction models.

4. Phenotypic data of dough rheology is merely available 
for the training population, but protein content is phe-
notyped for a large number of additional lines as well as 
the validation and training population.

(8)GEBVi = xibProtein + gi,
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The single-trait and multi-trait G-BLUP models were fit-
ted with the package sommer (Covarrubias-Pazaran 2016) 
for R (R Development Core Team 2016).

Forward prediction and response to selection

All 191 lines of the basis population tested from 2009 to 
2013 were finally utilized to build a training population for a 
forward prediction of the three independent validation popu-
lations applying all previously described models as well as 
the combination of W-BLUP with multi-trait models for 
predicting the line performance in each individual valida-
tion population tested in 2014, 2015, and 2016, respectively. 
The explained genetic variance of each candidate marker 
to be integrated into the W-BLUP model was estimated by 
a fivefold cross-validation with 100 replicates within the 
basis population similar to Würschum and Kraft (2013). 
The employed procedure was very similar to the previously 
described method for the single-trait predictions using a 
marker-assisted selection approach. Briefly, a linear model 
was fitted with an estimation set of lines, excluding lines 
in one of the folds as validation set at a time whose perfor-
mance was predicted by:

where �TS is the vector of marker information from the test 
set and �̂ES is the vector of genetic effects derived from the 
estimation set. The explained genetic variance of each 
marker was subsequently calculated as the adjusted squared 
correlation coefficient R2

adj
 of the predicted and observed 

performance in the validation set divided by the heritability 
of the investigated trait. The above-described marker-
assisted selection strategies were furthermore studied by 
setting thresholds of the explained genetic variance between 
0 and 25% in increments of 0.5% for the inclusion of markers 
into the W-BLUP model.

The putative response to selection to marker-assisted 
and genomic selection was furthermore compared with the 
response to indirect selection by protein content when apply-
ing different selection intensities. Selection response was 
assessed as the relative superiority in average trait perfor-
mance when selecting a population comprised of the pre-
dicted best 10–50% of lines in contrast to the average trait 
performance of all lines in a given independent validation 
population. For this purpose, the average performance of the 
selected population for each individual dough rheological 
trait was estimated by:

where �i is the average trait performance of an entire inde-
pendent validation population, �Seli

 is the average trait per-
formance of the selected lines and h2

i
 is the heritability of the 

(9)�̂TS = �TS�̂ES,

(10)�̂�Seli
= 𝜇i + h2

i
(𝜇Seli

− 𝜇i),

ith dough rheological trait. The heritability was set to h2
i
 = 1 

for marker-assisted and genomic selection, while it was the 
respective trait heritability computed by Eq. (1) for indirect 
selection by the protein content and direct phenotypic selec-
tion. The latter was used to predict the response of direct 
and indirect phenotypic selection across years in order to 
enable a comparison with the marker-based methods, not-
withstanding that too few lines were retested in several years 
to conduct an empirical assessment. The relative superiority 
in trait performance of the selected population was subse-
quently calculated by:

This estimate was averaged over all independent valida-
tion populations and dough rheological traits and compared 
with the proportion of correctly selected lines by genomic 
and random selection for every selection intensity investi-
gated in this study. Finally, an example dataset and R Code 
illustrating the implementation of single and multi-trait 
models for genomic selection with the R package sommer 
(Covarrubias-Pazaran 2016) was made available for the 
interested reader (Online Resource 2, Online Resource 3).

Results

Quantitative-genetic parameters and trait correlations

We observed a large range of values for all dough rheologi-
cal parameters and the protein content (Table 1), thus the 
quality of lines would stretch across all classes of fodder, 
baking and elite wheat seen, e.g., in German official trials 
(Laidig et al. 2016). A high ranking in the baking quality 
class is usually desirable for bread wheat, and in Austria 
such quality wheat varieties show generally a development 
time larger than 4.5 min and stability higher than 6 min 
with regard to their dough-mixing properties as assessed 
by the Farinograph (AGES 2016). The studied popula-
tion showed an average performance similar to the former 
trait value while it surpassed the requirements for the latter 
dough rheological parameter, yet it contained lines with both 
highly desirable and non-desirable dough-mixing proper-
ties. Accordingly, the viscoelastic dough properties showed 
a similar high variation, whereas lines with high values 
for the dough energy are of special interest as they often 
demonstrate a favourable performance in baking tests such 
as high loaf volumes. A large part of this phenotypic vari-
ation could be explained by genetic differences, but there 
remained also a substantial non-genetic part caused either by 
genotype by environment interaction as well as local varia-
tion within the trials. Despite the strong unbalancedness of 
the trial series with few lines being common across trials, 
and a simple completely randomized trial design, medium 

(11)�̂�Reli = (�̂�Seli
− 𝜇i)∕𝜇i.
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to high heritabilities were achieved for all studied traits 
(Table 1). Hence, the data quality was sufficient and the lines 
represented a broad sample of protein quantity and quality 
expected from wheat breeding programs in early generations 
where genomic selection would be an interesting method.

The relationship between traits might further influence 
the selection decisions as well as the selection methodo-
logical choice in different stages of a breeding program. 
The genetic and phenotypic correlation was estimated with 
the same multi-trait model used for genomic prediction, 
whereby all phenotypic records were available and merely 
two traits were considered at a time due to the high compu-
tational demand. The dough energy was thereby strongly 
correlated with both the extensibility and resistance to 
extension although the phenotypic and genetic relationship 
with the latter trait was much more pronounced (Table 2). 
Additionally, extensibility and resistance to extension were 
negatively correlated among themselves and thus a selec-
tion based on dough energy would be more promising for 
a simultaneous improvement of these viscoelastic traits. A 

similar relationship was found for the dough-mixing prop-
erties, where the farino quality number was stronger cor-
related with both the dough development and stability than 
both traits among each other, and was accordingly a suit-
able trait for the combined selection and improvement of 
these two dough rheological parameters. Dough stability, 
farino quality number and dough energy were furthermore 
strongly related to each other, which suggested that partly 
similar dough rheological properties are assessed by these 
parameters. Traits like the water uptake and extensibility 
were on the other hand not as strongly connected to the other 
above-mentioned traits and built a rather separate correlation 
network on their own. Apart from the protein quality the 
protein quantity had also a major influence as indicated by 
the significant positive phenotypic as well as genetic correla-
tions of protein content with most of the dough rheological 
traits, which already suggested some merit of including the 
highly heritable protein content into the prediction models. 
Notwithstanding, it also shows that dough rheological prop-
erties are not solely governed by the protein content and that 

Table 1  Variance components, 
heritability, mean and range 
of the dough rheological 
parameters and the protein 
content for the entire population 
of dough rheologically analyzed 
lines from 2009 to 2016

Genotypic variance �2

G
, error variance �2

e
, and heritability h2 from the across trial analysis of the protein 

content and the respective dough rheological parameters. The trial residual and genotype by environment 
interaction variance are both confounded in the error variance
a Near infrared spectroscopy

Method Parameter Summary statistics Variance compo-
nents

h2

Min Mean Max �2

G
�2

e

Farinograph Water uptake (%) 52.29 59.16 64.65 2.76 2.27 0.61
Development (min) 0.97 4.10 11.19 1.26 2.44 0.40
Stability (min) 0.18 14.26 31.15 25.81 38.92 0.47
Quality number (× 10 min) 7.08 137.86 351.28 2634.16 4010.98 0.46

Extensograph Resistance (EU) 132.10 393.00 711.70 3001.35 5565.03 0.40
Extensibility (mm) 121.70 172.00 220.30 140.56 177.74 0.51
Energy  (cm2) 45.12 116.81 192.50 515.45 337.05 0.66

NIRSa Protein content (%) 10.79 13.16 15.53 0.41 0.58 0.48

Table 2  Phenotypic (upper 
triangle) and genetic correlation 
(lower triangle) as estimated 
by a multi-trait G-BLUP model 
between dough rheological 
parameters and the protein 
content in the entire population 
of 401 dough rheological 
analyzed lines from 2009 to 
2016

Correlations are shown for the protein content (PROT), water uptake (WAT), dough development (DEV), 
dough stability (STAB), farino quality number (FQN), extensibility (EXT), resistance to extension (RES), 
and dough energy (ENG)

PROT WAT DEV STAB FQN EXT RES ENG

PROT 0.39 0.45 0.22 0.26 0.35 0.02 0.25
WAT 0.29 0.24 0.00 0.09 − 0.01 − 0.01 − 0.05
DEV 0.85 0.20 0.18 0.24 0.29 − 0.02 0.20
STAB 0.76 0.22 0.78 0.97 0.18 0.33 0.51
FQN 0.86 0.36 0.97 0.99 0.18 0.21 0.37
EXT 0.43 − 0.04 0.66 0.54 0.58 − 0.39 0.32
RES 0.20 0.15 0.15 0.55 0.56 − 0.20 0.57
ENG 0.52 0.02 0.55 0.91 0.91 0.46 0.71
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additional factors such as the high molecular weight glutenin 
subunit composition of wheat storage proteins influence the 
baking quality parameters of bread wheat.

Genomic selection with candidate loci and de novo 
found marker-trait associations

The importance of the high molecular weight glutenin subu-
nit composition was emphasized by the results of the four-
fold cross-validation within the estimation set used for the 
GWAS, where the usage of the three markers associated with 
the Glu-1 loci showed some promise for a marker-assisted 
selection (Fig. 2a). Nevertheless, the average prediction 
accuracy for marker-assisted selection with the Glu-1 loci 
(r = 0.25) was still lower than the baseline prediction accu-
racy of a genomic selection approach (r = 0.40), even when 
including all three Glu-1 loci markers into the prediction 
model. The employment of de novo found markers by GWAS 
generally resulted in an higher average prediction accuracy 

for marker-assisted selection (r = 0.43) even surpassing the 
prediction accuracy of a RR-BLUP model. The combination 
of both Glu-1 loci and de novo found markers was a slightly 
more advantageous method (r = 0.44), where the latter set 
of markers most likely modelled genetic relationships within 
the training population rather than actual marker-trait asso-
ciations across the training and validation population. This 
hypothesis was supported by a decrease in prediction accu-
racy when predicting the validation set of the 20% of lines 
that were left out for the GWAS (Fig. 2b), where the average 
prediction accuracy of a marker-assisted selection with the 
de novo found markers dropped to r = 0.21 and the combina-
tion was still slightly higher (r = 0.26) than employing the 
Glu-1 loci alone (r = 0.25). The dramatic drop in prediction 
accuracy with the de novo found markers suggested that the 
models were strongly overfitted when using the same set for 
estimation and cross-validation in which these marker-trait 
associations were discovered. The effect was accordingly 
even more pronounced in the forward prediction of lines 

Fig. 2  Comparison between marker-assisted (top row) and genomic 
selection (bottom row) approaches employing markers linked with 
the Glu-1 loci (pale points) and de novo identified marker-trait asso-
ciations (dark points), where each point represents a training by vali-
dation population by trait combination. Results are shown for the 
fourfold cross-validation within estimation set used for the GWAS 

(a, d), prediction of the validation set of the 20% of lines left-out for 
the GWAS (b, e), and the forward prediction of the three independ-
ent validation populations 2014–2016 (c, f). The average across all 
combinations for methods including the Glu-1 loci (cross) and the de 
novo identified marker-trait associations (square) is also displayed
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tested in 2014–2016 (Fig. 2c): The average prediction accu-
racy a marker-assisted selection with the Glu-1 loci stayed 
rather stable (r = 0.31), but the predictive ability of models 
using the de novo found markers completely disappeared 
(r = − 0.02) in this case.

Integrating these de novo found markers as fixed effects 
into a RR-BLUP model for genomic selection followed the 
same pattern (Fig. 2d–f), and in the independent validation 
the prediction accuracy of the according W-BLUP models 
was approximately halved (r = 0.18) in comparison to the 
baseline RR-BLUP model (r = 0.37). Nevertheless the cross-
validation and independent validation revealed some merit 
of including the known Glu-1 loci markers as fixed effects 
into the RR-BLUP model for constructing a W-BLUP model, 
as the prediction accuracy could be slightly increased even 
for the naïve approach when using all Glu-1 loci markers 
irrespectively of the explained genetic variance for a dough 
rheological trait. Independent validation resulted, e.g., in 

an average prediction accuracy across all dough rheological 
traits of r = 0.41 that was slightly higher than the estimated 
baseline prediction accuracy of r = 0.37 obtained with a 
standard RR-BLUP model. The increase in prediction accu-
racy by the W-BLUP model was furthermore independent of 
the population structure that was investigated via principal 
component analysis (Fig. S1 Online Resource 4).

The fine-tuning of such an approach depended on the 
threshold value for including the Glu-1 loci into the pre-
diction model when using the entire basis population of 
191 lines for training the models (Fig. 3). This advantage 
was furthermore trait-specific as hardly any benefit was 
obtained for water uptake, dough development, and quality 
number but on the other hand a substantial benefit was seen 
for dough stability, energy, and resistance to extension. The 
Glu-1 loci did not explain a noteworthy proportion of the 
genetic variance for dough extensibility, which was expected 
as this trait is mostly governed by the gliadin protein fraction 

Fig. 3  The average prediction accuracy across all three independent 
validation populations 2014–2016 when training models for marker-
assisted selection (open symbols) and integrating the Glu-1 loci as 
fixed effects into models for genomic selection (closed symbols). Dif-
ferent threshold values based on the explained genetic variance were 
applied for the water uptake (a), dough development (b), dough sta-

bility (c), farino quality number (d), resistance to extension (e), and 
the dough energy (f). The number of employed markers is highlighted 
in brackets and the dashed horizontal line represents the baseline pre-
diction accuracy of the RR-BLUP model without including any mark-
ers as fixed effects
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and was thus not considered for prediction by a W-BLUP 
model in this study.

The general advantage of a W-BLUP model largely dis-
appeared at thresholds higher than 10% as few of the three 
assayed Glu-1 loci markers explained such a huge amount of 
genetic variance of the dough rheological traits. The thresh-
old values were however based on a cross-validation within 
the basis population 2009–2013 and thus stricter than uti-
lizing the often biased, i.e., over-optimistic values derived 
from linear models without such a scheme. Finally, we set a 
threshold of 5.00% explained genetic variance for including 
the Glu-1 loci markers as a compromise between explained 
genetic variance and marker number, as, e.g., a clear advan-
tage was already seen by modelling Glu-D1 as fixed effect 
for predicting resistance to extension in the validation set 
of the 20% of lines that were left out for the GWAS. These 
markers would otherwise been excluded by using a stricter 
threshold of 10.00% as suggested by Bernardo (2014). The 
average prediction accuracy of the forward prediction was 
increased by 13% from r = 0.39 to r = 0.44 when integrat-
ing this prior knowledge about the genetic architecture of 
wheat storage protein composition into the genomic predic-
tion models.

Multi-trait prediction models and response to selection 
for baking quality

Apart from wheat storage protein composition or protein 
quality, the protein content or quantity is an important meas-
ure of quality in wheat breeding programs, plant production 
as well as in milling and food-processing. An assessment of 
the protein content can be conducted with high precision and 
is readily applicable on a large number of samples by taking 
advantage of rapid test such as NIRS. Exploiting the rela-
tionship between the protein content and dough rheological 
parameters related to baking quality might consequently be 
an interesting strategy for improving the prediction accuracy 
of a genomic selection approach. However, cross-validation 
with multi-trait prediction models based merely on pheno-
typic information of training populations that were pheno-
typed for both protein content and dough rheology showed 
no benefit in comparison to single-trait prediction models 
(Fig. 4).

Notwithstanding, the prediction accuracy might be 
increased by including a large number of additional lines 
that have been genotyped and phenotyped for protein con-
tent in multi-environment trials though were not selected 
for further testing. This scenario is common to most wheat 
breeding programs and the retained phenotypic data of the 
additional lines could be efficiently salvaged by doubling 
training populations size of the protein content, i.e., the cor-
related trait in multi-trait prediction models, which resulted 
in, however, no increase of prediction accuracy (r = 0.44) 

compared with the single-trait prediction model (r = 0.44) 
trained merely with phenotypic data of the dough rheologi-
cal traits (Fig. 4).

Another interesting scenario in plant breeding is the 
availability of an easy to score correlated trait to the actual 
traits of interest for the validation population. Possessing 
prior information of the protein content enabled a marked 
increase of the prediction accuracy of dough rheological 
traits under this condition (r = 0.48), while a combination 
of this and the previous scenario for increasing the training 
population size did not further effect the average prediction 
accuracy (r = 0.48). However, we observed higher predic-
tion accuracies the multi-trait prediction model that melted 
the genomic estimated breeding values of the protein content 
and dough rheological traits by the model-based selection 
index method described in this study. The prediction accu-
racy of a model including a large number of additional lines 
phenotyped for protein content was elevated by this method 
(r = 0.46) as was it when prior information of the protein 
content was available (r = 0.50). The model-based selec-
tion index method was furthermore computationally far less 
demanding and did not lead to convergence problems that 
often occurred with the completely unstructured multivariate 

Fig. 4  Prediction accuracy for multi-trait genomic selection fitting a 
multi-trait mixed model (MVM) or employing a model-based selec-
tion index approach (INDEX), and the comparison with the corre-
sponding single-trait prediction (G-BLUP). The baseline accuracy 
without modelling correlations between traits (BASE) was compared 
with multi-trait prediction scenarios where additional phenotypic data 
on the protein content was only available for the training population 
(TP), for both the training and validation population (VP), the train-
ing population as well as a large number of additional lines (ADD), 
and for all involved lines (FULL)
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linear mixed models, hence we used this method for all fur-
ther multi-trait predictions.

The forward prediction of 2014–2016 using this multi-trait 
prediction model showed a clear benefit over the standard 
RR-BLUP model of approximately 10.25% in average predic-
tion accuracy when increasing the training population size 
for correlated trait protein content with additional thoroughly 
phenotyped lines. The increase in prediction accuracy was 
especially marked for dough development, water uptake, and 
farino quality number as well as extensibility and such a pre-
diction strategy might be appropriate for an early generation 
genomic selection, where protein content data obtained from 
observation plots or preliminary yield trials might sometimes 
be very limited or of rather low quality depending on the trial. 
A similar improvement could be achieved by the W-BLUP, 
where the beneficial effect of upweighting the Glu-1 loci 
markers was especially pronounced for resistance to extension 
and dough energy but we observed also some merit for dough 
stability and the farino quality number (Table 3). These results 
refer to the optimal W-BLUP models of this study, where 
merely Glu-1 loci markers that explained more than 5.00% 
per cent of the genetic variance based on cross-validation in 
the basis population 2009–2013 were used as fixed effects. 
The Glu-D1 locus with two alleles coding the subunits 5 + 10 
and 2 + 12 played thereby a major role, followed by the Glu-
A1 locus that especially explained a substantial variation for 
dough stability. The Glu-B1 locus on the other hand had the 
lowest importance most likely as mostly the 7 + 8 and 7 + 9 
subunits occurred in the analysed material, which both have 
a very similar effect on protein quality. Combining the merits 
of a multi-trait prediction and modelling major QTL as fixed 
effects into a multi-trait W-BLUP model finally gave the high-
est average prediction accuracy (r = 0.47) surpassing the pre-
diction accuracy of a standard RR-BLUP model by 20.50%, 
while the advantage in prediction accuracy varied between 7 
and 61% for the individual traits (Table 3).

As expected the increase in prediction accuracy using 
the enhanced W-BLUP also led to a higher response to 
selection in terms of relative superiority in average trait 
performance of genomically selected subpopulations in 
comparison to the average trait performance of all lines 
in a given independent validation population (Fig. 5a). 
Although the results were quite promising for many dough 
rheological traits (Fig. 6), there was also great interest in 
comparing genomic selection with indirect phenotypic 
selection using an easy to phenotype correlated trait such 
protein content to pre-select germplasm for baking quality. 
We found a clear advantage of genomic selection in this 
comparison and a nearly twice as high response to selec-
tion in comparison to indirect selection by protein content 
for these baking quality related traits. However, a much 
larger response to selection was estimated for direct phe-
notypic selection of dough rheological traits even in this 
very unbalanced trial series due to the high heritability 
of these quality traits. Given these results, it is however 
of foremost importance to take the fact into consideration 
that dough rheology or baking quality can only be tested 
in very late stages of variety development in most wheat 
breeding programs. The applicable selection intensity for a 
direct phenotypic selection would accordingly be approxi-
mately around 50% of the retained lines, while in earlier 
generations where genomic selection is applied it would be 
possible to select much stricter, e.g., the 10% of lines with 
the highest performance. Although, the highest performing, 
i.e., most extreme lines could be equally well identified 
by both the baseline RR-BLUP and enhanced W-BLUP 
model (Fig. 5a), the latter showed a clear superiority over 
a large range of selection intensities and was more suited 
for identifying the correct lines in the respective selected 
fractions (Fig. 5b).

Table 3  Explained genetic 
variance estimated by cross-
validation of the Glu-1 loci in 
the basis population 2009–2013, 
and prediction accuracy for 
each dough rheological trait 
in the forward prediction of 
2014–2016

a Glu1 markers that explained more than 5.00% of the genetic variance were modelled as fixed effects
b Multi-trait model extending the training population with additional lines phenotyped for protein content
c Multi-trait W-BLUP model combining both prior prediction model extensions

Parameter Explained genetic variance (%) Model prediction accuracy

Glu-A1 Glu-B1 Glu-D1 RR-BLUP W-BLUPa INDEXb MW-BLUPc

Water uptake 6.0 0.0 0.0 0.40 0.41 0.43 0.43
Development 12.6 1.4 1.9 0.36 0.36 0.40 0.39
Stability 30.4 4.0 33.9 0.38 0.45 0.41 0.46
Quality number 18.0 1.8 29.5 0.34 0.35 0.43 0.38
Resistance 2.4 0.6 7.3 0.30 0.49 0.31 0.49
Extensibility 1.5 0.0 0.3 0.40 0.40 0.46 0.46
Energy 6.3 0.0 12.7 0.53 0.61 0.56 0.63
Average 6.3 1.3 7.3 0.39 0.44 0.43 0.47
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Fig. 5  Response to selection averaged across all analyzed dough rhe-
ological traits using direct and indirect phenotypic selection as well 
as the comparison with genomic selection and the advantage of using 
the model-based selection index approach that additionally included 

markers associated with the Glu-1 loci as fixed effects (a) as well as 
the number of correctly selected lines using the mentioned genomic 
selection approaches compared with a random selection (b)

Fig. 6  Response to selection for the individual rheological traits using direct (a, d) and indirect phenotypic selection (b, e) as well as the model-
based selection index approach that additionally included markers associated with the Glu-1 loci as fixed effects (c, f)
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Discussion

This study concentrated on genomic selection for labour-
intensive and costly to assess dough rheological traits 
in order to support the improvement of baking quality in 
bread wheat breeding. The prospects of this approach were 
examined in various cross-validation schemes and a for-
ward prediction with three independent validation popula-
tions using a large population of bread wheat lines tested 
across multiple years for dough rheological traits as well as 
their protein content. Apart from these prediction scenarios, 
several extensions of the genomic prediction models were 
investigated including multi-trait models and the exploita-
tion of prior knowledge about the underlying trait genetic 
architecture.

Integrating marker-assisted and genomic selection 
by knowing the trait genetic architecture

It is commonly accepted that the glutenins and gliadins 
strongly influence dough properties and baking quality 
due to the unique property of this cereal protein fraction of 
building a gluten network in a flour–water mixture (Shewry 
et  al. 1995), which enables gas retention during dough 
formation allowing the dough to rise (Shewry et al. 2003; 
Weipert 2006; Rasheed et al. 2014). Apart from yield, dis-
ease resistance, and stress tolerance, the genetic improve-
ment of quality traits is an important part of many national 
and international wheat breeding programs (Battenfield et al. 
2016; Guzmán et al. 2016a; Liu et al. 2016; Würschum et al. 
2016). Hence, great efforts were undertaken to decipher 
the genetic basis of storage protein quality of wheat, and 
it has been shown that amongst others the high molecular 
weight subunit composition of the glutenins strongly influ-
ences bread-making quality (Payne et al. 1987; Lukow et al. 
1989; Rogers et al. 1989). The Glu-1 loci found on the long 
arm of the homeologous chromosome pairs 1A, 1B and 1D 
associated with dough viscosity (Payne 1987) were found 
to be of especially large importance by many genetic stud-
ies for conferring dough resistance to extension (Kuchel 
et al. 2006; Mann et al. 2009; Tsilo et al. 2011; Cooper et al. 
2016; Krystkowiak et al. 2016) and the respective favour-
able alleles also lead to a stronger gluten network thereby 
improving dough-mixing properties (Tsilo et al. 2013).

Accordingly, markers associated with the Glu-1 loci have 
been used for predicting wheat quality traits by marker-
assisted selection (Eagles et al. 2002; Kuchel et al. 2007; 
Oury et al. 2010) and also showed some merit for this pur-
pose in our study. Analogous to alveograph W values (Oury 
et al. 2010) some rheological traits like the dough energy 
of the extensogram could in this way be predicted with a 
sufficient accuracy (r = 0.48), while other traits like dough 
extensibility and water uptake had a very low prediction 

accuracy or were not predictable at all, as the Glu-1 loci 
did not explain a sufficient amount of genetic variance for 
the respective traits. A potential explanation could be that 
these traits are influenced by the large number of other genes 
associated with quality in wheat, amongst others the known 
Gli-1 loci coding for gliadins associated with dough quality 
(Plessis et al. 2013; Sherman et al. 2014; Würschum et al. 
2016) or genes that are directly influencing baking qual-
ity like wbm (Furtado et al. 2015; Guzmán et al. 2016b). 
Furthermore, a substantial number of small effect loci with-
out candidate gene information have also been identified in 
numerous genetic mapping studies suggesting a complex 
inheritance of quality in wheat (Bordes et al. 2011; Reif 
et al. 2011; Tsilo et al. 2011, 2013; Cabrera et al. 2015), 
which indicates the worth of a genomic selection approach 
that takes both these small and medium effect loci as well as 
major QTL into account. Accordingly, we observed a sub-
stantial benefit of genomic over classical marker-assisted 
selection for dough rheological traits that is comparable to 
previous reports about genomic selection for milling and 
baking quality related traits (Battenfield et al. 2016; Liu 
et al. 2016).

Genomic selection is commonly used to predict com-
plex quantitatively inherited traits with low and medium 
heritability in early generations of variety development 
when the available phenotypic information of important 
traits like grain yield is limited, and the usage of genomic 
estimated breeding values could substantially improve 
genetic gains by supporting breeders in their selection 
decisions (Auinger et al. 2016; Michel et al. 2016; Sal-
lam and Smith 2016). Although, baking quality traits 
have usually a high heritability their assessment is often 
time-consuming, labour-intensive, costly, and too less 
plant material, i.e., grains are available from each selec-
tion candidate in early generations forcing breeders to 
postpone thoroughly quality testing into later generations 
of variety development. Genomic selection has on the 
other hand the great advantage to enable a pre-selection 
of high performing lines in a much broader population 
2–3 years before conducting these costly tests, thereby 
promoting the selection of lines that combine desirable 
quality characteristics and grain yield. Integrating major 
genes as fixed effects into genomic prediction models 
has furthermore been shown to improve such a genomic 
selection approach for plant morphological and disease 
resistance traits (Bernardo 2014; Zhao et al. 2014; Arruda 
et al. 2016), and we could verify this W-BLUP method 
with the Glu-1 loci markers that were associated with 
dough rheological traits in our study. Fine-tuning these 
W-BLUP models includes an appropriate compromise 
between marker number and proportion of explained 
genetic variance, which most likely depends on the 
breeding material and can to some extent be guided by 
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an appropriate cross-validation in the training population. 
A major prerequisite is of course that alleles of these QTL 
have not been fixed in the respective breeding population 
yet. Extending this idea, Spindel et al. (2016) suggested 
to integrate de novo mapped marker-trait associations into 
genomic prediction models. Liu et al. (2016) could though 
not find any advantage of this method in the analysis of 
a large hybrid wheat population for quality traits, while 
other studies reported a significant increase in predic-
tion accuracy of this method (Boeven et al. 2016; Moore 
et al. 2017). The increase in prediction accuracy using 
the same population for marker-trait associations discov-
ery and subsequent prediction model validation has been 
termed the inside trading effect by Arruda et al. (2016), 
and is the result of selecting predictors before leaving 
observations that are supposed to be unobserved out, 
leading consequently to an overfit of the respective pre-
diction models to the training data. Accordingly, the pre-
diction accuracy was even negatively affected when such 
W-BLUP models that included de novo found markers 
were used for predicting the three independent validation 
populations, which firstly showed though great promise 
in the cross-validation within the estimation set. How-
ever, we also did not find an advantage of de novo found 
markers in the independent validation, which seemed 
to be promising at first based on the correctly applied 
cross-validation using a validation set of left-out lines. 
Possible reasons that these latter de novo found markers 
could not be validated might be a too small population 
size for mapping combined with too low marker cover-
age for accurately mapping the underlying loci, linkage 
phase changes between training and validation popula-
tion or the false positive rate. Nevertheless, these issues 
suggest a prudent interpretation of interesting markers 
identified in GWAS, and marker-trait associations should 
be validated with data that was left-out for mapping. We 
suggest thus favouring known major QTL like Fr-2 for 
frost tolerance (Erath et al. 2017; Würschum et al. 2017) 
or TaPHS1 for pre-harvest sprouting (Moore et al. 2017) 
when predicting complex traits with W-BLUP models in 
bread wheat and other species. Important genes associ-
ated with dough rheological parameters like the Glu-1 
loci could nevertheless be readily identified by GWAS 
(Zheng et al. 2009); however, it often fails to detect rare 
variants like the wbm gene (Furtado et al. 2015; Bernardo 
2016; Guzmán et al. 2016b). Mapping within bi-parental 
populations using the same marker system as employed 
in the respective breeding program might thus be a more 
appropriate strategy for finding new interesting marker-
trait associations, which could subsequently be integrated 
into the genomic selection framework taking advantage of 
the vast results and experiences gained in QTL mapping 
during the last two decades.

Enhancing genomic selection by utilizing the association 
between protein quality and quantity

Apart from the wheat storage protein composition dough 
rheological and thus baking quality is also determined by 
protein quantity. Accordingly, we observed strong genetic 
and phenotypic correlations between protein content with 
different traits especially dough water uptake, development 
and extensibility. Whereas the glutenin loci also play a role 
in the expression of the latter mentioned traits (Zheng et al. 
2009; Tsilo et al. 2013), they are to a larger extent controlled 
by loci associated with the gliadin protein fraction and the 
gliadin/glutenin ratio (Bekes 2012a, b; Plessis et al. 2013; 
Sherman et al. 2014) probably causing this strong correla-
tion with the protein content (Osman et al. 2012; Marti et al. 
2015).

Some response to indirect selection based on protein 
content can thus be expected for these quality traits where 
a marker-assisted selection with Glu-1 loci markers was 
not applicable, especially for dough extensibility which is 
highly dependent on the gliadin protein fraction. However, 
for optimal selection breeders should also consider the com-
plex interaction of protein fractions, which was reflected by 
the negative relationship between extensibility and resist-
ance to extension found in our and previous studies (Zanetti 
et al. 2001; Bordes et al. 2008). The resistance to extension 
generally increases if the glutenin fraction prevails, i.e., with 
a lower gliadin/glutenin ratio (Melnyk et al. 2012) and bak-
ing quality traits like loaf volume are thus dependent on 
both protein fractions. The same consideration is valid for 
traits related to dough processing, where genotypes with 
a prevailing gliadin fraction show a fast water uptake and 
dough development but an often insufficient dough stability 
(Weipert 2006). Given these interactions, a simultaneous 
improvement of extensibility and resistance to extension 
could be achieved by selecting for dough energy or area 
under the extensogram curve as an integrated measure that 
takes both resistances to extension and extensibility into 
account. Likewise, mixing properties and thus the stability 
of gluten networks could be improved by utilizing the farino 
quality number as an integrated index. These two traits 
showed also a high prediction accuracy using a genomic 
selection approach, which was superior to indirect selection 
by the protein content. Although the information of such 
single point values might be limited (Dobraszczyk and Mor-
genstern 2003), they could be used to pre-select lines with 
desirable trait combinations before complete dough rheo-
logical profiles can be created for a final selection decision 
of lines entering variety registration trials.

Notwithstanding, the protein content is an easy to meas-
ure rapid test that can be applied to a large number of sam-
ples in a short time period. Vast phenotypic information of a 
large number of lines can thus be expected in wheat breeding 
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programs, which could be used for enlarging the training 
population size in a genomic selection approach. This is 
certainly beneficial for wheat breeders as a larger training 
population size has been shown to increase the prediction 
accuracy in numerous genomic selection studies (Heffner 
et al. 2011; Battenfield et al. 2016; Nielsen et al. 2016), and 
exploiting the strong correlation between dough rheological 
traits and the highly predictable protein content in a multi-
trait prediction model gave accordingly some increase in pre-
diction accuracy if the training population size of the corre-
lated trait protein content exceeded the one of the main trait 
of interest. On the other hand, multi-trait prediction models 
performed often very similar to single-trait predictions or 
were even slightly inferior when the training population was 
comprised only of lines that were phenotyped in parallel 
for both traits (Jia and Jannink 2012; Guo et al. 2014; dos 
Santos et al. 2016). Hence, we suggest that information from 
the vast number of additional lines phenotyped for correlated 
traits should be included into multi-trait prediction models 
to fully exploit the merit of such models. This issue is espe-
cially interesting in wheat breeding programs, where breed-
ers can strongly profit from the protein content as a highly 
heritable as well as easy to phenotype trait which is geneti-
cally highly correlated with traits related to baking quality. 
This advantage could be further extended when the valida-
tion or selection population was already phenotyped for the 
correlated trait (Jia and Jannink 2012; Hayes et al. 2017). 
This scenario gave a strong increase in prediction accuracy 
in our study, and could effectively be used to enhance selec-
tion in advanced generations when reliable protein content 
data is already available, though too less plant material for 
dough rheological test. Additionally, the according genomic 
predictions could support the choice in combination with the 
sedimentation value as an intermediate quality analysis step 
which material should actually be sent to the laboratory for 
in depth quality analysis. This is another important deci-
sion in quality breeding, and we suggest analysing a broad 
sample from all quality classes in order to avoid a bias and 
thereby keeping a high prediction accuracy for a successful 
long-term selection strategy (Zhao et al. 2012).

Conclusions

This study focused on the merit of genomic selection for 
the genetic improvement of laborious to phenotype dough 
rheological traits that are related to baking quality in bread 
wheat. Genomic selection showed a superior performance 
over marker-assisted and indirect phenotypic selection and 
could be enhanced by exploiting prior knowledge about 
the underlying trait genetic architecture for the estimation 

of genomic breeding values. It was also shown that great 
care must be taken when upweighting the effect of certain 
markers in the prediction models and a trait-specific fine-
tuning by the proportion of explained genetic variance is 
advisable. Additional fine-tuning of the predictions was 
furthermore possible by employing multi-trait prediction 
models when increasing the training population size of the 
rapid to phenotype protein content that served in this case 
as highly heritable and correlated trait. Finally, a genomic 
selection approach revealed a major benefit over classi-
cal selection methods for many quality traits as it would 
allow a 2–3 years earlier selection for the often costly, 
labour-intensive and time-consuming assessment of line 
performance by sophisticated quality tests. This consider-
able advantage, combined with a higher applicable selec-
tion intensity in early generations could support breeders 
in developing new bread wheat varieties that efficiently 
combine superior baking quality with comparatively higher 
grain yield.
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