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Analysis of Stabilization Circuits for Phase-Noise
Reduction in Microwave Oscillators
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Abstract—Two configurations for oscillator phase-noise reduc-
tion using stabilization circuits have been demonstrated in the lit-
erature. One of them is based on the self-injection of the oscillator
signal, after it passes through a long delay line or a high-quality-
factor resonator. The second one is a stabilization loop, containing a
frequency discriminator. In this paper, an in-depth analytical com-
parison of these two configurations, respectively based on injection
locking and phase-locking principles, is presented. Analytical ex-
pressions are provided for the variation of the steady-state solution
and its phase noise versus the parameters of the feedback network.
The expressions are rigorously validated with harmonic balance.
Instabilities reported by other authors are investigated through
bifurcation analysis. The new expressions enable a good under-
standing of the amplitude and frequency jumps and sharp phase-
noise maxima obtained simulations and measurements versus the
feedback parameters. A practical 5-GHz voltage-controlled oscil-
lator has also been implemented, for validation purposes.

Index Terms—Describing function, feedback oscillator, fold-type
bifurcation, phase noise, self-injected oscillator.

I. INTRODUCTION

SEVERAL authors [1]–[6] have presented techniques for
phase-noise reduction in existing microwave oscillators

using feedback. The proposed feedback loops contain either a
long delay line or a high-quality-factor resonator, coupled to a
short line. In [1], [2], a self-injection topology is used based
on the connection of a circulator to the oscillator output. After
passing through a long delay line or a high-quality-factor
resonator, the signal is re-injected to the oscillator circuit, which
reduces the autocorrelation of the phase noise. In [1], [2] the
phase-noise reduction is explained as the result of the oscillator
synchronization to the re-injected RF signal. A second con-
figuration, initially proposed by Altman [3], is a stabilization
loop, in which feedback is introduced into a voltage-controlled
oscillator (VCO) using a frequency discriminator. This dis-
criminator [3], [4], [6] converts the frequency fluctuations into
baseband voltage fluctuations, which provide an error signal
that readjusts the oscillator solution. Although the overall
circuit is actually a free-running oscillator, the phase-noise
reduction may be intuitively understood as the result of the
oscillator phase locking to a stabilized signal. No comparison
between the performances of these two configurations has been
performed, in terms of stability or phase-noise reduction, and it
is believed that it could be of interest for the designer.

Manuscript received July 6, 2004; revised March 16, 2005. This work was
supported under Spanish CYCIT Project TIC2002-03748.

The authors are with the Communications Engineering Department, Univer-
sity of Cantabria, 39005 Santander, Spain (e-mail: suareza@unican.es).

Digital Object Identifier 10.1109/TMTT.2005.854182

Although these configurations have been experimentally veri-
fied [1]–[5], there are few circuit-level analyses of their behavior
versus the feedback-loop parameters. In the case of the self-in-
jection topology, the stable operation ranges have been analyt-
ically determined [1], [2] neglecting the deviation of the os-
cillator amplitude and frequency from the free-running values.
When compared with time-domain simulations, the obtained ex-
pressions fail to accurately predict the stability ranges. An ana-
lytical formulation [1], [2] has also been presented for the vari-
ation of the phase-noise spectral density. It gives explanation
for the reduction of this spectral density versus the time delay.
Again, the deviation of the oscillator solution from the free-run-
ning values is not taken into account. On the other hand, com-
mercial harmonic-balance (HB) tools enable an accurate simu-
lation of the steady-state solution and its phase noise. However,
convergence difficulties and jumps are obtained for some values
of the feedback elements, which prevent the tracing of the entire
solution paths. Sharp phase-noise maxima of high magnitude
are also observed when these elements are varied. The conver-
gence difficulties and the reported unstable behavior demand
an exhaustive investigation through bifurcation-analysis tech-
niques [7], which, to our knowledge, has not yet been tackled.

In this study, an in-depth analytical study is carried out of
the stability and phase noise of self-injected oscillators and sta-
bilization loops using frequency discriminators. The analytical
approach is different from that of [1] and [2] and takes into ac-
count the variations of the oscillation amplitude and frequency
versus the feedback elements, which was proposed as a future
research line in [2]. The main objective is the understanding of
the instability phenomena reported by other authors and the in-
fluence of the feedback elements on the phase-noise behavior.
The expressions are initially derived using a describing-function
model for the nonlinear elements. However, the general appli-
cation to practical oscillator circuits will require noise-analysis
techniques based on harmonic balance, like the carrier-modu-
lation [8], [9] and conversion-matrix approaches [9]–[11]. The
qualitative agreement with the general behavior predicted by the
new analytical formulation will be verified through the applica-
tion of the two feedback techniques to a MESFET-based VCO
at 5 GHz.

The paper is organized as follows. In Section II, the new an-
alytical formulation for the self-injected oscillator is presented,
considering, as in [2], the cases of a long delay line and high-
resonator in the circulator loop. In Section III, an analytical for-
mulation for the stabilization loop, containing a frequency dis-
criminator, is presented and compared with that of the self-in-
jected oscillator. In Section IV, the two techniques are applied to
a VCO at 5 GHz, which has been manufactured and measured.
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Fig. 1. Self-injected oscillator. The output load has been replaced with the
circulator and delay line.

II. SELF-INJECTION TOPOLOGY FOR PHASE-NOISE REDUCTION

A. Steady-State Solution

In this section, a describing-function analysis of the oscillator
circuit will be carried out. The free-running oscillator is mod-
eled with the parallel connection of a nonlinear block, with the
admittance , and a linear block . The steady-
state equation is . Now, the
self-injection topology of Fig. 1 is considered. In this topology,
the oscillator output is connected to the circulator Port 1. After
passing through an attenuator and a delay line (or an attenuator
and a high- resonator), the signal is reinjected into the oscil-
lator circuit through the circulator Port 3. From the oscillator
viewpoint, the reflection structure basically operates as a load,
with the reflection coefficient . Taking this into account, the
new steady-state equations are given by:

(1)

with and the characteristic ad-
mittance. To avoid a big perturbation of the oscillator solution,
high attenuation is usually introduced between Ports 2 and 3
of the circulator, so, in general, it will be possible to expand

in a first-order Taylor series about , which provides
.

The case of a long delay line of electrical length , plus an at-
tenuator, will initially be considered. The total loop attenuation
will be given by dB. Then, the reflection coefficient may be
expressed: , where the mod-
ulus of the reflection coefficient and the time delay have
been explicitly introduced. Substituting this into and split-
ting (1) into real and imaginary parts, the following system is
obtained:

(2)

where the admittance function has been ex-
panded in a first-order Taylor series about the free-running oscil-
lator solution. The subindeces indicate derivatives with respect
to the corresponding variables. System (2) provides the varia-
tion of the self-injected oscillator solution, in terms of its am-
plitude and frequency, versus the time delay . The lineariza-
tion about the free-running oscillation will be valid for high ,

Fig. 2. Parallel-topology oscillator, based on a cubic nonlinearity i = av +

bv , with a = �0:037A/V and b = 0:021A/V . The linear-element values are
C = 0:715 pF and L = 1:328 nH. Variation of the oscillator solution versus
the time delay �T . (a) Oscillation amplitude. Comparison between the results
obtained with (2) and using HB with one harmonic component. (b) Frequency
deviation from the free-running value. Comparison between the results obtained
with (2) and using HB with one and fifteen harmonic components.

which is usually the case. For low , the oscillator steady-state
solution should be recalculated for each value, using the de-
scribing function.

The feedback action of the self-injection topology is evi-
denced by (2), as the reflected signal depends on the oscillation
frequency. As will be shown, the dependence of both and

on will lead to complex multivalued curves, for large
values. This kind of solution cannot be obtained when

the electrical length , instead of the delay , is used as a
parameter, as in previous works.

For illustration, the system (2) has been particularized to the
case of a parallel-resonance oscillator with a cubic nonlinearity.
The variation of the steady-state solution, in terms of and ,
versus the time delay is shown in Fig. 2, for the attenuation
value dB. As can be seen, only small deviations from
the free-running amplitude and frequency are obtained in the
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entire interval, which confirms the validity of the lineariza-
tion in (2). The curves are single-valued for relatively small .
However, from a certain value, they start to exhibit points
of infinite slope (or turning points [7]). The lower sections of
these curves fold over themselves, giving rise to the loops that
are shown in the inset of Fig. 2(a). As known from bifurcation
theory [7], the turning points give rise to a qualitative variation
of the solution stability. The solution jumps to a different sec-
tion of the multivalued curve and a sudden change is observed
in the oscillator amplitude and frequency.

The validity of (2) has been verified through comparison with
HB simulations considering one and fifteen harmonic compo-
nents. Commercial HB has been used, unable to pass through
the turning points. Thus, jumps are obtained between different
curve sections at the turning points predicted by (2) [see the inset
of Fig. 2(a)]. The excellent agreement for one harmonic compo-
nent [Fig. 2(a)] validates (2). As could be expected, for a higher
number of harmonic components [Fig. 2(b)], some quantitative
discrepancies exist between the curves, but the qualitative be-
havior is still well predicted.

To summarize, two main differences exist between (2) and
the expressions provided in previous works [1], [2]. In (2) and
(3), a general dependence is con-
sidered, which is the usual case in practical transistor oscilla-
tors. In contrast, the expressions in [1] and [2] are only valid
for dependences of the form . On
the other hand, the expressions in [1] and [2] neglect the varia-
tion of the steady-state amplitude and frequency in self-injected
conditions, with respect to the free-running values. In (2), the
use of as the analysis parameter enables the calculation of
each new oscillator solution. As will be shown, this variation
must be taken into account for an accurate determination of the
stable-operation ranges and for the investigation of the bifurca-
tion phenomena delimiting these ranges. Note that, in order to
take the line dispersive effects into account, the physical length

should be used as the parameter, as will be done in the case of
the transistor-based VCO of Section IV.

B. Stability

As shown in [7] and [9], at turning points of the oscillator
solution curve, versus a particular parameter, the Jacobian ma-
trix associated with the oscillator admittance function
becomes singular. In the case of a self-injected oscillator,
the Jacobian matrix analyzed will be the one corresponding
to , given by . As already seen, the
oscillator solution is recalculated for every value, so the
determinant will vary versus this parameter.
The determinant is given by

(3)

where . According to
[9], the oscillator is stable versus synchronous perturbations

and unstable for .

Fig. 3. Variation of det[JY ] versus the time delay �T . The turning point
condition is det[JY ] = 0.

Fig. 4. Sequential stability analysis by means of the Nyquist plot, for different
values of the time delay �T .

The solution will exhibit a turning point for
. For a direct calculation of the entire set of turning points, the

system composed of (2) and (3) must be solved in terms of .
Note that, for a stable free-running oscillation, the condition

will be fulfilled. Thus, turning points can only
be obtained when the amplitude of the sinusoidal term in (3),
which is directly proportional to , becomes comparable to

.
Fig. 3 shows the variation of versus

for the cubic-nonlinearity oscillator. The difference between
the maxima and minima of this determinant increases with

, as gathered from (3). As can be observed, the determinant
zeroes accurately predict the turning points. For the rigorous
determination of the stable ranges, Nyquist stability plots [7]
have been sequentially traced for all of the considered
values, as shown in Fig. 4, where an expanded view about the
origin is presented. Unstable behavior is obtained for the
values for which the plot crosses the negative real semi-axis.
In Fig. 2(b), points with unstable behavior, which are predicted
by the Nyquist analysis, are indicated with crosses. The turning
points (circles) have been directly calculated, solving (2) and
(3). Each unstable section is located between two consecutive
turning points. In contrast with the predictions of [1] and [2],
these unstable sections are only obtained from a certain
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value. The length of the unstable intervals increases with ,
as predicted by (3).

C. Phase-Noise Analysis

For the phase-noise analysis, a current noise source will be
introduced in the oscillator circuit, connected in parallel be-
tween and . For simplicity, only noise about the oscil-
lator carrier will be considered. The variations of the phase-
noise spectral density versus the time delay will be analyzed
through successive linearizations of the system equations about
each steady-state oscillation. For an analytical derivation of the
phase-noise spectrum, the carrier modulation will be de-
termined through application of the Kurokawa approach [9].
Note that, in spite of the self-injection loop, the circuit still be-
haves like a free running oscillator, as no external time reference
is present, so the carrier-modulation analysis is applicable. This
analysis is valid for low frequency offset from the carrier, so
the phase-noise-reduction bandwidth cannot be determined. For
bigger frequency offset, the matrix-conversion approach should
be applied [8], [10]. However, the largest phase-noise reduction
is expected close to the carrier [1], [2], so the carrier-modu-
lation analysis will enable a good estimation of the oscillator
performance. The equations of the perturbed oscillator are the
following:

(4)

where are the conductance and susceptance,
associated with the white-noise current, averaged over one
period of the carrier frequency [9]. Assuming a noise fre-
quency and solving for , the expression obtained for
the phase-noise spectral density is shown in (5) at the bottom
of this page. The above expression neglects the time varia-
tion of the amplitude perturbation . This variation is also
neglected in the carrier modulation approach, which con-
stitutes a multiharmonic generalization [7] of (5). Through
(5), it is possible to obtain the evolution of the phase-noise
spectral density at a particular frequency offset versus
the time delay . For a given and fixed offset frequency

, provided the condition is ful-
filled, the minima of the noise spectral density will decrease
as . These phase-noise minima correspond to
the maxima of , i.e., they
are obtained from the condition ,
with . For , the max-
imum phase-noise reduction with respect to the free-running
value tends to

, with

Fig. 5. Phase-noise variation versus the time delay �T at fixed frequency
offset from the carrier f = 1 kHz. The analytical results are compared with
commercial HB simulations, using the carrier modulation approach.

Larger reduction is obtained for smaller attenu-
ation . Taking (2) into account, it can easily be demonstrated
that minimum frequency deviation, with respect to the free-run-
ning value , is obtained at the phase-noise minima, which
is very convenient for the oscillator design. Fortunately, the
points with minimum phase noise also lie on the stable sections
of the solution curves.

The denominator of (5) agrees with [see (3)],
so divisions by zero are obtained at the turning points. The phase
noise will tend to infinity at these points. It must be noted that
the system linearization that is always used in phase-noise anal-
ysis is no longer valid in the neighborhood of the turning points,
since the amplitude perturbation grows rapidly as these
points are approached.

For illustration, (5) has been used for the phase-noise anal-
ysis of the parallel-topology oscillator. In Fig. 5, the phase-noise
spectral density, at a fixed frequency offset kHz, with

, has been traced versus the time delay . As
previously discussed, the phase noise tends to infinity at the
turning points of the solution curve. On the other hand, the
phase-noise minima lie in the stable sections, as can be veri-
fied through comparison with Figs. 2 and 3. For validation, HB
simulations using the carrier modulation approach [8] have been
superimposed. An improvement of about 10 dB is obtained for
the time delay ns.

The variation of the steady-state solution and its phase-noise
spectral density at kHz have also been analyzed versus
the bias voltage of a varactor diode for fixed time delay

ns (Fig. 6). The interest of this particular analysis comes
from the fact that, in contrast with the line length, this param-
eter can be continuously varied in the experiment. As can be
seen, turning points, delimiting the stability margins, are also

(5)
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Fig. 6. Parallel-topology oscillator, with cubic nonlinearity. Variation of the
steady-state solution, in terms of the oscillation frequency, versus the bias
voltage of the varactor diode. The evolution of the phase-noise spectral density
at fixed offset f = 1 kHz is superimposed.

observed when this parameter is used. The phase-noise maxima
are obtained at these turning points.

D. Use of Dielectric Resonators

As shown in [1], [2], and [11], the use of a dielectric res-
onator increases the spectral purity of the re-injected signal. In
the self-injected oscillator, the resonator is coupled to a trans-
mission line in the circulator loop [2]. In former works [11],
variations of the oscillation stability with the electric length
of this line have been reported. Here, the steady-state oscillator
solution and its stability and phase noise will be analyzed versus
the line delay . Equation (1) will be used, which requires the
calculation of . Two different models for the coupled res-
onator will be used. The first model is the classical block model
[11], consisting of a narrow bandpass filter , plus a phase
shift . The second and more accurate model uses a
chain matrix description for the transmission line and the res-
onator. Actually, the phase shift provided by the transmission
line is only equal to its electrical length for matched termina-
tions. With the second model, is calculated from the mul-
tiplication of the chain matrices of the resonator and the delay
line. The resulting matrix is transformed to a scattering matrix,
which enables the determination of the input admittance .

For illustration, a dielectric resonator, with and
resonance frequency GHz, has been introduced in
the self-injection loop of the parallel-topology oscillator. Fig. 7
shows a comparison between the analysis results in terms of
the oscillation frequency when the two models are used. Two
different attenuation values have been considered: dB
[Fig. 7(a)] and dB [Fig. 7(b)]. There are discrepancies
between the two, which increase as the attenuation is reduced.

As can be seen, there are some intervals with three coexisting
solutions, delimited by turning points. For maximum rigor, the
stable regions of the curves in Fig. 7(a) have been determined
through sequential Nyquist analyses, as in the previous sec-
tion, and through pole-zero identification techniques [12]. Fig. 8
shows the complex-conjugate poles closest to the imaginary
axis, corresponding to the three coexisting solutions, for

ns. As can be seen, the solutions in Sections II-A and II-C
are stable, while the solution in Section II-B is unstable. There

Fig. 7. Self-injected oscillator with a dielectric resonator in the circulator
loop. Variation of the oscillation frequency versus the time delay �T .
Comparison between the results obtained when using simplified and accurate
coupled-resonator models, for two different values of the loop attenuation.
(a) A = 30 dB. (b) A = 15 dB.

is also, for each of the three solutions, a pair of complex-conju-
gate poles on the imaginary axis at the oscillation frequency.

As already mentioned, for smaller attenuation , greater
discrepancy is obtained between the results obtained with the
two coupled-resonator models [see Fig. 7(b)]. When a rigorous
calculation of is carried out, a second multivalued region is
obtained, not predicted with the simplified expression. Fig. 7(b)
shows a comparison between the results of the describing-func-
tion analysis and those obtained with commercial HB. The ex-
cellent agreement with the analytical predictions when using
the accurate resonator model can be observed. With commer-
cial HB, it is not possible to pass through the solution turning
points, and a jump is obtained to a different curve section. Be-
cause the sections are very close, the discontinuity of the re-
sponse might be difficult to note and a continuous curve may be
wrongly assumed.
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Fig. 8. Self-injected oscillator with dielectric resonator in the circulator loop.
Application of the pole-zero identification technique [12] to the three solutions
coexisting for the time delay �T = 0:1 ns [Fig. 7(a)].

Fig. 9. Self-injected oscillator with dielectric resonator in the circulator loop.
Variation versus the time delay�T of the phase-noise spectral density at f =

1 kHz. The attenuation value is A = 30 dB.

The variations of the phase-noise spectral density for the at-
tenuation value dB, at the constant frequency offset

kHz, are shown in Fig. 9. Compared with the use of
the delay line, higher phase-noise reduction is achieved with
the resonator. Again, the phase noise tends to infinity at the
turning points of the solution curve, where the linearization is
no longer valid.

III. STABILIZATION LOOP

In the feedback topology proposed in [3]–[6], phase-noise re-
duction is achieved with a stabilization loop containing a fre-
quency discriminator. The loop operates as shown in Fig. 10.
A fraction of the oscillator output signal is extracted through a
coupler and is injected into a power divider. One of the divider
outputs is delayed by means of a long transmission line. The two
signals are introduced in a frequency mixer, acting as a phase
comparator. The mixer output provides an error signal, which,
after passing through a low-frequency amplifier, is introduced
in a varactor diode. This corrects the oscillation frequency.

Fig. 10. Parallel-resonance oscillator with a stabilization loop containing a
frequency discriminator. DC blocks and choke inductors are not represented.

The operation of the stabilization loop has been ana-
lytically studied here. The varactor capacitance varies ac-
cording to , where is the
low-frequency feedback voltage and is the built-in poten-
tial. For an approximate analysis, the steady-state solution
is assumed . Then, the two inputs of
the frequency mixer will be: and

, where
and is the total loop attenuation, including the power
splitter. Then, the dc term at the varactor diode will be

, where is the gain of the
low-frequency amplifier.

To be able to carry out the analytical study, it will be assumed
that the admittance can be linearized with respect to the
feedback voltage , about the free-running value .
Assuming a parallel resonance of the form in Fig. 10, the feed-
back-oscillator equations, with explicit dependence on , are
the following:

(6)

where . Note that, for a simplified analysis, the
dc term at the amplifier output has been approached

, where is the free-running oscillation am-
plitude. The determinant of the Jacobian matrix associated with
(6) is given by

(7)

with

The above feedback configuration has been applied to the par-
allel-topology oscillator with cubic nonlinearity. Fig. 11 shows
the variation of the oscillation frequency versus the time delay

, for the amplifier gain dB. As in the case of
the self-injected topology, turning points are obtained from rela-
tively large values. The turning points correspond to the ze-
roes of the determinant in (7). The stable and unstable sections
have been distinguished through Nyquist stability analysis, ob-
taining unstable behavior between consecutive turning points,
as shown in the inset of Fig. 11.
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Fig. 11. Parallel-topology oscillator, with stabilization loop: variation of the
oscillation frequency versus the time delay �T .

Fig. 12. Parallel-topology oscillator with stabilization loop. Variation of the
phase-noise spectral density at f = 1 KHz, versus the time delay �T .

For the phase-noise analysis, only noise about the oscillator
carrier has been introduced. Note that the objective of the work
is the study of the loop action over the oscillator noise, so noise
contributions from the external-loop elements are not consid-
ered. The carrier modulation is determined by differentiating the
system (6), as has been done in (4), and solving for the perturbed
frequency . Close to the oscillator carrier, the phase-noise
spectral density is approximately given by

(8)

where the denominator agrees with the determinant of the Jaco-
bian matrix of (7), as expected in the quasi-stationary approach.

As in the case of the self-injected oscillator, the phase-noise
spectral density, at a constant offset frequency , varies
in an oscillatory manner. In Fig. 12, this variation is ana-
lyzed at constant frequency offset kHz. As soon as
the product becomes dominant in the denominator of
(8), the phase-noise minima decrease as . For

, the maximum reduction of the phase-noise
spectral density with respect to the free-running value tends
to , with being directly
proportional to the loop gain . Thus, the reduction increases
with the loop gain. The phase-noise minima are obtained for

, which, taking (6) into account, fortunately

Fig. 13. Schematic of the 5-GHz VCO, to which the two feedback techniques
for phase-noise reduction have been applied.

corresponds to a minimum deviation from the free-running os-
cillation frequency . The phase-noise maxima,
tending to infinity, are obtained at the denominator roots, which
correspond to the turning points of (6). In Fig. 12, the results of
the stabilization loop for dB are compared with those
obtained with the self-injection topology for dB.
In both cases, similar qualitative behavior is obtained, with a
phase-noise improvement of more than 10 dB, with respect to
the free-running oscillation.

IV. ANALYSIS AND EXPERIMENTAL CHARACTERIZATION OF

A 5-GHz OSCILLATOR

When transistor-based oscillators are considered, with sev-
eral noise sources, HB-based analysis is necessary for an accu-
rate prediction of the oscillator response. In the carrier-modula-
tion approach, the phase-noise variation will be inversely pro-
portional to , where is the Jacobian matrix of
the mixed-mode HB system [8] and is the vector containing
the harmonic components of the state variables of the free-run-
ning oscillator solution. This Jacobian matrix involves deriva-
tives with respect to the oscillation frequency that, in the deter-
minant, will give rise to sinusoidal terms in , whree
is the harmonic index, having amplitude proportional to ,
in a similar way to (5) and (8). Thus, a qualitatively similar
phase-noise variation may be expected.

The two different feedback techniques have been applied to
a MESFET-based VCO, at 5 GHz, qualitatively comparing the
analytical models with simulations and measurements. The os-
cillator schematic is shown in Fig. 13. For the simulation, the
Angelov model has been used with four nonlinearities respec-
tively given by the gate-to-source current and capacitance

, the drain-to-source current , and the drain-to-gate cur-
rent . The simulated VCO band was 4.6–5.4 GHz. In the
measurements, the oscillation band was 4.7–5.30 GHz.

For the delay line, the substrate with has been
chosen. In this case, the physical length of this line will be the
analysis parameter, instead of the time delay. For each of the two
configurations, the initial estimation of the required length and
attenuation/gain values has been obtained using the analytical
approaches and imposing a phase-noise reduction dB.
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Fig. 14. VCO at 5 GHz with the two types of feedback. Self-injected topology,
with A = 20 dB and l = 1:419 m. Stabilization loop with discriminator,
having amplifier gain G = 10 dB and l = 1:5 m. (a) Variation of the
oscillation frequency versus the physical line length. (b) Variation of the
phase-noise spectral density at a constant offset frequency f = 1 kHz.

For the self-injected oscillator, the attenuation dB and
line length m have been chosen. For the stabilization
loop, amplifier gain dB and line length m are
used. The line sections and have been implemented on two
separate boards, with multiple line bends, to have a reasonably
small size. The loss of the resulting structures has been taken
into account in the estimations.

The solutions obtained with the two different feedback con-
figurations are compared in Fig. 14(a), where the variation of the
oscillation frequency with the line length has been represented.
The solid- and dashed-line curves are HB simulations of the
self-injected oscillator and stabilization loop with discriminator,
respectively. As can be seen, slightly smaller frequency devi-
ation is obtained with the self-injected oscillator [Fig. 14(a)].
For this topology, an estimation with the analytical model has
also been superimposed. This has been obtained by introducing
the derivatives of the free-running oscillator, at the cir-

Fig. 15. VCO at 5 GHz. Comparison between the simulated and measured
phase-noise spectra corresponding to the free-running oscillator, the
self-injected oscillator, and the stabilization loop with discriminator,
respectively.

culator connection node, into (2). The free-running-oscillator
derivatives have been calculated in HB with the aid of an aux-
iliary generator, following the technique demonstrated in [13].
As can be seen, there is good qualitative agreement between the
analytical model and HB. As expected, turning points are only
obtained from sufficiently large values of the line length.

For the phase-noise analysis, several noise sources have been
considered. A voltage noise source in series with the internal
gate terminal accounts for the flicker noise. The spectral den-
sity of this source is V /Hz. The shot noise is
modeled with a current source of spectral density , where

is the electron charge, which is connected in parallel with the
input Schottky diode. Thermal noise generators have also been
added to all of the resistive elements. The phase-noise variation
versus the delay-line length , calculated with the carrier-mod-
ulation approach, at a constant offset frequency kHz,
is shown in Fig. 14(b). The results with the two different con-
figurations can be compared. The sharp maxima at the turning
points of the solution curves are in good qualitative agreement
with the analytical models. Similar phase-noise reduction of
about 9 dB is obtained with both configurations. The measured
phase-noise spectrum confirming this phase-noise reduction is
shown in Fig. 15. Simulations with the carrier-modulation [8],
[9] and conversion-matrix approaches [10], [11] are also shown.
The results with the two phase-noise analysis techniques are
overlapped up to the frequency offset MHz in the case of
the self-injected oscillator and up to MHz in the case of
the stabilization loop. Although it is not presented here, the con-
version-matrix approach shows a reduction of the phase-noise
improvement as the frequency offset increases, in agreement
with measurements.

Finally, the varactor bias voltage has also been used as a pa-
rameter. In contrast with the line length, this parameter can be
continuously modified in the experiment, which enables a rig-
orous verification of the analysis results. The variation of the
phase-noise spectral density using the self-injected configura-
tion, at the three different offset frequencies 1, 10, and 100 kHz,
respectively, is shown in Fig. 16. The experimental results have
been superimposed.
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Fig. 16. Self-injected oscillator with A = 20 dB and l = 1:419 m.
Variation of phase-noise spectral density versus the bias voltage of the varactor
diode for three different frequency offsets from the carrier. Measurements are
superimposed.

V. CONCLUSION

In this paper, an exhaustive analysis of stabilization circuits
for phase-noise reduction in microwave oscillators has been pre-
sented. Analytical expressions have been obtained, predicting
the variation of the steady-state solution and its stability and
phase noise versus the feedback-element values. Instability phe-
nomena observed by other authors are explained using concepts
from bifurcation theory. The analytical expressions have been
rigorously verified through comparison with harmonic-balance
simulations and the carrier-modulation approach for the phase-
noise predictions. The feedback techniques have been applied
to a 5-GHz VCO with very good experimental results.
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