
1. INTRODUCTION 

The reservoir compacts due to fluid withdrawal by oil 

production. This process will finally lead to land 

subsidence in the surface if no proper water injection 

treatment is done. States like California, Texas, and 

Louisiana have suffered the damage for a long time (Pratt 

and Johnson 1926, Sinder 1927, Gilluly and Grant 1949, 

Chang et al. 2014). The first mathematical model for land 

subsidence was attempted by MacCann and Wilts to 

computing subsidence due to underground oil production 

(MacCann and Wilts 1951). They investigated two 

different models, which are “tension center” and “vertical 

pincer” model for the subsidence behavior above the 

Wilmington field. Based on their work, Geertsma 

improved the analogy between the physical parameters of 

the ground and those in the model using the nucleus-of-

strain concept (Mindlin and Cheng 1950, Sen 1950, 

Geertsma 1973). Segall investigated the subsidence from 

the theoretical analysis, laboratory experimentation, and 

direct observation in the field (Segall 1992). The approach 

used by Segall was similar to Geertsma’s approach, which 

derived the stress field and the surface subsidence 

resulting from the extraction of fluid or gas from the 

reservoir. Both of them considered the case of a uniform 

pressure depletion in a horizontal tabular reservoir and 

obtained identical solutions as well. Since then, most 

subsidence studies were based on Segall and Geertsma’s 

work (Fokker and Orlic 2006, Tempone et al. 2010, Chen 

2011). On the other hand, the inversion technique which 

employs surface subsidence observations (GPS, radar, 

tiltmeter monitoring) can calculate reservoir behavior 

from subsidence behavior (Fokker 2002, Kroon et al. 

2009, Fokker et al. 2012).  

For numerical studies of land subsidence prediction, 

Morita developed a method to determine subsidence, 

compaction, and in-situ stress induced by pore-pressure 

change using a three-dimensional finite-element model 

(Morita et al. 1989).  He found that Geertsma’s results 

which are based on no modulus contrast between cap and 

reservoir rocks should be extended to simulate more 

realistic reservoirs to consider distinct property 

differences between the cap and reservoir rocks. 

However, the finite element modeling has an increased 

computational cost. Suzuki extended Geertsma’s model 

to 3D shape reservoirs and 3D shape earth surface (Suzuki 

and Morita 2004).  

This paper presents a numerical model based on 

Geertsma’s poroelastic solution to calculate land 

subsidence due to oil production. No contrast in elastic 

properties between the reservoir and the surrounding 

formation is assumed.  The superposition principle is 

applied to calculate subsidence for the whole discretized 

            
ARMA 16-382                                                                

 

 

Numerical Modeling of Land Subsidence Resulting from Oil Production 
 

Zhang, S., Zhong, R., Liu, Y. 

The University of Tulsa, Tulsa, Oklahoma, USA 
 

Copyright 2016 ARMA, American Rock Mechanics Association 

This paper was prepared for presentation at the 50th US Rock Mechanics / Geomechanics Symposium held in Houston, Texas, USA, 26-29 June 
2016. This paper was selected for presentation at the symposium by an ARMA Technical Program Committee based on a technical and critical 
review of the paper by a minimum of two technical reviewers. The material, as presented, does not necessarily reflect any position of ARMA, its 
officers, or members.  Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent 
of ARMA is prohibited.  Permission to reproduce in print is restricted to an abstract of not more than 200 words; illustrations may not be copied.  The 
abstract must contain conspicuous acknowledgement of where and by whom the paper was presented.   

ABSTRACT: The oil production can cause land subsidence when large amounts of underground fluid have been withdrawn from 

geo-pressured reservoirs. In this paper, a fast-running numerical model coupled with production history is developed to calculate the 

land subsidence for arbitrary shape reservoirs. The model is based on Geertsma’s poroelastic solution with nucleus of strain theory. 

The pressure profile is obtained by considering the critical transition time for transient and pseudo steady state flow. Then, the 

superposition principle is applied to calculate subsidence for the whole discretized model. The numerical model is first compared 

with Geertsma’s analytical solution, which shows an excellent match. A comprehensive parametric study is performed to characterize 

the influence of different parameters. To show the applicability of the model for arbitrary shape reservoirs, a horizontal well with 

elliptical pressure depletion profile is created and the corresponding 3D land subsidence profile is obtained. 

 

 

 

 

 

 

 

 



model (Janssen 1981, Chan and Zoback 2007, Mallman 

and Zoback 2007). For constant pressure depletion case, 

the comparison between analytical solution and numerical 

results shows an excellent agreement, which indicates the 

model is capable of simulating more complex situations. 

The further case studies first consider non-uniform 

pressure depletion profiles due to different production 

histories. Then, cases with different compaction 

coefficient due to Poisson’s ratio and Young’s modulus 

change are simulated to characterize the influence of rock 

properties. Finally, a horizontal well with elliptical 

pressure depletion profile is created and the 3D land 

subsidence profile is obtained. The new approach can 

provide accurate subsidence profile and overcomes 

deficiencies in previous studies, which are uniform 

pressure drop and disk shape reservoir assumptions. This 

approach is also important for the future development of 

sound numerical models with multiple injection and 

production wells.  

 

2. APPROACH 

The surface subsidence is induced by underground 

compaction. The compaction equation is written as (Fjar 

et al. 2008) 

                                 
∆ℎ

ℎ
= 𝐶𝑚𝛼∆𝑝                               (1) 

The compaction coefficient 𝐶𝑚  is related to rock 

Poisson’s ratio and Young’s Modulus as  

                             𝐶𝑚 =
1

𝐸

(1+𝑣)(1−2𝑣)

1−𝑣
                        (2) 

The compaction is proportional to the pressure drop from 

Eq. (1). There are several analytical models used for 

subsidence characterization. In Geertsma’s model the 

theory of “nucleus of strain” was employed as shown in 

Fig. 1. According to the theory, the vertical subsidence at 

any given radius r is  

𝑢𝑧(𝑟,  0) = −
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(𝑟2+𝐷2)
3
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Eq. (3) can be used to calculate subsidence at any point of 

interest (POI). The model was extended to deal with 

certain type of reservoir, i.e., disk shape reservoir. To get 

the subsidence, the solution is integrated over the whole 

reservoir area. The expression is (Geertsma 1973)   

𝑢𝑧(𝑟, 0) = −2𝐶𝑚(1 − 𝑣)∆𝑝ℎ𝑅 ∫ 𝑒−𝐷𝛼𝐽1(𝛼𝑅)𝐽0(𝛼𝑟)𝑑𝛼
∞

0
  (4) 

Where J0  and J1  are Bessel functions of zero and first 

order, respectively. The subsidence can be obtained after 

integration. As we can see in Eq. 4, the average pressure 

drop in the reservoir is assumed. To model a more realistic 

situation, transient pressure distribution in reservoir is 

desired. During the early time of production, the reservoir 

is under infinite acting and the compaction can be 

neglected. After the period of infinite acting, the pressure 

decline rate is constant, which results in pseudo steady 

state flow.  

 

Fig. 1. Nucleus of strain (Geerstma 1966) 

Fig. 2 shows the transient and pseudo steady state 

pressure profiles. To get the final pressure profile, a 

critical transition time from transient flow regime to 

pseudo steady state flow regime is obtained as (Dake 

1978) 

𝑡𝑠 =
948∅𝜇𝑐𝑡𝑟𝑒

2

𝑘
                                 (5) 

 

Fig. 2. Pressure profile of transient flow and pseudo steady 

state flow. 

If time is less than 𝑡𝑠, the pressure distribution is   

        𝑝(𝑟, 𝑡) = 𝑝𝑖 + 70.6
𝑞𝐵𝜇

𝑘ℎ
𝐸𝑖 (

−948∅𝜇𝑐𝑡𝑟2

𝑘𝑡
)        (6) 

If time is larger than 𝑡𝑠, the pressure is  



  𝑝(𝑟, 𝑡) = 𝑝𝑖 − 141.2
𝑞𝐵𝜇
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With given reservoir and fluid properties, the final 

pressure profile can be obtained from Eq. (5)-(7). 

 

Fig. 3. Mesh of reservoir 

After determining the pressure profile, the next step is to 

calculate the subsidence. Because of the non-uniform 

pressure drop, the reservoir is meshed with many blocks 

as shown in Fig. 3.  

 

Fig. 4. Flow chart of the numerical model 

Then, the subsidence of the whole filed is calculated block 

by block. The principle of superposition is used to get the 

final subsidence for each block in the field. 

Based on the approach described above, a flow chart for 

the numerical simulation is shown in Fig. 4. The first step 

is inputting reservoir and fluid properties for each block. 

Then, the next step is to assign pressure drop based on the 

pressure profile in the reservoir area. The nucleus of strain 

is performed for each reservoir block to calculate the 

subsidence. Finally the superposition principle is applied 

to calculate the total subsidence for the whole field. 

 

3. RESULTS AND DISCUSSION 

To evaluate the model, a case study is conducted to 

compare with Geertsma’s analytical solution. Fig. 5 

shows the pressure distribution of Geertsma’s model and 

the numerical model. The uniform pressure profile and 

continuous pressure profile are used in Geertsma’s model 

and our model, respectively. Both models have an average 

pressure drop of 2500 psi.  

 

 

Fig. 5. Top view of pressure profile of (a) Geerstma’s model. 

(b) The numerical model. 



Parameters used in the simulation are shown in Table 1. 

Note that the initial reservoir pressure is 5000 psi and 

production rate is 100 STB/D. 

Table 1. Parameters used in the simulation 

Parameters Value 

Reservoir thickness, h 50 ft 

Initial wellbore pressure, 𝑝𝑖  5000 psi 

Oil formation volume factor, 𝐵𝑜 1.15 rb/stb 

Reservoir radius, 𝑟𝑒 5000 ft 

Oil production, q 100 STB/D 

Oil viscosity, 𝜇 2 cp 

Total compressibility, 𝐶𝑡 1e-5 𝑝𝑠𝑖−1 

Reservoir diameter, D 5000 ft 

Permeability, k 50 md 

Wellbore radius, 𝑟𝑤 0.5 ft 

Poisson’s ratio, v 0.25 

Young’s Modulus, E 2 Gpa 

Production time, t 20 years 

 

The subsidence results are shown in Fig. 6. The 

subsidence profile is perfectly matched with Geertsma’s 

analytical solution. The deepest subsidence is about 0.035 

ft after 20 years production. Thus, the numerical model 

using the superposition principle is valid. However, the 

numerical model is more accurate for actual oil 

production since the continuous pressure drop is 

considered and the subsidence outside of the reservoir can 

be obtained. 

Fig. 6. Comparison of Geersma’s model and the numerical 

model. 

From Eq. (3) and (7), it can be seen that different 

parameters can affect the subsidence. To do parametric 

analysis of subsidence, the production rate, production 

time, Poisson’s ratio, Young’s Modulus and reservoir 

thickness are considered.  

Production rate. To characterize the influence of 

production rate on the subsidence, three cases are created 

with 50 STB/D, 100 STB/D and 150 STB/D production. 

In these cases, all other parameters are kept unchanged 

except the production rate. The pressure profiles are 

shown in Fig. 7 (a)-(c). The X axis shows the grid No. in 

the reservoir and Y axis shows the pressure for that block. 

The lowest pressure occurs at the reservoir center (grid 

No. 40). Note that the color of pressure distribution 

corresponds to the reservoir pressure on the Y axis.  

 
Fig. 7. (a) Pressure profile of case q=50 STB/D. (b) Pressure 

profile of case q=100 STB/D. (c) Pressure profile of case q=150 

STB/D.  



With the production rate increasing from 50 STB/D to 150 

STB/D, the pressure in the reservoir center decreases from 

4678 psi to 4032 psi. The pressure difference can be 

explained by Eq. (7) since the pressure has an inverse 

relationship with the production rate.  

The subsidence profiles are shown in Fig 8 (a)-(c). The 

subsidence has parabolic profile with negligible 

subsidence on the boundaries. The deepest subsidence 

increases from 0.02 ft to 0.058 ft in the reservoir center, 

which corresponds to the location of largest pressure 

depletion.   

 
Fig. 8. (a) Subsidence of case q=50 STB/D. (b) Subsidence of 

case q=100 STB/D. (c) Subsidence of case q=150 STB/D. 

Production time. Similarly, three cases with production 

time of 10 years, 20 years and 30 years are created to 

characterize the influence of production time. Pressure 

profiles are shown in Figure 9 (a)-(c). If the production 

time increases from 10 years to 30 years, the pressure in 

the reservoir center decreases from 4655 psi to 4055 psi, 

which means that the reservoir pressure has an inverse 

relationship with the production time.  

 
Fig. 9. (a) Pressure profile of case t=10 years. (b) Pressure 

profile of case t=20 years.  (c) Pressure profile of case t=30 

years.   

The subsidence profiles of these three cases are shown in 

Fig. 10 (a)-(c). The deepest subsidence increases from 



0.02 ft to 0.057 ft in the reservoir center, which has the 

similar trend as the pressure depletion.  

 

 
Fig. 10. (a) Subsidence of case t=10 years. (b) Subsidence of 

case t=20 years. (c) Subsidence of case t=30 years. 

Poisson’s ratio. In this section, three cases with Poisson’s 

ratio (both the reservoir and surrounding formation) of 

0.125, 0.25 and 0.375 are simulated. The pressure profiles 

are the same as Fig. 7 (b) because Poisson’s ratio does not 

affect the pressure distribution from Eq. (7).  

However, Poisson’s ratio can affect the subsidence profile. 

The subsidence profiles are shown in Fig. 11 (a)-(c). The 

subsidence decreases as Poisson’s ratio increases. The 

reason is that the compaction coefficient has an inverse 

relationship with Poisson’s ratio as expressed in Eq. (2). 

Therefore, the final subsidence has an inverse relationship 

with Poisson’s ratio. 

 

 
Fig. 11. (a) Subsidence of case v=0.125.  (b) Subsidence of case 

v=0.25. (c) Subsidence of case v=0.375.  

Young’s modulus. Another important rock property is 

Young’s modulus. Three cases with Young’s modulus 

(both the reservoir and surrounding formation) of 1 Gpa, 

2 Gpa and 3 Gpa are performed. The pressure profiles are 



also the same as Fig. 7 (b) because Young’s modulus does 

not affect the pressure depletion. 

The subsidence profiles are shown in Fig. 12 (a)-(c). 

Similar to Poisson’s ratio influence, the subsidence has an 

inverse relationship with Young’s modulus. The increase 

of Young’s modulus results in the reduction of subsidence.  

 
Fig. 12. (a) Subsidence of case E=1 Gpa. (b) Subsidence of case 

E=2 Gpa. (c) Subsidence of case E=3 Gpa.  

Reservoir thickness. Three cases with reservoir 

thickness of 25 ft, 50 ft and 75 ft are conducted in this 

section. The pressure profiles are shown in Fig. 13 (a)-(c). 

The smaller reservoir thickness causes larger pressure 

depletion because 25 ft case has the largest pressure 

depletion as shown in the figure. So the pressure has an 

inverse relationship with the reservoir thickness.  

 

 

 
Fig. 13. (a) Pressure profile of case h=25 ft. (b) Pressure profile 

of case h=50 ft.  (c) Pressure profile of case h=75 ft.   

However, the subsidence profiles for three cases are the 

same as shown in Fig. 14 (a)-(c). The deepest subsidence 

is constant about 0.038 ft. The reservoir thickness can 

affect both the pressure distribution equation (Eq. (7)) and 

nucleus of strain equation (Eq. (3)). But the reservoir 

thickness will be cancelled out when combining these two 



equations. So given a constant production rate, reservoir 

thickness does not affect subsidence.   

 
Fig. 14. (a) Subsidence of case h=25 ft. (b) Subsidence of case 

h=50 ft. (c) Subsidence of case h=75 ft. 

To quantify the influence of each parameter, a tornado 

diagram is created based on the previous results. As 

shown in Fig. 15, the production rate and production time 

have similar influence on the subsidence. Poisson’s ratio 

has medium effect on the subsidence. Young’s modulus 

can affect the subsidence a lot for decreasing case because 

it has a linear relationship with the compaction coefficient. 

For reservoir thickness, it has no effect on the subsidence 

but it can affect the pressure profile.  

 

 
Fig. 15. Tornado diagram of deepest subsidence variance 

 

Horizontal well case. A significant advantage of the 

numerical model is the capability to calculate subsidence 

for any shape of reservoir without complex integrals. A 

horizontal well case is performed. Assume that the well 

has an elliptical shape of pressure drop profile as shown 

in Fig. 16. The largest pressure drop is 3500 psi along the 

well path and the pressure drop gradually decreases to 500 

psi on the boundaries.  

 
Fig. 16. Top view of the pressure drop profile for horizontal 

well case. 

The 2D top view of subsidence profile is shown in Fig. 17. 

The subsidence distribution is similar to pressure drop 

distribution, which validates the relationship between the 

pressure drop and the subsidence in Eq. 3.  



 

Fig. 17. 2D top view of subsidence for horizontal well case. 

For better observation, 2D and 3D side views of 

subsidence are shown in Fig. 18. The subsidence profiles 

are in accordance with our expectations. The severest 

subsidence point can be detected based on the subsidence 

profile.  

 

 
Fig. 18. Horizontal well subsidence. (a) 2D side view. (b) 3D 

side view.  

 

 

4. CONCLUSIONS 

In this paper, a numerical model has been developed for 

subsidence prediction and a parametric study has been 

performed. It was found that the subsidence has a positive 

relationship with production rate and time and an inverse 

relationship with Poisson’s ration and Young’s modulus. 

The reservoir thickness does not affect the subsidence for 

a given production rate. For the disk-shape reservoir, the 

results are reasonable and close to Geertsma’s analytical 

model (uniform pressure drop). The model is capable to 

calculate subsidence of any shape of reservoirs with 

known pressure drop distribution. For the future work, 

subsidence prediction can be achieved by switching the 

depth of each block from a constant value to a variable for 

inclined reservoirs. The numerical model can also be used 

for the future development of sound numerical models 

with multiple injection and production wells. 

 

NOMENCLUTURE 

h Reservoir thickness, ft 

∆ℎ Reservoir compaction height, ft 

𝐶𝑚 Compaction coefficient, psi−1 

𝛼 Biot’s coefficient 

E Young’s modulus, psi 

v Poisson’s ratio 

𝑢𝑧 Vertical subsidence, ft 

D Reservoir diameter, ft 

r Distance, ft 

∆𝑝 Pressure drop, psi 

V Reservoir volume, ft3 

R Radius distance from vertical axis, ft 

𝑡𝑠 Critical transition time, hours 

K Permeability, md 

∅ Porosity  

𝐶𝑡 Total compressibility, psi−1 

𝑟𝑒 Reservoir radius, ft 

𝜇 Viscosity, cp 

𝑝𝑖 Initial reservoir pressure, psi 

p Wellbore pressure, psi 

t Production time, hours 

𝐵 Oil formation volume factor, rb/stb 

q Production rate, STB/D 

𝑟𝑤 Wellbore radius, ft 
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