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Abstract

We describe the results of a performance evaluation offour
extensions of Particle Swarm Optimisation (PSO) to reduce
energy consumption in wireless sensor networks. Communi-
cation distances are an important factor to be reduced in
sensor networks. By using clustering in a sensor network we
can reduce the total communication distance, thus increasing
the life of a network. We adopt a distance based clustering
criterion for sensor network optimisation. From PSO perspec-
tive, we study the suitability offour different PSO algorithms
for our application and propose modifications. An important
modification proposed is to use a boundary checking routine
for re-initialisation of a particle which moves outside the set
boundary.

1. INTRODUCTION
Wireless sensor networks came into prominence with the ad-
vancement ofMEMS Technology. In wireless sensor networks,
sensors are expected to be battery powered tiny devices and
therefore have limited energy. This makes energy consumption
a critical issue in sensor networks.

In our study, we consider sensor networks in which large
number of sensors are deployed. All sensors sense the environ-
ment and transmit data to a sink (destination). In cluster based
communication, nodes are formed into clusters. Each cluster
will have a cluster-head (CH) that will communicate with all
the member nodes of a cluster. CHs transmit aggregated data
to the sink. In this method, all nodes except CHs communicate
short distances and only a few nodes (CHs) communicate with
the sink. Clustering can greatly reduce communication cost of
the nodes because they only need to send data to the nearest
cluster-head. However, CH expends more energy than ordinary
nodes communicating with the sink. Thus in LEACH [1],
Heinzelman et al. proposed a rotation of CHs in each round of
communication. In LEACH, CHs are identified by an election
process influenced by randomness.

Clustering is an NP-hard problem [2]. For a given network
it is always difficult to find an optimal CH placement. In
LEACH-C [3], Heinzelman et al. proposed a simulated anneal-
ing approach to form clusters and identify CH positions. This
method is a centralised solution assuming that the position
of all nodes are known in advance and powerful computer
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perform the computation and inform all the nodes about their
respective cluster-heads. In [4], Tillet et al. proposed a Particle
Swarm Optimisation (PSO) approach for the same problem.
However, the main aim was to reduce an intra-cluster distance
by completely ignoring the distance to the sink. In [5], Ji et al.
applied Divided Range Particle Swarm Optimisation (DRPSO)
to optimise weighted clustering algorithm (WCA)[6] param-
eters. In contrast to the multiobjective optimisation problem,
we are devicing our problem as singleobjective optimisation.

In this paper we propose an evolutionary computing based
clustering method to cluster nodes uniformly distributed on
a sensor field. We formulate the clustering method as a
minimisation problem. We optimise the problem using four
different versions of PSO. The main objective of this work is
to show that:

. the choice of the specific PSO algorithm will also influ-
ence the final optimisation outcome.

. to solve application-specific problems like clustering of
sensors in a sensor networks, we need to modify PSO
algorithms to achieve better results.

We adopt four different Particle Swarm Optimisation methods
to cluster sensor nodes in a wireless sensor network based on
our clustering criterion. We have modified three algorithms
to suit our application. To cluster, we consider 2 different
methods:

. cluster a network when nodes have limited transmission
range.

. cluster a network when nodes do not have any transmis-
sion range restrictions.

The criterion for clustering is derived based on the communi-
cation distance between nodes and the CH, and from the CH
to the sink. The clustering criterion is taken from our previous
work [7].
The rest of the paper is organised as follows. The brief

overview of PSO and different versions of PSO used in
this work is given in section 2. Section 3 summarises the
assumptions and the energy model used in this paper. In
Section 4, we explain the clustering methods, results and
detailed analysis of the changes carried out to PSO algorithms.
Finally we conclude the paper.
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2. PARTICLE SWARM OPTIMISATION
Particle Swarm Optimisation is an evolutionary computing
technique based on principle such as bird flocking. This
method was first proposed by Kennedy and Eberhart [8]. In
PSO a set of potential solutions are called particles that are
initialised randomly. Each particle will have a fitness value,
which will be evaluated by the fitness function to be optimised
in each generation. Each particle knows its best position pbest
and the best position so far among the entire group of particles
gbest. The particle will have velocities, which direct the flying
of the particle. In each generation the velocity and the position
of the particle will be updated. The velocity and the position
update equations are given below as (1) and (2) respectively.

vk+1 = WVk + cirand1 x (pbesti- sk) +
*c2rand2 x (gbest - sk) (1)

xk+1 xk + vk+1 (2)wi =er
where,

vkVi
k+l

Vi
w
Ci
randi
Sk

pbesti
gbest
k+l

Xi

velocity of particle i at iteration k
velocity of particle i at iteration k + 1
inertia weight
acceleration coefficients j = 1, 2
random number between 0 and 1 i = 1, 2
current position of particle i at iteration k
pbest of particle i
gbest of the group
position of the particle i at iteration k + 1

In recent times, there has been a number of improvements
to the original PSO. We have explored different versions of
PSO where the extension to the original algorithm is distinct
from each other. Following PSO versions are studied in this
paper:

A. PSO- Time Varying Inertia Weight (TVIW)
PSO-TVIW [9] is the basic PSO algorithm with inertia weight
varying with time from 0.9 to 0.4 and the acceleration
coefficient is set to 2. The time varying inertia weight is
mathematically represented as follows:

w = (weight - 0.4) * (MAXITER - iter) + 0.4. (3)MAXITER
Where, MAXITER is the maximum iteration allowed, iter is
the current iteration number and weight is a constant set to
0.9.

B. PSO-Time Varying Acceleration Coefficients (TVAC)
PSO-TVAC [10], proposed by Ratnaweera et al. uses time
varying acceleration coefficient (TVAC). The c1 varies from
2.5 to 0.5 and the c2 varies from 0.5 to 2.5. Here the cognitive
component is reduced and social component is increased by
changing c1 and c2. The large cognitive component and the
small social component in the initial stages of the algorithm
helps the particle to wander around the search space. However,
the small cognitive component and large social component at

the later stages of the algorithm helps the particle to converge
to the global optima. TVAC is mathematically represented as
follows:

iter
Cl =(Cimin - Cimax) MAXITER + Clmin, (4)

C2 = (C2max - C2min) MAXITER + C2min. (5)

In Eq. 4 and 5 c1min and C2min are constants set to 0.5, Clmax
and C2max are also constants set to 2.5. Thus, in this algorithm
as the iter progresses, c1 varies from 2.5 to 0.5 and C2 varies
from 0.5 to 2.5.

C. Hierarchical Particle Swarm Optimizer with Time Varying
Acceleration Coefficients (HPSO-TVAC)
In this method [10] the particle behaviour will not be in-
fluenced by the previous velocity term of Eq. 1. Due to
non-influence of previous velocity, re-initialisation of velocity
is used when the velocity stagnates in the search space.
Therefore, in this method, a series of particle swarm opti-
misers are automatically generated inside the main particle
swarm optimiser according to the behaviour of the particle
in the search space, until the convergence criteria is met.
The reinitialisation velocity is set proportional to Vmax. The
pseudocode for reinitialising velocity is as follows:

vk+1 =c1rand, x (pbesti - s') + c2rand2 x (gbest - sk)
if ( vk+1 == 0)

if(rand1() < 0.5)
v>' =rand2 *v
else
vk+1 -rand3()*v
end if

endif
1= sign(v +)*min(fabs(v+ qvmax))

where randi (), i == 1, 2, 3 are separately generated uni-
formly distributed random numbers in the range [0,1] and v
is the reinitialisation velocity. The effect of HPSO along with
TVAC (hence, HPSO-TVAC) on clustering of sensor networks
was observed through simulations.

D. Particle Swarm Optimisation with Supervisor-Student
Model (PSO-SSM)
Liu et al. proposed PSO-SSM [11] to achieve low computa-
tional costs. The algorithm introduces a new parameter called
momentum factor (mc) to update the positions of particles.
In this algorithm, they also proposed a different velocity
updation mechanism from the conventional PSO algorithms.
Here velocity is updated only if each particle's fitness at the
current iteration is not better than that of previous iteration.
The velocity serves as a navigator (supervisor) by getting the
right direction, while the position (student) gets a right step
size along the direction. The velocity and the position are
modified using the following equations.

vk+1= vk + cirand, x (pbesti - s ) +

c2rand2 x (gbest - sk), (6)
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2k+1 = (1-mc) x Xk +mcx Vk+l. (7)

3. OPTIMISATION OF ENERGY USAGE

When we have prior knowledge of the position of sensors
deployed in a sensor network, it is always worthwhile to
cluster the sensors and allow few sensors to communicate
with the sink as opposed to all the sensors communicating
with the sink. In this scenario, since the position of all the
sensors are known, centralised algorithm should be used to
cluster sensors so that always 'k' optimal clusters are formed
in a network. This kind of sensor network can be used in
manufacturing industries [ 12] where we have complete control
over the deployment of sensors and the main use of the sensors
are surveillance and monitoring. The main motivation is to
use large number of less expensive battery operated wireless
sensors instead of expensive application-specific devices. In
this paper we are adopting Particle Swarm Optimisation (PSO)
approach to form clusters and identify cluster-heads. We are
studying the impact of the transmission range of sensor nodes
and positioning of the sink in minimising the communication
energy in a sensor network. Following are the assumptions we
have made in this study:

* Each sensor node has fixed omni-directional transmission
range.

* All nodes have identical transmission ranges and hard-
ware configurations.

* Nodes are randomly distributed and the sensor field can
be mapped into a 2-Dimensional space.

* The area of the problem space is known in advance.
* Once the nodes are deployed they are static and positions

of the nodes is known to the sink beforehand. The sink
runs the clustering algorithm and updates nodes about
their cluster-head.

* The sensor network is densely populated with a minimum
of 100 nodes in the network.

The important components of each sensor are the data and
control processing unit and the radio for communication. The
microprocessor used in the processing unit should be energy
efficient with less energy consumption. The energy dissipation
in the radio depends on the different characteristics of the
radio.

A. Energy Model

The energy model used in this work is adopted from [13] [3][7]
and summarised here. We have used the simple radio model to
measure the energy dissipation to transmit and receive the data
from a node. The energy dissipation for transmitting b bits to
d distance is shown in (8). Fig. I depicts the parameters we
are minimising in the following energy model.

Et.(b,d) = Eajec x b + Eamp x b x d2 (8)

The energy dissipation in a node to receive b bits of data is
shown in (9)

Erx(b) = Ee,., x b. (9)

Fig. 1: Energy model based on the distance

For our experiment the transmission/receiver energy loss
EIe,c = 5OnJ/bit and the transmission amplifier constant is
taken as camp = 0.lnJ/bit/m2 [3].

Energy consumption of a wireless sensor node transmitting
and receiving data from another node at a distance d can be
divided into two main components: Energy used to transmit,
receive and amplify data ET and energy used for processing
data EP, mainly by the microcontroller. The total energy loss
E of a sensor:

E = (100 + 0. ld )b+ NcycCgV2 + VIoev/nvt Nc.c (10)f
1) Energy optimisation for the network with clustered

sensors: Assume a k set of sensor clusters with nj sensors
in the cluster Cj, where 1 < j <= k. Considering the cluster
Cj, in which a sensor Sij is at distance dij to the cluster-
head CHj, and CHj is at a distance of Dj to the sink. The
energy loss of all the sensors and 'k' clusters can be derived
using (10). Leakage current Io can be as large as a few mA
for the microcontroller, and the effect of leakage current can
be neglected for higher frequencies and lower supply voltage.
Assuming the leakage current IO as negligible, the total energy
loss for the sensor system Etotal is:

k ni D2
Etotai = 0.1bZZ(d2j + nj)

j=1 t=1

+(ntotai - k)(lOOb + NcycCavgV2) +
k(lOOb + NccyCavgV2)). (11)

It is clear that the first part of (11) is an energy due to
distance Edd. It is the only component that can be optimised
independent from parameters related to the microcontroller
and the supply voltage used. Consequently, Edd was used as
the energy loss based on the distance for formation of clusters.
Please refer to [7] for detail derivation and proof.

k nj 2 D2
Edd = ZZdti + n).

j=1 i=1 n
(12)
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4. EXPERIMENT AND SIMULATION
From (12) we can conclude that by reducing the distance from
a node to the cluster-head and the cluster-head to the sink
we can minimise the energy dissipation in a sensor network.
Here we are not only considering the intra-cluster distance but
also the distance between the cluster-head and the sink. In our
simulation, we cluster the nodes taking into consideration 2
issues about sensor nodes:

* Each node can transmit or receive data from all the other
nodes (clusterw,ithout Tx-range). Thus, nodes considered
in this network do not have transmission range constraint.

. Nodes can transmit and receive data upto a certain
distance. This is called transmission range of a node. The
transmission range influences the number of clusters in a
network. This method is called (clusterwith-Tx-range).

In (clusterwithout-Tx_range), sensors are clustered using
entirely distance based Eq. 12. Here the number of clusters are
user-defined hence, nodes are clustered for a given number of
clusters 'k'. The fitness function for this method is as follows:

F k nj
FitneSSwithout Tx-rag = rnin E 2£(d? +

j-l i=l

Dj)2

k

where, Z nj + k = N.
j=l

where N is the number of nodes in a network. For
(clusterwith-Tx range) the number of clusters for a given
sensor field depends on the area of the sensor field and
the transmission range of the sensors. When the node's
transmission is omni-directional, limited transmission range
and clusters are circular, Therefore, there will be overlapping
of clusters which may lead to nodes involved in two or
more clusters. To minimize overlapping of clusters we add
penalty to the fitness function. We assign counters to count
the number of nodes which are in the range of cluster-heads
it can transmit data based on the transmission range. We
classify the nodes as follows:

* no= number of sensors that cannot communicate with any
of the CH

. n1= number of sensors that can communicate only with
a single CH

* n2= number of sensors that can communicate with two
CHs

* n3= number of sensors that can communicate with three
or more CHs

The penalty is associated with each of the above counters in
the fitness function. The no nodes which do not belong to any
clusters will transmit data to their nearest clusterhead. The
fitness function used for our simulation is:

Fitnesswith_Tx_range = Edd+Eno * (0. 7*nO+0.1*n2+0.2*n3)
(14)

In (14) the first term Edd is the distance based communication
energy of all the clusters in a sensor network. The second term
is the penalty term to discourage high no, n2 and n3. The
weights used for ni, i - 0,2,3 were found experimentally.
En, is the summation of the squares of distances of all no node
to their nearest CH. In our simulations we considered a square
sensor field, thus the problem of covering a sensor field by
circular cluster is analogous to the number of circles that cover
a square. In [14], Melissen et al. uses a simulated annealing
method to cover a square in 6 and 8 circles. Since our clusters
are also circular, the transmission range of each node can be
equivalent to the radius of a circle. In our simulations, we have
used 6 clusters. Thus, for the transmission range of a cluster-
head (CH) to cover the entire square we have adopted the
radius of a circle to cover a square in [14] as the transmission
range of each CH to cover an entire sensor field. Therefore, in
clusterwith-Tx range our objective is to group a given number
of nodes into 6 clusters using Eq. 14 and the transmission
range for each node is set to 29.8 units same as in [14].
A. Simulation Strategies
For our simulations, we used 100-node networks that are
uniformly distributed in a 2-Dimensional problem space
[0:100,0:100]. We have studied the impact of sink location
on the fitness value of the PSO algorithms. In one set of
simulations we considered the sink to be located remotely at
(50,175). In another set of simulations we considered the sink
to be located at (50,50), i.e., at the center of the network. For
both simulations we use the same set of nodes and we group
the nodes to form 6 clusters. We used 30 particles for our
simulation and the maximum number of generations we were
running was 1000. The parameters used in the simulations are
tabulated in Table. 1.

Variables Range
Population size 30
MAXITER 1000
Vmax 100
Xmax 100

v range [0,100]
x range [0,100]

TABLE 1: INI IALISATION AND RANGE OF PARAMETERS

PSO Methods clusterwtithout-Tx-range clusterwith-Tx-range
PSO-TVIW 25715.827 33165.87871
PSO-TVAC 26258.274 27507.85501
HPSO-TVAC 26478.176 26382.679
PSO-SSM 25917.920 25848.389

'ABLE 2: AVERAGE FITNESS VALUE (10 TRIALS) TO FORM 6 CLUSTERS
FOR SINK LOCATED AT (50,50)

PSO Methods cluster without-Tx-range clusterwith-Txrange
PSO-TVIW 30976.103 33690.224
PSO-TVAC 32411.009 34702.136
HPSO-TVAC 31308.336 31578.500
PSO-SSM 31213.706 31418.503
IABE 3: AVERAGE FITTNF.JRR VA1.IF(1T T. 1. ..1Iu(I e1J l rU PUKM 0C LUSTE LRS

FOR SINK LOCATED AT (50,175)

322

s



PSU-SSM U 3U U.t
TABLE 4: AVERAGE (It TRIALS) NIODE D.ISTRIBUTION IN
clusterwith-Tx-range WHILE FORMING 6 CLUSTERS FOR SINK LOCATED
AT (50,175)

PSO Methods* no ni n2 rn3
PSO-TVIW 0 T 71.3 28.1 l 0.6
PSO-TVAC 0.2 T 63.2 34.9 1.7
HPSO-TVAC 2.8 T64.9 30.3 2
PSO-SSM 0.1 68.9 30.4 0.6

TABLE 5: AVERAGE TRIALS) NODES DISTRIBUTION IN
clusterwith-Tx-range WHILE FORMING 6 CLUSTERS FOR SINK LOCATED
AT (50,50)

Fig. 2: convergence of solution for clusterwith-Tx.range when sink was
located at (50,50)

B. Results
We observed the performance in terms of quality of the
average optimum value for 10 trials for all the PSO meth-
ods described in section 2. We ran the simulation for both
ClUSterwithoutLTx-range and clusterwith Tx_range with the
sink placed inside and outside the sensor field. All the PSO
algorithms uses conventional method of aligning the particle
with a boundary if the particle moves beyond the boundary
line. However, for our application this method did not gave
good results. Instead of keeping the particle at the boundary
we moved a particle inside the problem space randomly.
Randomness depends on the size of the problem space. Thus,
there will be less possibility of a particle moving beyond the
boundary in an immediate iteration. Following is the procedure
for the boundary checking routine:

if ( Xk+1 > Xmax)
Xk+1 = 0.6 * xmax*randi + 0.4

else if (Xk+1 < Xmin)
Xk+1 = 0.6 * xmax*rand2

end if
where randi, i = 1, 2 are separately generated uniformly
distributed random numbers in the range [0,1]. By following
the above procedure a particle would get enough space to
wander around before converging to a solution when it goes
beyond the boundary of a problem space. The boundary
checking routine improved the convergence of a solution
significantly. We used the boundary checking procedure for all
the PSO methods except PSO-SSM. This is due to the ability
of PSO-SSM under the influence of mc to stop particles from
moving beyond the boundary of a problem space.

1) PSO-Time Varying Inertia Weight: The range of an
inertia weight is varied from 0.9 to 0.5. We experiment
with the acceleration co-efficient by varying and keeping it
constant. There was an improvement in results with constant
acceleration co-efficient of 2. This method gave best results
for clusterwithout_Tx_range. However, the performance of this
algorithm was not good for clusterwith_Tx range- This was
largely due to a slow convergence at the initial stages of
an algorithm and also compounded by the unpredictability
of a fitness function.The results are shown in Table 2 and

Fig. 3: convergence of solution for clusterwithout-Tx range when sink was
located at (50,175)

3. Regarding the node distribution in clusterwithTx-range,
more than 70% of the nodes belong to individual clusters (rn).
Nodes not belonging to any cluster were almost negligible.
These results are tabulated in Table 4 and 5.

2) PSO-Time Varying Acceleration Co-efficients: In this
method acceleration co-efficient c1 was varied from 2.5 to 0.5
and c2 was varied from 0.5 to 2.5. In [10], it was proposed to
use TVIW with this method to achieve better results. However,
due to the nature of our problem the performance of the
fitness decreased with varying TVIW. Instead, we used less
varying inertia weight [0.5 + rad as proposed in [15] with

an improvement in results. Thus, we can conclude that for our
application the performance of an algorithm decreases when
an acceleration co-efficient and an inertia weight was both
time varied. Table 5 and 4 display the node distribution for
clusterwith-Tx_range. There are almost negligible number of
nodes not belonging to any clusters and about 65% of nodes
belonging to individual clusters (n1).

3) Hierarchical Particle Swarm Optimizer with Time Vary-
ing Acceleration Coefficients (HPSO-TVAC): In our simula-
tions, we studied the significance of re-initialisation of velocity
for clustering of sensor networks. The reinitialisation velocity
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PSO Methods no ni n2 n3
PSO-TVIW 0.1 74 25.5 0.4
PSO-TVAC 0 66 31 2.7
HPSO-TVAC 3.9 61.4 32.2 2.5
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is the percentage of maximum velocity (vmax). We used v =
Vmax for our simulations. Even though the algorithm results
were not good for clusterwithout-Txxrange when compared to
other PSO algorithms, from Table 2 and 3 we can conclude
that the results were second best for clusterwith_Tx-range and
the difference between the two clustering methods fitness value
was minimal. The node distribution for clusterwith-Tx_range
was shown in Table 4 and 5. There are around 4% and 3% of
the nodes not belonging to any clusters. This would happen
because of the volatile velocity. The re-initialisation of velocity
will not influence the fine tuning of results. However, it would
reduce solution reaching a local optima.

4) Particle Swarm Optimisation with Supervisor-Student
Model (PSO-SSM): The effect of PSO-SSM method on clus-
tering of sensor networks is reflected in Table 2 and 3. This
method is second best for clusterwithout-Tx-range and best for
clusterwith-Tx-range. The differences in fitness value between
the clustering methods are also minimal. Table 4 and 5 displays
results of the node distribution in clusterwith Tx-range. We
conclude that 70% of nodes belong to different individual
clusters and 30% of nodes belongs to two clusters. The nodes
not belonging to any clusters are almost 0.

Fig. 2 and 3 shows the convergence of all the four PSO
algorithms. From the graph we can conclude that PSO-TVIW
convergence is slower when compare to other algorithms.
This was largely due to constant acceleration co-efficients
used in the algorithm which affects the rate of convergence.
This was also a reason for PSO-TVIW to perform badly
for clusterwith-Tx-range method. The HPSO-TVAC and PSO-
SSM gave better results in clusterwith7xrange when compared
to other two algorithms because of the suitable mechanism to
avoid local optima.

5. CONCLUSION

We have described the effects of different Particle Swarm
Optimisers for solving the clustering problem in wireless
sensor networks. We have adopted some application-specific
changes to the algorithms to suit our application.
We proposed the boundary checking routine where the

position of a particle will be reinitialised randomly back in
the problem space instead of placing it at the boundary of the
problem space. In this way frequent movement of particles out
of problem space can be avoided.
We have conducted detailed simulation based experiments

for the suitability of different PSO algorithms for clustering
of sensor networks based on our proposed clustering methods.
We have found that except PSO-SSM all the other methods
need modification to produce competitive results. Even in
PSO-SSM when an acceleration co-efficient varied from 0.5 to
3, the results are slightly better especially in node distribution
for clusterwith-Tx-range method. However, we followed the
original PSO-SSM where cl = c2 and varied from 1.5 to 6.
We have also proposed 2 clustering methods: one based

on transmission range restriction of each node and the other
without transmission range restriction. We conclude that the

difference in the results for both clustering methods in HPSO-
TVAC and PSO-SSM are minimal. We have also summarised
the distance based clustering criterion used from our previous
work.
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