
Journal of Information & Computational Science 12:10 (2015) 4113–4124 July 1, 2015
Available at http://www.joics.com

An Improved K-Means Algorithm Combined with

Chaotic Particle Swarm Optimization Algorithm ?

Chunqin Gu a, Qiang Chen b,∗, Qian Tao b,∗
aDepartment of Computer Science, Zhongkai University of Agriculture and Engineering, Guangzhou

510255, China
bDepartment of Computer Science, Guangdong University of Education, Guangzhou 510303, China

Abstract

A clustering algorithm combining Chaotic Particle Swarm Optimization (CPSO) with K-Means (CPSO-
KM) is proposed. It features better search efficiency than K-Means, PSO and CPSO. The K-Means
algorithm cannot guarantee convergence to global optima and suffer in local optimal clusters centers
because it is sensitive to initial clusters centers. CPSO can find global optimal solution; meanwhile
K-Means can achieve local optima. The CPSO-KM algorithm utilizes both the global search capability
of CPSO and the local search capability of K-Means. CPSO-KM algorithm has been tested with three
synthetic data sets and four classical data sets from UCI. Experimental results show better performance
of the CPSO-KM as compared to K-Means, PSO and CPSO.
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1 Introduction

Clustering is a common unsupervised learning method, which partitions a group of objects (in-
stances) into groups (clusters) such that objects in the same cluster are similar to each other and
dissimilar to the objects in other clusters. K-Means [1, 2] algorithm partitions the groups of given
objects into Kclusters based on a distance metric. The K-Means algorithm is easy to implement
and very efficient, so it is used widely in many application areas in recent years such as image
processing [3-5], video processing [6, 7], document processing [8-10].

The main drawback of the K-Means algorithm is that the clustering result is sensitive to the
initial clusters centers and may converge to the local optima [11]. In recent years, swarm intelligent
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algorithms have been combined with K-Means and applied on many clustering problems, because
of the ability of global search of the swarm intelligent algorithms, such as GA [12-15], PSO [16-18],
ACO [19, 20]. The combination of swarm intelligent algorithms and K-Means algorithm can take
advantage of both global search ability of swarm intelligent algorithms and local search ability
of K-Means algorithm. CPSO [21] in our previous literature has been verified that it has the
advantage of more precise global search ability and more fast convergence speed. The CPSO is
used to obtain better clusters centers for initial clusters centers, then K-Means algorithm is used
based on the initial clusters centers found by CPSO.

The rest of the paper is organized as follows. Section 2 describes the model of clustering
problem. Section 3 introduces the relative theory of clustering problem. Section 4 presents our
clustering algorithm combining CPSO with K-Means (CPSO-KM). Section 5 illustrates experi-
mental results. Finally, Section 6 makes conclusion.

2 Model of Clustering Problem

The clustering problem is a collection of data objects that are similar to one another within
the same cluster and are dissimilar to the objects in other clusters. Given a data objects set
DS = {X1, X2, ..., XN}, where Xj = (x1

j , x
2
j , ..., x

L
j ), L is the dimension of a data object, a

clustering problem tries to find a K-partition of DS, C = {C1, C2, ..., CK}, such that the similarity
of the data objects in the same cluster is maximum and the difference of the data objects between
different clusters center is maximum. The objective function of clustering problem is evaluated
based on the Sum of Squared Error (SSE), which is defined as

min
K∑

i=1

∑

∀xj∈Ci

D2(xj, Ci), Ci =
1

|Ci|
∑

∀xj∈Ci

xj (1)

K⋃
i=1

Ci = DS, Ci 6= φ (2)

Ci ∩ Cj = φ, i 6= j and i, j ∈ {1, 2, ..., K} (3)

where D(x, y) denotes the Euclidean distance between x and y, Ci is the mean of data objects
in the cluster Ci.

3 Relative Theory

3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO), which was developed by Kennedy and Eberhart in 1995
[22, 23], is a population-based swarm intelligence algorithm. The PSO simulates the social be-
havior of birds flocking and fish schooling. In PSO, each particle i represents a candidate solution
in the solution space of D dimensions, which has two vectors: a position vector Xi = [x1

i , x
2
i , ..., x

D
i ]

and a velocity vector Vi = [v1
i , v

2
i , ..., v

D
i ].

During the evolutionary process, the velocity vector and the position vector of particle i on
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dimension d at iteration t + 1 are updated as

vd
i (t + 1) = ωvd

i (t) + c1 · r1 · (pBestdi (t)− xd
i (t)) + c2 · r2 · (gBestd(t)− xd

i (t)) (4)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (5)

where d=1, 2, . . . , D represents each dimension of the search space, ω is inertia weight, c1 and
c2 are cognitive learning coefficient and social learning coefficient, respectively, r1 and r2 are two
uniform random numbers in the range of [0, 1], pBestdi (t) is the position on dimension d with
the best fitness found up to the tth iteration for the particle i, gBestdi (t) is the best position
on dimension d found by the whole particle swarm. The inertia weight ω in Eq. (4) is usually
updated as

ω = ωmax − (ωmax − ωmin)× g/gmax (6)

where ωmax and ωmin are initial and final weight, and set to 0.9 and 0.4, respectively [24]. g is
the current evolutionary generation number, gmax is the maximum number of generations, and
set to 1000. c1 and c2 are set 1.8, respectively. During the evolutionary process, the velocity of
each particle on dimension d is restricted to the range of

[−vmaxd, vmaxd
]
, vmaxd ∈ <+. Thus,

if the velocity vd
i (t) exceeds vmaxd, it is reassigned to vmaxd. Otherwise, if the velocity vd

i (t)
is lower than -maxd, it is reassigned to -maxd. If vmaxd is too large, particles may miss good
solutions. On the other hand, if vmaxd is too small, particles may trap in local optima. The
maximum velocity vmaxd is usually set to 20% of the search range [25].

3.2 K-Means

The K-Means algorithm [26] is a straightforward and widely used clustering algorithm. It is
simple to implement and run, relatively fast. The K-Means algorithm partitions a given dataset
into a user-specified number of clusters.

The standard K-Means algorithm is described as follows:

(1) Initialize the K clusters centers M = {m1,m2, ..., mK} randomly;

(2) Assign each data point xj to the closest cluster based on Euclidean distance. The distance
between data point xj to the closest cluster center mk is defined as

D(xj,mk) =

√
‖xj −mk‖2 (7)

(3) Recalculate the means of K cluster centers, and obtain new K centers;

(4) Repeat step 2 and 3 until the average change in centroid vectors is less than a predefined
value.

4 Clustering Algorithm Combining CPSO with K-Means

In this paper, we develop a hybrid algorithm for solving clustering problems. It can be observed
that CPSO is combined into the clustering algorithm. Detailed implementations of the algorithm
are proposed and described in this section.
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4.1 Particle Representation

To find good initial clusters centers, the clusters centers should be encoded into particle’s repre-
sentation. We employ a representation that each particle is characterized by a D = Num Attri×
Num Center dimensional real number vector. Num Attri is the number of attribution of in-
stances in the clustering problems. Num Center is the number of the center of instances in the
clustering problems. Thus the particle is encoded as a sequence of clusters centers. The ith
particle in the swarm is in the form of

Xi = [x1,1
i , x1,2

i , ..., x1,Num Attri
i , x2,1

i , x2,2
i , ...,

x2,Num Attri
i , ..., xNum Center,1

i , xNum Center,2
i , ..., xNum Center,Num Attri

i ] (8)

where xj,k
i is the kth attribution value of the jth center, j = 1, 2, ..., Num Center, k = 1, 2, ...,

Num Attri, Fig. 1 shows the particle representation of the ith particle in a 2-D space.

(1.5, 5.5)

(1.3, 2.0)

1.5 4.25.5 5.8 1.3 2.0 6.0 2.8

(6.0, 2.8)

(4.2, 5.8)

Particle i

Fig. 1: Particle representation in a 2-D space

4.2 Initialization and Fitness Calculation

In the initialization, the position of all particles are randomly generated, with (xj,1
i , xj,2

i , ...,
xj,Num Attri

i ) is the attribution value of the jth center (j = 1, 2, . . . , K) of the ith particle. The
velocity of each particle is also randomly generated, while the maximum velocity of each dimen-
sion is set to be 20% of the search range. As described in Section 2, the objective of clustering
problem is the minimizing of the SSE.

4.3 CPSO-KM

CPSO-KM is proposed for solving clustering problem, whose flowchart is shown in Fig. 2. During
the evolutionary process, the PSO may trap into a local optima solution, then the exploration per-
formance will not be improved. CPSO introduces chaotic mapping with certainty and stochastic
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Disturbance of position of a  particle
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Y

N

Clustering by applying K-Means,

obtaining the best solution of CPSO as

initial clusters centers

Fig. 2: Flowchart of CPSO-KM

property into PSO in order to improve the global convergence ability [27]. The chaotic mapping
method is the chaotic logistic sequence, which is defined as follows:

x(t + 1) = r · x (t) · (1− x (t)) , r ∈ N, x (0) ∈ [0, 1] (9)

where r is the control parameter, y is a variable, r = 4, x /∈ {0, 0.25, 0.5, 0.75, 1} and t = 0, 1,
2, · · ·.

The radius of chaotic searching region is computed to avoid destroy the excellent solution. The
radius can be adaptively adjusted by the distance between pBest and gBest and variance.

The chaotic searching time is defined as

σ(pbest, gbest) =
1

PNum

PNum∑
i=1

√√√√
d∑

j=1

(pbest(particlei,j)− gbestj)2 ≤ ε1, (10)

where ε1 is the threshold of the premature convergence.
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5 Experiments and Comparisons

In this section, seven data sets are employed to validate the proposed CPSO-KM clustering
algorithm. CPSO-KM is compared with conventional K-Means, PSO and CPSO.

5.1 Data Sets and Algorithm Configuration

The seven data sets include three synthetic data sets (SynSet1, SynSet2, SynSet3) and four real
data sets from UCI [27]. The three synthetic data sets are generated based on normal distribution
with mean vector µ and covariance matrix

∑
. The parameters for the three synthetic data sets

are shown in Table 1. The synthetic data sets are relatively simple, and the real number and
centers position of their clusters are known in advance, so experiments on these data sets can
reveal the virtues and defects of the algorithms. Fig. 3, 4 and 5 graphically presents the three
synthetic data sets.

Table 1: The parameters for three synthetic data sets

Data sets No. of clusters No. of dimensions Size of clusters Parameters of clusters

SynSet1 3 2 50
µ1 = [10, 10],

∑
1 = 0.4

µ2 = [7, 7],
∑

2 = 0.4

µ3 = [3, 3],
∑

3 = 0.4

SynSet2 4 3 100

µ1 = [30, 30, 30],
∑

1 = 4

µ2 = [20, 20, 20],
∑

2 = 4

µ3 = [14, 14, 14],
∑

3 = 4

µ4 = [5, 5, 5],
∑

4 = 4

SynSet3 5 3 300

µ1 = [20, 20, 20],
∑

1 = 0.4

µ2 = [10, 10, 10],
∑

2 = 0.4

µ3 = [0, 0, 0],
∑

3 = 0.4

µ4 = [−5,−5,−5],
∑

4 = 0.4

µ5 = [−10,−10,−10],
∑

4 = 0.4

The four real data sets that we considered are Iris, Haberman, Hayes-Roth and Wine, which are
available online [27]. These data sets are very classical and often used to examine and compare
the performances of algorithms in the fields of classification.

(1) The Iris data set consists of three species (Iris Setosa, Iris Versicolour, and Iris Virginica).
Each species contains 50 cases with four features (sepal length, sepal width, petal length, and
petal width).

(2) The Haberman data set has 306 samples featured by three attributes (Age of patient at
time of operation, Patient’s year of operation from 1900, Number of positive axillary nodes
detected). The data set consists of two survival status: class 1 (225 patients survived 5 years
or longer), class 2 (81 patients died within 5 year).

(3) The Hayes-Roth data set consists of 132 samples with four attribute information (Hobby, Age,
Educational level, Marital status). The data set has three categories: class 1 (51 persons),
class 2 (51 persons), class 3 (30 other persons).
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Fig. 3: Clusters of the SynSet1
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Fig. 5: Clusters of the SynSet3

(4) The Wine data set contains 178 cases characterized by thirteen features (Alcohol, Malic
acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols,
Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines, and Proline). The
data set consists of three classes: class 1 (59 objects), class 2 (71 objects), and class 3 (48
objects).

The PSO, CPSO and CPSO-KM use the same population size of 20 and the same number of
1000 fitness evaluations (FEs) for a fair comparison. All the experiments are carried out using
Visual C++ on the same machine with a Pentium(R) Dual-Core CPU 3.20 GHz, 2.0 GB RAM,
and Windows 7 operation system. All the data sets are independently simulated 30 times, and
their mean results are compared in order to reduce the statistical errors.

5.2 Performance Comparison

To validate the proposed CPSO-KM, we compare the CPSO-KM with K-Means, PSO and CPSO.
Each data set is independently simulated 30 times for purpose of reducing statistical errors. The
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statistical results are shown in Table 2 in terms of the mean and standard deviation of the fitness,
and boldface in the table indicates the best result obtained.

Table 2: Performance (fitness) comparison of CPSO-KM with other algorithms

Datasets K-Means PSO CPSO CPSO-KM

SynSet1

(N = 150, C = 3, D = 2)

Mean fitness 48.4797 48.4797 48.4797 48.4797

Std. Dev 0 0 0 0

SynSet2

(N = 400, C = 4, D = 3)

Mean fitness 1.8643E+04 1.8642E+04 1.8642E+04 1.8641E+04

Std. Dev 2.8918 2.7051 2.3612 1.7709

SynSet3

(N = 1500, C = 5, D = 3)

Mean fitness 7.4299E+03 6.3194E+03 5.1954E+03 2.9608E+03

Std. Dev 5.7699E+03 5.8959E+03 5.7698E+03 4.7110E+03

Iris

(N = 150, C = 3, D = 4)

Mean fitness 92.2927 91.8262 85.4199 78.9657

Std. Dev 26.8443 27.0535 20.3712 0.2539

Haberman

(N = 306, C = 2, D = 3)

Mean fitness 3.0573E+04 3.0563E+04 3.0554E+04 3.0546E+04

Std. Dev 56.8038 57.4285 54.6581 50.1978

Hayes-Roth

(N = 132, C = 3, D = 4)

Mean fitness 288.2780 286.0900 285.6593 282.5963

Std. Dev 11.1871 8.1570 8.1873 3.9336

Wine

(N = 178, C = 3, D = 13)

Mean fitness 2.8104E+06 2.7946E+06 2.7787E+06 2.7629E+06

Std. Dev 7.9610E+04 8.0672E+04 7.8231E+04 7.1930E+04

An interesting result is that all algorithms have most reliably achieved the minimal fitness of
SysSet1. It is shown that CPSO-KM attains better fitness than K-Means, PSO and CPSO. The
CPSO-KM is also observed to obtain the smallest SD of the fitness.

5.3 External Criteria Comparison

Because the real partitions of the data sets considered here are already known, the performances of
CPSO-KM algorithm can be evaluated by comparing the resulting cluster with the real structures
in terms of external criteria. Some commonly used criteria include the Rand index (RI ), Jaccard
coefficient (JC ) and F-Measure (F −M).

Assuming that S is a prespecified partition of data sets DS, C is the resulting clusters by
applying the CPSO-KM algorithm.

(1) TP is the numbers of pairs of data points (xi, xj), where xi, xj ∈ Cm, xi, xj ∈ Sn, i 6= j.

(2) FP is the numbers of pairs of data points (xi, xj), where xi, xj ∈ Cm, xi,∈ Sn1, xj ∈ Sn2, i 6=
j, n1 6= n2.

(3) TN is the numbers of pairs of data points (xi, xj), where xi ∈ Cm1, xj ∈ Cm2, xi ∈ Sn1, xj ∈
Sn2, i 6= j, m1 6= m2, n1 6= n2.

(4) FN is the numbers of pairs of data points (xi, xj), where xi ∈ Cm1, xj ∈ Cm2, xi, xj ∈ Sn, i 6=
j, m1 6= m2.
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Table 3: External criteria comparison of CPSO-KM with other algorithms, in terms of the Rand index
and Jaccard coefficient and F-Measure. Given are the mean and standard deviation based on 30 runs

Datasets K-Means PSO CPSO CPSO-KM

SynSet1

(N = 150, C = 3, D = 2)

RI

JC

F-M

1 1 1 1

1 1 1 1

1 1 1 1

SynSet2

(N = 400, C = 4, D = 3)

RI

JC

F-M

0.9445±0.0000 0.9445±0.0000 0.9445±0.0000 0.9445±0.0000

0.7989±0.0002 0.7989±0.0002 0.7989±0.0001 0.7990±0.0001

0.8882±0.0001 0.8882±0.0001 0.8882±0.0001 0.8882±0.0001

SynSet3

(N = 1500, C = 5, D = 3)

RI

JC

F-M

0.9404±0.0513 0.9503±0.0523 0.9603±0.0513 0.9801±0.0419

0.7264±0.1205 0.7619±0.1438 0.7974±0.1551 0.8685±0.1496

0.8703±0.1116 0.8920±0.1139 0.9136±0.1116 0.9568±0.0911

Iris

(N = 150, C = 3, D = 4)

RI 0.8817±0.0086 0.8842±0.0113 0.8868±0.013 0.9094±0.0139

JC 0.6996±0.0179 0.7049±0.0237 0.7103±0.0271 0.7156±0.0292

F-M 0.8231±0.0121 0.8239±0.0115 0.8266±0.0160 0.8339±0.0198

Haberman

(N = 306, C = 2, D = 3)

RI 0.7984±0.0135 0.8021±0.0145 0.8089±0.0140 0.8191±0.0146

JC 0.6775±0.0223 0.6787±0.0242 0.6797±0.0254 0.6874±0.0261

F-M 0.8481±0.0147 0.8494±0.0147 08504±0.0149 0.8480±0.0150

Hayes-Roth

(N = 132, C = 3, D = 4)

RI 0.8785±0.0191 0.8822±0.0141 0.8841±0.0126 0.8925±0.0154

JC 0.6504±0.0383 0.6580±0.0300 0.6575±0.0303 0.6774±0.0334

F-M 0.6992±0.0486 0.6093±0.0371 0.6087±0.0375 0.6333±0.0412

Wine

(N = 178, C = 3, D = 13)

RI 0.6945±0.0157 0.6950±0.0145 0.7187±0.0121 0.7239±0.0156

JC 0.4475±0.0232 0.4346±0.0243 0.4120±0.0250 0.4191±0.0254

F-M 0.6183±0.0143 0.6059±0.0142 0.5835±0.0151 0.5907±0.0158

(5) P and R are the precision and recall of cluster i.

The two external criteria used in our experiments can then be defined as follows, with larger
values indicating a greater similarity of C and S.

(1) Rand index

RI =
TP + TN

TP + FP + FN + TN

(2) Jaccard coefficient

JC =
TP

TP + FP + FN

(3) F-Measue

F −M =
(β2 + 1.0)(P ×R)

(β2 × P ) + R
, where P =

TP

TP + FP
,R =

TP

TP + FN
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In experiments, we set β = 1.0, which weights precision and recall equally. The performance
comparison between CPSO-KM and other algorithms in terms of RI, JC and F−M are illustrated
in Table 3. The corresponding boxplots are shown in Fig. 6 and Fig. 7. CPSO-KM is also observed
to find the best similarity of S and C.

6 Conclusions

In this paper, a CPSO-KM algorithm is proposed to solve the clustering problem, which is based
on the combination of the Particle Swarm Optimization (PSO) and the K-Means algorithm.
CPSO and K-Means are run sequentially and the cluster centers obtained by CPSO are the
initial centers of the K-Means. The combination method solves the problem of sensitivity to the
choice of initial cluster centers. The fitness experiments on three synthetic and four real data
sets show that the CPSO-KM algorithm can obtain better performance than K-Means, PSO and
CPSO. The experimental results also show that CPSO-KM can attain the better clusters than
other algorithms in terms of Rand index, Jaccard coefficient and F-Measure. Future work includes
research into the application of the CPSO-KM algorithm to solve more demanding data sets with
more complex structure, such as document clustering.
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