
ARTICLE IN PRESS

JID: COMCOM [m5G; December 6, 2016;20:13]

Computer Communications 0 0 0 (2016) 1–10

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Adaptive Distributed Software Defined Networking

Yanyu Chen

a , b , Yuan Yang

b , Xiaoyue Zou

a , Qi Li a , c , ∗, Yong Jiang

a

a Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
b Department of Computer Science, Tsinghua University, Beijing 10 0 084, PR China
c Tsinghua National Laboratory for Information Science and Technology(TNList), Tsinghua University, Beijing 10 0 084, PR China

a r t i c l e i n f o

Article history:

Received 28 April 2016

Revised 16 September 2016

Accepted 21 November 2016

Available online xxx

Keywords:

SDN

Algorithm

Controller selection problem

a b s t r a c t

Distributed Software Defined Networking (SDN) federates multiple controllers in a network to solve the

problems in single controller networks, e.g., to improve network reliability and reduce the delay between

controllers and switches. However, in the current distributed SDN schemes, the mapping between SDN

switches and controllers is statically configured, which may result in uneven load distribution among

controllers. These schemes cannot fully benefit from the distributed SDN architecture. In order to address

this issue, this paper proposes ESDN, an adaptive elastic distributed SDN architecture . The architecture dy-

namically selects a minimum number of active controllers that switches attached to, and changes the

mapping between switches and controllers according to the network load. Specially, a switch can mi-

grate from one controller domain to another so that the mapping is adaptive to the network load. We

formalize the controller selection problem as an optimization problem, and prove that the problem is

NP-Hard. We solve the problem by using offline and online algorithms, respectively. With the heuristics,

controllers in a network are dynamically changed with respect to the network load. The offline algorithm

has an approximation ratio of 2 related to the optimal result, and the online algorithms can find similar

number of active controllers within a shorter time. We validate the algorithms and evaluate the per-

formance by simulations. In particular, the number of inactive controllers computed by shrinking action

of online algorithm averagely achieves around 92% of the optimal values when the whole network load

decreases from 65% controller capacity to 25% controller capacity.

© 2016 Published by Elsevier B.V.

1

g

t

s

8

c

T

fi

t

p

n

c

p

c

n

s

f

o

g

a

n

c

I

n

w

a

f

t

t

u

f

p

t

d

h

0

. Introduction

Software Defined Networking (SDN) [1,2] enables network pro-

rammability and easy management [3–5] . Since it achieves a cen-

ralized control plane architecture, it brings up some issues of

calability and reliability. Multiple distributed SDN controllers [6–

] are proposed to address these issues. Most of existing work fo-

uses on the state consistency issue among multiple controllers.

he mapping between switches and controllers is statically con-

gured, which may result in uneven load distribution among con-

rollers and controller crash by packet burst. For instance, the

eak-to-median radio of traffic can be almost 1–2 orders of mag-

itude (see more detailed data in [9]). Therefore, these approaches

annot fully benefit from the distributed architecture.

In order to address the issues above, Dixit et al. [10] pro-

osed an elastic distributed SDN controller scheme that dynami-

ally shrinks and expands the controller pool with respect to the

etwork load. To realize the elastic distributed SDN controller, a

witch migration protocol is proposed to enable a switch migration
∗ Corresponding author.

E-mail address: liqi@csnet1.cs.tsinghua.edu.cn (Q. Li).

l

s

t

ttp://dx.doi.org/10.1016/j.comcom.2016.11.009

140-3664/© 2016 Published by Elsevier B.V.

Please cite this article as: Y. Chen et al., Adaptive Distributed Sof

http://dx.doi.org/10.1016/j.comcom.2016.11.009
rom one controller domain to another. Unfortunately, the design

nly includes a basic elastic SDN controller architecture and a mi-

ration proposal. It does not discuss the key question in the elastic

rchitecture, i.e., how to make a controller be adaptive to runtime

etwork load with changes of network load and topology. The key

hallenge in the distributed SDN architectures remains unresolved.

f switches cannot correctly select controllers for migration with

etwork changes, namely controller selection problem , the scheme

ill still fail in balancing the load between controllers.

In this paper, we formalize the controller selection problem as

n optimization problem in which switches can migrate to dif-

erent controllers with respect to the network load, and the con-

rollers can be activated and inactivated. We prove that the con-

roller section problem is NP-Hard. We first solve the problem by

sing an offline algorithm. The offline algorithm selects controllers

or each switch, which is a sub-optimal algorithm with an ap-

roximation ratio of 2. Then, we propose an adaptive Elastic dis-

ributed SDN architecture (ESDN), in which controllers are selected

ynamically according to network load. When the whole network

oad falls below a given lower threshold, switches migrate to re-

elected controllers to reduce the number of active controllers. Af-

er switch migrations, controllers without any load can be inacti-
tware Defined Networking, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.11.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
mailto:liqi@csnet1.cs.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.comcom.2016.11.009
http://dx.doi.org/10.1016/j.comcom.2016.11.009

2 Y. Chen et al. / Computer Communications 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: COMCOM [m5G; December 6, 2016;20:13]

Fig. 1. An illustration of the network.

r

t

c

n

s

t

a

o

v

s

w

3

a

c

w

s

h

p

o

s

i

t

t

s

e

e

m

t

e

c

a

t

t

b

L

i

d

c

n

v

t

t

b

w

t

vated. Once the loads of controllers exceed a given upper thresh-

old, some switches attached to them migrate to re-selected con-

trollers that have less load or that are inactive. Thereby, the con-

troller pool is dynamically shrinking and expanding. We develop

online algorithms to re-select controllers, such that only a part of

switches need to migrate. Note that, since switches change their

corresponding controllers only when there is a controller crash or

significant control load change, the network stability is ensured

with the proposed distributed architecture.

In summary, this paper makes the following contributions:

• We formally define the problem of controller selection prob-

lem and prove that the controller selection problem is NP-Hard.

We develop an offline algorithm to solve the problem sub-

optimally.

• We propose ESDN, an adaptive elastic distributed SDN architec-

ture to select active controllers dynamically according to net-

work load. We develop online algorithms to solve the controller

selection problem with little overhead.

• We use simulations to evaluate the performance of the offline

and online algorithms. The experiment results show that our al-

gorithms can effectively shrink and expand the controller pool

in the networks. The number of inactive controllers computed

by shrinking action by online algorithm averagely achieves

around 92% of the optimal values. And the expanding action

by online algorithm can dynamically add necessary number of

controllers to prevent the network breakdown, and only incurs

15.6% more controllers than the optimal algorithm. While, the

computation time of offline algorithms and online algorithms is

just one in a thousand of the optimal algorithm.

The rest of this paper is structured as follows. Section 2 re-

views background. Section 3 presents the model and problem for-

mulation. The design of offline algorithm is presented in Section 4 .

We introduce the ESDN in Section 5 , and present the online al-

gorithms in Section 6 . The evaluation of the architecture is pre-

sented in Section 7 . Section 8 summarizes the related work and

Section 9 concludes this paper.

2. Background

Software Defined Networking (SDN). SDN decouples the net-

work control plane and forwarding plane enabling (i) the network

to become easily programmable, and (ii) the underlying infras-

tructure to be abstracted for network controller and applications.

Network intelligence is centralized in controllers that maintain a

global view of the network of software switches, commodity hard-

ware and hosts, which are dumb forwarding entities.

OpenFlow. The OpenFlow protocol [11,12] defines the dis-

tributed SDN architecture and commands that enable the interac-

tion between the controllers and switches. In the distributed SDN

network, each switch can attach to more than one controller. Only

one of the controllers can act as the master controller, while others

act as peer or slave controllers. The role of the master controller

and the slave controllers can be changed. When the controller role

changes, the slave controller first changes its role to a peer con-

troller, then the master controller changes its role to a slave con-

troller, at the same time, the peer controller acts the master role.

These role changes are realized by Role-Request message and Role-

Replay message.

Even though the OpenFlow protocol defines the role change

process, it cannot ensure the safety and liveness properties of the

network [10] . To tackle these issues, Dixit et al. [10] proposed an

elastic distributed SDN controller system, which presents a switch

migration protocol. In the protocol, switches that controlled by a

controller can be seamlessly migrated to another. However, the de-

sign does not discuss how to achieve the architecture adaptive to
Please cite this article as: Y. Chen et al., Adaptive Distributed Sof

http://dx.doi.org/10.1016/j.comcom.2016.11.009
untime network load, and only includes a basic elastic SDN con-

roller architecture and a switch migration proposal.

Fig. 1 shows an example of a network topology. The solid line

onnects switches and a master controller, and the dotted line con-

ects switches and an peer or slave controller. Two controllers are

elected and active in the controller pool now. The selected con-

rollers will be changed with the change of network load. For ex-

mple, when the load of one controller falls below a given thresh-

ld and meets some conditions (see Section 3), it can be inacti-

ated. Note that, since both peer and slave controllers do not re-

pond to controller messages, e.g., Packet-In packet, for simplicity,

e do not distinguish them in this paper.

. Problem statement and modeling

We present the controller selection problem in this section. In

 network, each SDN switch (switch for short) has one or more

onnections to the controllers. Each switch has a traffic demand,

hich reflects the traffic volume (control and configuration mes-

ages, etc.) between the switch and the controller. On the one

and, a controller cannot hold a traffic volume that exceeds the ca-

acity. More strictly, the traffic volume should not exceed a thresh-

ld to improve the resilience against a sudden traffic increasing or

witch migrations. A controller whose traffic volume is zero can be

nactivated. Our target is to minimize the number of active con-

rollers, and achieve load balancing. The model can be applied to

he scenarios that the network load increases. In these scenarios,

witches can migrate and re-attach to controllers if controller load

xceeds the threshold.

Formally, let C denote the set of controllers and |C| = n . For

ach controller c i ∈ C (1 ≤ i ≤ n), let T i be the capacity, i.e., the

aximum traffic volume that c i can hold, and α (0 < α ≤ 1) be a

hreshold that the ratio of the actual traffic volume to T i must not

xceed. Let N i be the maximum number of switches that controller

 i can hold. Note that we use N i to constrain the failure group size

nd provide better resilience against failures. That is, a single con-

roller failure should not lead to too large a network failure, and

he control plane should be restored within a short time. Let B i
e a binary variable that indicates whether controller c i is active.

et S denote the set of switches and |S| = m . For each c i ∈ C (1 ≤
 ≤ n) and s j ∈ S (1 ≤ j ≤ m), R i, j is a ternary variable that in-

icates whether there can be a connection between switch s j and

ontroller c i . Since there is a need to manage latency and traffic,

ot all controllers may be able to manage all switches, and the

alue of R i, j should be set based on latency and bandwidth in prac-

ice. In particular, if there can be a connection between the mas-

er controller and the switch, R i, j = 1 ; if there can be a connection

etween the slave/peer controller and the switch, R i, j = −1 ; other-

ise R i, j = 0 . Let F j be the traffic demand of switch s j , and δi, j be

he fraction of traffic demand F j that is carried by the connection
tware Defined Networking, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.11.009

Y. Chen et al. / Computer Communications 0 0 0 (2016) 1–10 3

ARTICLE IN PRESS

JID: COMCOM [m5G; December 6, 2016;20:13]

Table 1

Notations used in this paper.

Notation Meaning

α The threshold that the ratio of the actual traffic volume must not exceed, and 0 < α ≤ 1.

β The threshold that the ratio of the actual traffic volume to shrink the controller pool, and 0 ≤ β < 1.

C The set of controllers, and |C| = n .

S The set of switches, and |S| = m .

τ Hard time trigger of the Monitor module.

E Network changes trigger of the Monitor module.

D Threshold of load deviation to balance the network.

B i A binary variable that indicates whether the i th controller is active.

R i, j A ternary variable indicating the possible connection between the j th switch and the i th controller.

F j The traffic demand of the j th switch.

T i The capacity of i th controller.

N i The maximum number of switches that the i th controller can hold.

B The set of B i .

R The set of R i, j .

T The set of T i .

F The set of F j .

δi, j The fraction of F j that is carried by the connection between the i th controller and the j th switch.

b

t

s

o

a

s

t

w

b

t

g

b

v

s

t

T

P

t

t

n

w

t

u

s

m

s

s

c

(

i

t

p

i

p

p

c

t

p

p

p

4

c

t

c

r

e

s

n

w

H

c

a

b

a

o

l

a

etween c i and s j . Table 1 summarized the key notations used in

he paper. We model the controller selection problem as follows.

min

n ∑

i =1

B i (1)

ubject to: B i ∈ { 0 , 1 } , ∀ i ∈ { 1 , . . . , n } (2)

n ∑

i =1

δi, j B i = 1 , ∀ j ∈ { 1 , . . . , m } (3)

δi, j ∈ [0 , 1] , ∀ i ∈ { 1 , . . . , n } , ∀ j ∈ { 1 , . . . , m } (4)

n ∑

i =1

δi, j | R i, j | = 1 , ∀ j ∈ { 1 , . . . , m } (5)

m ∑

j=1

δi, j | R i, j | F j ≤ αT i . ∀ i ∈ { 1 , . . . , n } (6)

m ∑

j=1

δi, j | R i, j |≤ N i . ∀ i ∈ { 1 , . . . , n } (7)

Note that, Eq. (1) is our objective, i.e., minimizing the number

f active controllers. Eq. (2) means that each controller is either

ctive or inactive. Eq. (3) means that the traffic demand of each

witch must be fully satisfied by active controllers. Eq. (4) means

hat the traffic demand of each switch must be delivered as a

hole. Eq. (5) means that the traffic demand of each switch must

e satisfied through only one existing connection. 1 Eq. (6) means

hat the total traffic volume on a controller must be less than a

iven threshold. Eq. (7) means that the number of switches held

y each controller should be less than the maximum. The input

ariables of the model are m, n, R i, j , F j , α, and T i , while the deci-

ion variables are B i and δi, j . Now we analyze the complexity of

he problem.

heorem 1. The controller selection problem is NP-Hard.

roof. We prove the theorem by a polynomial time reduction from

he bin packing problem, which is known to be NP-hard [13] , to

he controller selection problem.
1 Note that an existing connection may not connect to an active controller, so we

eed both Eqs. (3) and (5) .

p

c

t

b

Please cite this article as: Y. Chen et al., Adaptive Distributed Sof

http://dx.doi.org/10.1016/j.comcom.2016.11.009
The bin packing problem is to pack a finite number of objects

ith weights w 1 , . . . , w m

into a finite number of bins that have

he same capacity W , in a way that minimizes the number of bins

sed. For each instance of the bin packing problem, we can con-

truct an instance of the controller selection problem in polyno-

ial time as follows. For each object with weight w j , add switch

 j into S, and set the traffic demand to w j , i.e., F j = w j . Then, con-

truct a set of enough number of controllers, where each controller

 i has the same capacity T i = W . Let α be 1. Let R i, j = 1 for each

 i, j) pair, such that the traffic demand of any switch can be sat-

sfied by any controller. Note that in our constructed instance of

he controller selection problem, all controllers have the same ca-

acity, and some parameters are assigned special values. However,

f the constructed sub-problem is equivalent to a known NP-Hard

roblem (i.e., the bin-packing problem in our case), then the whole

roblem is NP-Hard. In the constructed problem, the controllers

an be seen as the bins while the switches are corresponding to

he objects, and we can see that the optimal solution to the bin

acking problem is also the optimal solution to the constructed

roblem. Thus, the two problems are equivalent, and this ends our

roof. �

. The offline algorithm

In this section, we develop an offline algorithm to solve the

ontroller selection problem. Term “offline” here means that, each

ime the traffic demand changes, the algorithm selects and allo-

ates one appropriate controller for every switch. That is, the algo-

ithm does not take into account the previous connection between

ach switch and each controller. Instead, the connections are con-

tructed from the very beginning. Such an operation pattern seems

ot practical. In a large network with thousands of switches, one

ould expect to adjust only a few connections when necessary.

owever, the offline solution has some theoretical importance and

an give us in-depth insights to the problem. First, we will present

n approximation ratio to the problem, which implies the tradeoff

etween stability and flexibility that can be made by the online

lgorithm at current stage. Further, some basic principles can be

btained to develop the online algorithm, so as to achieve a simi-

ar approximation ratio.

In each round of the offline algorithm, a controller is selected

s the master controller of a given switch. The selection princi-

les are as follows: 1) the controller selected must be one of the

ontrollers that can have a connection with the switch; 2) the con-

roller should have the most traffic among all controllers that can

e a master controller; and 3) the utilization ratio of the selected
tware Defined Networking, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.11.009

4 Y. Chen et al. / Computer Communications 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: COMCOM [m5G; December 6, 2016;20:13]

Fig. 2. ESDN design.

P

i

a

s

s

o

T

|

L

d

|

B

w

|

T

|

5

T

t

p

s

a

s

p

w

b

5

w

m

u

w

controller must not exceed αT i after adding the traffic of current

switch under consideration.

Algorithm 1 The Offline Algorithm

Input: R , T , F , α
Output: B , δi j for each (i, j) pair

1: M i ← 0 for each i ; δi j ← 0 for each (i, j) pair;
2: for j = 1 → m do

3: Max _ F = 0; ˆ i = 0;
4: for i = 1 → n (R i j � = 0) do

5: if (M i + F j > Max _ F) and (M i + F j ≤ αT i) then

6: Max _ F ← M i + F j ; ˆ i ← i ;
7: end if
8: end for
9: δˆ i j

← 1 ; M ˆ i
← M ˆ i

+ F j ;

10: end for
11: for i = 1 → n do

12: if M i = 0 then B i ← 0 ;
13: else B i ← 1 ;
14: end if
15: end for
16: return B , δi j for each (i, j) pair;

The pseudo-code of the offline algorithms is shown in

Algorithm 1 . The inputs are R , T , F and α. The outputs are B and

δij for each (i, j) pair. Step 1 initializes M i and δij to 0, where M i is

used to record the current total traffic amount of the i th controller.

In each round of Steps 2–10, the algorithm selects one controller

for a switch. MAX _ F in Step 3 records the maximum traffic amount

of the controllers at current stage, and

ˆ i records the corresponding

controller, which will be selected in Step 9. The first selection prin-

ciple discussed above is realized by Step 4, which only checks the

controllers that can have a connection to the switch. The second

and the third selection principles are realized by the conditions in

Step 5. Note that after a controller is selected, the traffic amount

of the controller, i.e. M ˆ i
, is updated in Step 9. After selecting a con-

troller for each switch, Steps 11-15 compute B based on the total

traffic amount of each controller. A controller without any traffic

can be inactivated as shown in Step 12.

Theorem 2. The computational complexity of the offline algorithm is

O (mn) in the worst case, where n and m are the number of the con-

troller and switch nodes, respectively.

Proof. We prove the theorem in two steps. First, we show the

computation complexity for a fully connected network, in which

each switch is connected to all the controllers. In this network,

one switch can be migrated to any controller when the traffic is

small enough. The offline algorithm allots one controller for one

switch each time. For each switch, the algorithm should pick one

controller from all the controllers (the number of the controllers is

n), and there are m switches in total, so the computational com-

plexity is O (mn).

The second step of our proof is to show that the computation

complexity is less than that in the above case. In particular, in a

network that is not fully connected, the number of controllers each

switch connected is less than n . Then, following the offline algo-

rithm, the computation complexity is less than O (mn). This ends

our proof. �

Theorem 3. In our model, in which every switch is connected to one

master controller and at most one slave controller, the offline algo-

rithm is a 2-approximation heuristic.
Please cite this article as: Y. Chen et al., Adaptive Distributed Sof

http://dx.doi.org/10.1016/j.comcom.2016.11.009
roof. We have already shown that the offline algorithm runs

n polynomial time. To show that the offline algorithm is a 2-

pproximation heuristic, we assign a cost of 1 to each controller

elected by the Optimal algorithm, distribute this cost to one

witch whose master controller is the controller, and set the cost

f other switches whose master controller is the controller to 0.

he number of the active controllers of Optimal solution ζ ∗ is

 ζ ∗| =

∑

s ∈ S
cost s ; (8)

et S i denote all the switches connected to the i th controller c i , ζ
enote the solution of the offline algorithm, then we have

 ζ ∗| ≤ ∑

c i ∈ ζ

∑

s ∈ S i
cost s = | ζ | ∑

s ∈ S i
cost s ; (9)

ecause one switch is connected to at most two controllers, then

e have

 ζ | ∑

s ∈ S i
cost s ≤ 2

∑

s ∈ S
cost s = 2 | ζ ∗|; (10)

he
∑

s ∈ S i cost s is an integer that not less than 0, then

 ζ | ≤ 2 | ζ ∗|; (11)

�

. ESDN design

The traffic amount in a real-world network is changing quickly.

he offline algorithm recomputes the entire network configura-

ions, which is unstable. Thus, we need a practical design to take

lace of the offline approach. In particular, the active controllers

hould be selected based on the previous status of the network,

nd only a part of the controllers and the switches should change

o as to adapt to network flow changes [10]. In this section, we

ropose an adaptive elastic distributed SDN architecture (ESDN)

hich enables dynamic controller selection and switch migration

y online algorithms adapting to network traffic changes.

.1. Overview

In ESDN, the network load is monitored by a central database,

hich includes three main modules, Monitor module, Measure-

ent module and Action module (see Fig. 2). The Monitor mod-

le monitors the network load all the time, and checks the net-

ork load statistical information when triggered. Then the Monitor
tware Defined Networking, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.11.009

Y. Chen et al. / Computer Communications 0 0 0 (2016) 1–10 5

ARTICLE IN PRESS

JID: COMCOM [m5G; December 6, 2016;20:13]

m

t

u

u

m

m

c

i

5

w

w

g

t

w

t

a

w

s

w

W

g

t

5

w

t

t

l

c

p

l

c

w

e

l

s

e

c

g

l

t

p

c

t

w

u

a

n

n

i

t

6

a

α

a

Fig. 3. Shrinking controller pool.

6

i

l

a

n

t

t

t

i

l

s

t

g

c

i

t

s

t

t

A

I
O

o

o

s

n

i

m

t

t

odule transmits the reply information from the distributed con-

roller plane to the Measurement module. The Measurement mod-

le makes decisions to adjust the network. Then the Action mod-

le takes actions according to the decisions from the Measurement

odule. The results of the actions are returned to the Measure-

ent module to make further decisions. There is an iteration pro-

ess between the Measurement module and Action module, which

s to finish when the decision is Null.

.2. Monitoring the network

The Monitor module is to gain statistical information of the net-

ork. It monitors the network all the time, and requires the net-

ork information when triggered. There are two methods to trig-

er the Monitor module, hard time off trigger and network changes

rigger. Hard time means the period time τ to check the network,

hich is set by the operator. While the network changes means

hat the network changes a lot, which exceeds the threshold E set

ccording to the network requirement. The period time τ and net-

ork changes threshold E can be set according to network time

ensitivity. When the network topology changes quickly or the net-

ork flow varies largely, τ and E should be set to a small value.

hen the network is much stable, large τ and E can be set. After

etting the information, the Monitor module returns the informa-

ion to the Measurement module.

.3. Making decisions and adjusting the network

The measurement module makes decisions to adjust the net-

ork. When the load ratio of some controllers exceeds a given

hreshold, the controller pool is expanded by activating more con-

rollers, to prevent the network from breaking down. When the

oad ratio of some controllers falls below a given threshold, the

ontroller pool is shrunk by inactivating these controllers to save

ower. We note that uneven controller loads may incur an over-

oad or a small mean load, but the controller pool may not need

hange in such cases. To avoid unnecessary controller reselection,

e need to balance the controller loads when the loads are un-

venly distributed. Load balance is also needed when the network

oad is uneven after changing the controller pool and migrating the

witches.

Specifically, the load of each controller is measured, and differ-

nt decisions are made under the following conditions. First, we

ompute the deviation of the controller loads. If the deviation is

reater than a given threshold, the network load is uneven and

oad balance should be performed. Second, we compute the con-

roller utilization ratio as the ratio of the load to the controller ca-

acity. If the utilization ratio of all controllers is greater than α, the

ontroller pool should be expanded. Third, if the minimum con-

roller utilization ratio is less than β , the pool should be shrunk.

The Action module is used to take actions to adjust the net-

ork, according to the decision made by the Measurement mod-

le. The actions, i.e., load balance, expanding the controller pool,

nd shrinking the controller pool, will be discussed in detail in the

ext section. Only one action will be taken each time. After the

etwork is adjusted, the traffic load information changes accord-

ngly, which is captured by the Measurement module to make fur-

her decisions.

. The online algorithms

Based on the information of the network, we present the online

lgorithms of the three actions. According to the upper threshold

and lower threshold β of the controller load ratio, the online

lgorithms only adjust a small part controllers and switches.
Please cite this article as: Y. Chen et al., Adaptive Distributed Sof

http://dx.doi.org/10.1016/j.comcom.2016.11.009
.1. Shrinking controller pool

The controller pool needs to shrink when the shrinking action

s called. First, the algorithm locates all the controllers that the

oad ratio below the threshold β . Then, the algorithm reconnects

ll the switches attached to the controllers. If one controller does

ot have any attached switches, it goes to an inactive state. Unlike

he polynomial time algorithms, the online algorithms do not need

o create a virtual network, instead, the online algorithms adjust

he network on the real network directly according to the current

nformation of the network.

To find the controller that can be inactivated, we visit the

east-load controller that the load ratio below β , and migrate the

witches attached to the controller to their most-load slave con-

rollers. If all switches attached to the controller are migrated, it

oes to an inactive state. Fig. 3 shows an example of shrinking the

ontroller pool, the left part indicates the network before shrink-

ng, in which there are two active lightly-loaded controllers in

he controller pool. The right part shows the controller pool after

hrinking. The third, the fourth and the fifth switches are migrated

o the left controller, and the algorithm inactivates the right con-

roller.

lgorithm 2 Shrinking controller pool of online algorithms

nput: B , R , T , F , α
utput: B , R , F

1: S s [] _ Ascending(M) ;
2: for (j ∈ S s []) do

3: M i =

∑ m

j=1 δi, j | R i, j | F j ;
4: Max _ F = 0; sl = 0; ma = 0 ;
5: for (i ∈ M _ S[j]) do

6: if ((M i + F j > Max _ F) && (M i + F j ≤ αT i)) then

7: Max _ F = M i + F j ; la = i ;
8: end if
9: if (B i == 1) then

10: ma = i ;
11: end if
12: end for
13: Connect(C sl , S j); R sl, j = 1 ; R ma, j = −1 ;
14: end for
15: U pdate (B , R , F);
16: return (B , R , F);

Algorithm 2 shows the pseudo-code of the shrinking action of

nline algorithms. The inputs include B , R , T , F and α, and the

utputs include B , R and F . First, the algorithm computes all the

witch connected to the controllers that load ratio below β , the

umber of which are stored in S s [], which is sorted in ascend-

ng order (Step 1). Then, as the shrinking action of the polyno-

ial time algorithm, the algorithm computes the computes the to-

al load amount of each controller c i of the network, and initializes

he load Max _ F and the number sl of the controller that has the
tware Defined Networking, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.11.009

6 Y. Chen et al. / Computer Communications 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: COMCOM [m5G; December 6, 2016;20:13]

Fig. 4. Expanding controller pool.

Fig. 5. Balancing load among controllers.

t

t

t

t

l

A

I
O

r

R

c

S

d

m

t

e

t

s

fl

s

u

c

n

a

o

c

t

c

g

i

m

7

7

c

b

t

t

s

w

a

T

most load after connecting the switch. More, the algorithm records

the current master controller ma of the switch to update the net-

work after the migration process (Steps 4, 9, 10, 15). When one

controller does not have switches attached to it, the update func-

tion changes its status (Step 15).

6.2. Expanding controller pool

The controller pool is expanded by activating more controllers

to prevent the network from breaking down when the load ra-

tio of some controllers exceeds a given threshold α. To expand

the controller pool, the algorithm migrates the switches from the

heavily-load controller to one inactivated controller. As the shrink-

ing action, the expanding action also adjusts part controllers not

the whole network. Fig. 4 presents an example of expanding the

controller pool, the left part indicates the network before expand-

ing, in which there is just one active controller in the controller

pool, which is overloaded. The right part shows the controller pool

after expanding. The right controller has been activated, and the

last two switches are migrated to the left controller.

The algorithm of the expanding action is much similar as the

shrinking action, except the adjusting conditions. Instead comput-

ing the S s [], the algorithm computes the S e [], which records all the

switches attached to the controllers that the load ratio exceeds the

threshold α. Other processes are as in the Algorithm 2 .

6.3. Balancing load among controllers

As discussed above, the network is dynamically changing and

the loads of different controllers may be uneven. Thus, we need

to balance the controller loads to improve network performance

and avoid controller crash. The load balance action of the online

algorithm is much different from the polynomial time algorithm.

When balancing the network, the algorithm computes the devia-

tion of two controllers before and after the migration to decide

whether the connection is appropriate. For reducing the network

changes, we just consider the case, in which the load ratio of some

controllers exceeds α.

We visit the most-load controller, and check whether a migra-

tion is feasible for switches attached to the controller. Fig. 5 shows

an example of such migration. The left part indicates the network

before load balancing, and the right part indicates the network af-

ter load balancing. Before load balancing, only one switch attaches
Please cite this article as: Y. Chen et al., Adaptive Distributed Sof

http://dx.doi.org/10.1016/j.comcom.2016.11.009
o the left controller, which is lightly loaded, and five switches at-

ach to right controller, which is heavily loaded. In order to balance

he network, we migrate the second and the third switches from

heir master controller (the right one) to their slave controller (the

eft one), and the loads are balanced.

lgorithm 3 Balancing load among controllers

nput: B , R , T , F , α
utput: B , R , F

1: M i =

∑ m

j=1 δi, j | R i, j | F j ; (i ∈ (1 , ..., n))
2: D x,y = | M x − M y | ;
3: S e [] _ Descending(M) ;
4: for (j ∈ S e []) do

5: Min _ D = ∞ ; sl = 0 ;
6: for (i ∈ Sl[j]) do

7: if ((D Ma [j] ,i) < Min _ D) && (M i + F j ≤ αT i)) then

8: Min _ D = D Ma [j] ,i ; sl = i ;
9: end if

10: end for
11: Connect(C sl , S j); R sl, j = 1 ; R Ma [j] , j = −1 ;
12: end for
13: U pdate (B , R , F);
14: return (B , R , F);

Algorithm 3 shows the load balance action of the online algo-

ithms. The inputs include B , R , T , F and α, and the outputs are B ,

 and F . We use D x, y to indicate the load difference value between

ontroller x and controller y (Step 2). Then the algorithm sorts the

 e [] (the same meaning as the expanding action) in descending or-

er (Step 3). For each switch in the S e [], the algorithm defines the

inimum deviation Min _ D during the process and the number of

he controller sl that the switch would migrated to (Step 5). For

ach slave controllers of this switch in C Sl [j] , if the deviation be-

ween the slave controller and the current master controller of the

witch C Ma [j] is smaller than Min _ D, and the load after adding the

ow of the switch does not exceed αT , the algorithm records the

lave controller, and updates Min _ D (Steps 7-9). Then the algorithm

pdates the network (Steps 11, 13).

Computational complexity. Now we analyze the computational

omplexity of online algorithms. The online algorithms adjusts part

etwork instead of the whole network as in the polynomial time

lgorithms. And the online algorithms preprocess the information

f the network. making the process taken in some order. The worst

ase is that the load ratio of every controller exceeds the upper

hreshold α or falls below the lower threshold β , in which the

omputational complexity of the online algorithms is O (mn). In

eneral cases, just a small part of the switches should be migrated,

n which the computational complexity of the online algorithms is

uch lower O (mn).

. Evaluation

.1. Methodology

For the simulations, since known public data of SDN networks

onsist of too small topologies (for example, the Stanford back-

one has two controllers and fourteen switches), we generate the

opologies randomly, which have similar size as real networks ob-

ained from [14] . Specifically, we generate the topologies to en-

ure that each switch attaches to only one master controller. Then,

e generate slave controllers randomly for each switch and guar-

ntee that the number of slave controllers is less than n − 1 .

able 2 summaries some topologies used in the simulations. For

tware Defined Networking, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.11.009

Y. Chen et al. / Computer Communications 0 0 0 (2016) 1–10 7

ARTICLE IN PRESS

JID: COMCOM [m5G; December 6, 2016;20:13]

Fig. 6. The effectiveness of β to the controller inactivated rate when in different

network load.

Table 2

Network of different size.

Scene NO. Controller number Switch number

1 5 50

2 7 50

3 9 50

4 11 50

5 11 100

6 11 150

7 11 200

e

d

d

c

r

i

i

i

7

f

p

u

n

t

c

a

u

t

l

c

F

i

s

c

F

g

t

t

B

m

c

b

p

d

[

w

s

a

m

o

(

s

t

t

f

t

c

i

p

fi

b

c

s

7

7

t

t

t

c

n

i

T

e

t

e

F

f

ach scene, the results are the average values over thirty indepen-

ent simulations.

The traffic matrixes used for simulations are generated ran-

omly based on the synthetic topologies. The total flow of each

ontroller is not larger than αT . For simplicity and clarity of the

esults, we set the capability of all controllers as the same, which

s 100 Mbps. The results are similar for a larger controller capabil-

ty. The simulations are performed on a machine with an Intel Core

5 3470 CPU at 3.2 GHz, and 1GB of RAM, running 64bit Windows

.

The key parameters of our algorithms, i.e., α and β , are set as

ollows. First, α is the threshold of controller utilization ratio to

erform expanding of the controller pool. In the Internet, a link

tilization ratio of 0.5 is often used as threshold for traffic engi-

eering to avoid congestion, but there is no similar data for a con-

roller utilization ratio. In our simulations, we set α to 0.8, because

ontrollers are supposed to have a large capacity, and should be

ble to handle traffic burst along with the load balance, when the

tilization ratio is less than 0.8.

Second, for β - the lower threshold of controller utilization ra-

io to perform shrinking of active controllers, we simulate the on-

ine algorithms to show how β can impact the performance. The

ontroller number is set to 10, and the switch number is set to 20.
ig. 7. The effectiveness of three actions of Offline and Online algorithms. (a) Shrinking a

or reactivated controllers); (c) Load balancing action (L_D is short for load deviation).

Please cite this article as: Y. Chen et al., Adaptive Distributed Sof

http://dx.doi.org/10.1016/j.comcom.2016.11.009
ig. 6 shows the results, where each curve shows the rate of the

nactivated controllers with certain average network load. We can

ee that the number of the controllers that can be inactivated in-

reases with β . However, the increment is little when β is large.

or instance, the inactivated controllers remain as 60% when β is

reater than 0.3 in the 15 Mbps scene. This implies that some con-

roller in the network is always light-weighted, and the active con-

roller pool can be shrunk even when the lower threshold is large.

ased on the results, we set β to 0.4 in our simulations. In the

ean time, the average network load is set to 25 Mbps.

We evaluate both the offline and the online algorithms. For

omparison, we also show the optimal solution, which is obtained

y enumerating all feasible solutions. We do not evaluate the ap-

roaches proposed by existing studies, because our problem is

ifferent from other load balance problems. Existing studies, e.g.

10] , do not consider the optimization of dynamic switch migration

ith traffic load. Instead, our work focuses on how to dynamically

hrink and expand the controller pool, as well as switch migrations

nd network load balance.

Moreover, we conducted Mininet experiments, and simulated

ulti-controller in Floodlight in the experiments. We built an out-

f-band control channels using network virtualization technologies

e.g., Linux Namespace, Veth Piar and Linux Bridge) so as to mea-

ure the load of different controllers and demonstrate the effec-

iveness of our algorithms in Mininet. Due to limits of computa-

ion and memory resources in the machine, we generate a small

ull mesh topology with four switches. Each switch with two at-

ached hosts connects four controllers with the out-of-band control

hannel. Each host generate new packets so as to trigger packet-

n messages in switches. Our experiments are composed of two

hases. We generate a small number of packet-in messages in the

rst phase to shrink active controllers, and produce a large num-

er of packet-in messages in the second phase to expand the active

ontroller. For simplicity, the maximum load of each controller is

et be 3.75 Mbps.

.2. Results

.2.1. Algorithm effectiveness

Fig. 7 (a) shows the inactivated controller number when the

raffic amount decreases. We can see that the inactivated con-

roller number is approximatively proportional to the total con-

roller number in a network, and this implies that our algorithms

an dynamically shrink the active controller pool with different

etwork sizes. The inactivated controller of the online algorithms

s less than the offline algorithm, but the results are very close.

his is because our online algorithms follow the basic principles

xplored by the offline analysis.

Fig. 7 (b) shows the reactivated controller number when the

raffic amount increases. The number of active controllers before

xpanding is 5, and we can see that the reactivated controller

ction (I_Cs is short for inactivated controllers); (b) Expanding action (R_Cs is short

tware Defined Networking, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.11.009

8 Y. Chen et al. / Computer Communications 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: COMCOM [m5G; December 6, 2016;20:13]

Fig. 8. The computation overhead of three actions of offline and online algorithms. (a) Controller nodes and computation time of shrinking action and load balancing action;

(b) Switch nodes and computation time of shrinking action and load balancing action; (c) Controller nodes and computation time of expanding action and load balancing

action.

Fig. 9. Comparison with optimal algorithm. (a) Controller number after shrinking by three algorithms (Shr. is short for shrinking action); (b) Shrinking computation time of

three algorithms; (c) Controller number expanded by three algorithms in different network load (Exp. is short for expanding action).

p

t

r

i

o

w

l

t

i

c

t

e

t

n

7

i

v

g

t

F

t

h

t

r

s

o

i

o

m

r

number is approximatively proportional to the traffic amount. For

example, the number of active controllers is doubled when the

traffic amount is doubled. This is not surprising because our al-

gorithms select controllers and perform switch migration to adapt

the traffic amount dynamically. Again, the results of the offline and

the online algorithms have a similar relation to that in Fig. 7 (a),

which means that the online algorithm can still solve the con-

troller selection problem effectively while the flexibility is im-

proved.

Fig. 7 (c) shows the deviation of controller loads. We can see

that after applying the load balancing action, the deviation is re-

duced by about 50%, for all the maximum, the average, and the

minimum. The result of the offline algorithm is a little better than

the online algorithm. This is because the offline algorithm per-

forms load balancing along with the controller selection, while in

the ESDN system, controller selection and load balance are sepa-

rate modules. And this implies that, simply balancing the load (as

in existing studies) cannot achieve a load balance as good as a load

balance with dynamic adjustment of the controller pool.

7.2.2. Computation overhead

Fig. 8 (a) shows the computation time of the shrinking and the

load balancing algorithms as a function of controller number. We

can see that the algorithms to take the actions have little overhead,

i.e. a few milliseconds even when the controller number increases.

Such a time is acceptable for responding to load changes. Further,

the computation time of the shrinking algorithm increases super-

linearly with the controller number. This is because the computa-

tion complexity of the shrinking algorithm is O (mn) in the worst

case, and when the controller number increases, the switch num-

ber also increases in our simulations.

Fig. 8 (b) shows the computation time of the shrinking and the

load balancing algorithms as a function of switch numbers. The

computation time is similar to that in Fig. 8 (a), i.e., a few millisec-

onds. However, we see that the computation time of the shrinking

algorithm changes little with the switch number, while the com-
Please cite this article as: Y. Chen et al., Adaptive Distributed Sof

http://dx.doi.org/10.1016/j.comcom.2016.11.009
utation time of load balancing increases quickly. This is implies

hat, though the computation complexity of the shrinking algo-

ithm is O (mn) in the worst case, the computation overhead is less

n general, especially with respect to the switch number. On the

ther hand, the load balancing algorithm needs more computations

hen there are more switches.

Fig. 8 (c) shows the computation time of the expanding and the

oad balancing algorithms as a function of traffic amount. The ini-

ial number of active controllers is 5. We see that when the load

ncreases, the computation time needed also increases. This is be-

ause more controllers are activated to handle the traffic, and recall

hat the computation complexity in the worst case is O (mn). How-

ver, the total computation time is increasing sub-linearly when

he traffic amount is large, and is less than 4 ms when the average

etwork load reaches 135 Mbps.

.2.3. Comparison with optimal algorithm

Fig. 9 (a) shows the number of active controllers with increas-

ng network size. We can see that the results of our algorithms are

ery close to that of the optimal solution. This means that our al-

orithms can find a near-optimal solution in a short time. The ac-

ive controller number increases linearly, similar to the results in

ig. 7 (a).

Fig. 9 (b) shows the computation time of the algorithms. Note

hat the y-axis is log-scaled, and we can see that our algorithms

ave much less computation time compared to the optimal solu-

ion. The online algorithm needs less time than the offline algo-

ithm. This means that our algorithms can find the near-optimal

olutions efficiently. For instance, when the number of controllers

r switches increases, the time consumed by the optimal algorithm

s several thousand times of that consumed by our algorithms.

Fig. 9 (c) shows the number of active controllers as a function

f traffic amount. Again, we see that the optimal solution has the

inimum number of active controllers, and the results of our algo-

ithms are a little higher. However, the results are very close and
tware Defined Networking, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.11.009

Y. Chen et al. / Computer Communications 0 0 0 (2016) 1–10 9

ARTICLE IN PRESS

JID: COMCOM [m5G; December 6, 2016;20:13]

Fig. 10. Experiment in Mininet. (a) Network load of every controller; (b) Number of activated controllers(R_Cs is short for reactivated controllers).

t

t

7

M

c

c

t

c

t

l

o

t

a

n

r

t

t

T

t

t

c

s

c

w

c

8

t

e

1

d

n

t

t

s

a

2

o

O

p

t

l

c

f

a

t

i

v

v

t

u

c

t

t

b

t

t

S

d

s

w

t

t

[

i

i

d

t

s

i

m

t

w

r

l

e

l

e

t

d

o

t

t

W

i

p

he online algorithm only incurs 15.6% more controllers compared

o the optimal algorithm in the worst case.

.2.4. Experiment in Mininet

Fig. 10 (a) shows the network load of every controller in the

ininet experiment, and Fig. 10 (b) shows the number of activated

ontroller in the network. Initially, the load in controllers, i.e., c1,

2, c3, c4, are set to be 1, 1.5, 1.8, and 2.0 Mbps, respectively. As

he number of packets-in messages generated by each switch de-

reases and the whole network load decreases, the shrinking ac-

ion will be activated. As shown in Fig. 10 (a), the average network

oad in c2 and c3 reduce in the first phase (within 6 s). The load

f these two controllers decline to 0 Mbps, and these two con-

rollers are inactivated. Meanwhile, since the packet-in messages

re shifted to the other controllers, i.e., c1 and c4, their average

etwork load reaches 1.7 and 3 Mbps, respectively. Therefore, the

esults demonstrate that the shrinking action can effectively shrink

he network effectively.

In the second phase, i.e., starting from 7 s (see Fig. 10 (a)), the

raffic in switches increase, and the whole network load increases.

hereby, the expanding action will be activated. We can observe

hat the average network load increases from 0 to 2 Mbps. Con-

rollers c2 and c3 are activated, and the average network loads in

2 and c3 increase to 1.9 and 2.1 Mbps, respectively, at the ninth

econd. Meanwhile, the average network loads in c1 and c4 de-

reases to 1.1 and 2.1 Mbps, respectively. As shown in Fig. 10 (b),

ith the increase in the network load, the number of activated

ontrollers increases from two to four.

. Related work

The SDN controller architecture has been developed from a cen-

ralized one to a distributed one. The centralized system experi-

nced single-threaded design [15] and multi-threaded design [16–

8] in recent years. For instance, Yeganeh et al. [17] proposed Kan-

oo which used two layers of controllers to control the whole

etwork. The bottom layer is a set of controllers disconnected

o each other, and the top layer is the logically centralized con-

roller. The design of Kandoo is much similar to the distributed

ystem.

However, the centralized controller has an issue of scalability

nd reliability. Thus, multiple distributed SDN controllers [6,7,19–

1] are proposed. For example, Onix [7] is a control platform which

ffers a general-purpose API for control plane implementations.

pen Network Operating System (ONOS) [19] presented an ex-

erimental distributed SDN control platform. ONOS adopts a dis-

ributed architecture for high availability and scale-out. ONOS fol-

owed in the footsteps of previous closed source distributed SDN
Please cite this article as: Y. Chen et al., Adaptive Distributed Sof

http://dx.doi.org/10.1016/j.comcom.2016.11.009
ontrollers such as [7] . Yanc [20] proposed a controller platform

or software-defined networks that exposes network configurations

nd state as a file system. It enables a network operating system

hat can be used in various ways so that it can leverage different

nnovation in the operating system area. HotSwap [21] is a hyper-

isor that sits between the controller and the switches and pro-

ides seamless upgrades for SDN controllers. In these architectures,

he mapping between a switch and a controller is statically config-

red, which cannot well handle bursts and thereby may result in

ontroller crash.

To tackle these issues, Dixit et al. [10] proposed an elastic dis-

ributed SDN controller system, ElastiCon, which attracts much at-

ention. With a switch migration protocol, switches that controlled

y a controller can be seamlessly migrated to another. However,

he design does not discuss how to achieve the architecture adap-

ive to runtime network load, and only includes a basic elastic

DN controller architecture and a switch migration proposal. They

id not develop load adaptation algorithms that compute optimal

witch migration strategy respect to dynamic traffic load. but our

ork focuses on how to dynamically shrink and expand the con-

roller pool with respect to the network load and switch migra-

ions.

To achieve load balance between controllers, Guo et al.

22] proposed Load Variance-based Synchronization (LVS) by elim-

nating forwarding loops and to lower synchronization frequency

n the multi-controller multi-domain SDN network. However, they

oes not propose some specific mechanisms to implement migra-

ions between controllers and switches according to network load

o as to achieve load balance in runtime. In particular, these ex-

sting schemes might make load balance complicated under switch

igrations and incur a high overhead. However, our elastic con-

roller scheme dynamically shrinks and expands the controller pool

ith respect to the network load.

In this paper, we develop offline algorithms and online algo-

ithms of polynomial time to solve this controller selection prob-

em. The network controller pool can be dynamically shrank or

xpanded according to the network changes. When the network

oad is uneven, the algorithm can also balance the network. We

xtend out previous work appeared in [23] . In particular, we study

he controller selection problem in depth and present a two-step

evelopment of the offline and online algorithms. We develop the

ffline algorithm which is proved to be a 2-approximation heuris-

ic; and we improve the online algorithm to decrease the compu-

ational complexity in the worst case form O (n 2 m) [23] to O (mn).

e discuss the ESDN architecture in detail, which includes mon-

tor, measurements, and action modules. We also strengthen the

erformance evaluation by experiments based on Mininet.
tware Defined Networking, Computer Communications (2016),

http://dx.doi.org/10.1016/j.comcom.2016.11.009

10 Y. Chen et al. / Computer Communications 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: COMCOM [m5G; December 6, 2016;20:13]

[

[

[

9. Conclusion

In this paper, we propose a framework to achieve an adaptive

and elastic SDN network, namely ESDN. It dynamically selects a

minimum number of active controllers that switches attached to,

and changes the mapping between switches and controllers ac-

cording to the network load. We develop offline algorithms and

online algorithms to solve the controller selection problem. Our

offline algorithms can compute the best solution, and the online

algorithms enable dynamic controller selection with switch migra-

tion in runtime. We conduct various experiments to demonstrate

the effectiveness of the proposed algorithms.

Acknowledgments

This work was supported in part by the National Key R&D

Program of China under grant no. 2016YFB0800102, in part by

the National Natural Science Foundation of China under grant

no. 61572278 and no. 61502268 , in part by the R&D Pro-

gram of Shenzhen under grant nos. ZDSYS20140509172959989,

JSGG20150512162853495, Shenfagai[2015]986.

References

[1] M. Casado , T. Garfinkel , A. Akella , M.J. Freedman , D. Boneh , N. McKeown ,

S. Shenker , SANE: A Protection Architecture for Enterprise Networks, USENIX,

2006 .
[2] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. McKeown, S. Shenker, in: Ethane:

Taking Control of the Enterprise, SIGCOMM, 2007, pp. 1–12, doi: 10.1145/
1282380.1282382 .

[3] A. Greenberg, G. Hjalmtysson, D.A. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan,
J. Zhan, H. Zhang, in: A Clean Slate 4D Approach to Network Control and Man-

agement, SIGCOMM CCR, 2005, pp. 41–54, doi: 10.1145/1096536.1096541 .

[4] T.V. Lakshman , T. Nandagopal , R. Ramjee , K. Sabnani , T. Woo , The SoftRouter
Architecture, HOTNETS, 2004 .

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, in: Openflow: Enabling Innovation in Campus Networks,

SIGCOMM, 2008, pp. 69–74, doi: 10.1145/1355734.1355746 .
Please cite this article as: Y. Chen et al., Adaptive Distributed Sof

http://dx.doi.org/10.1016/j.comcom.2016.11.009
[6] D. Levin, A. Wundsam, B. Heller, N. Handigol, A. Feldmann, in: Logically Cen-
tralized? State Distribution Trade-offs in Software Defined Networks, HotSDN,

2012, pp. 1–6, doi: 10.1145/2342441.2342443 .
[7] T. Koponen , M. Casado , N. Gude , J. Stribling , L. Poutievski , M. Zhu , R. Ra-

manathan , Y. Iwata , H. Inoue , T. Hama , S. Shenker , in: Onix: A Distributed Con-
trol Platform for Large-scale Production Networks, OSDI, 2010, pp. 351–364 .

[8] S. Schmid, J. Suomela, in: Exploiting Locality in Distributed SDN Control,
HotSDN, 2013, pp. 121–126, doi: 10.1145/2491185.2491198 .

[9] A .A . T. Benson, D. Maltz, in: Network Traffic Characteristics of Data Centers in

the Wild, IMC, 2010, pp. 267–280, doi: 10.1145/1879141.1879175 .
[10] A. Dixit, F. Hao, S. Mukherjee, T.V. Laskshman, R. Kompella, in: Towards

an Elastic Distributed SDN Controller, HotSDN, 2013, pp. 7–12, doi: 10.1145/
2491185.2491193 .

[11] OpenFlow White Paper: https://www.opennetworking.org/sdn-resources/
- sdn- library/whitepapers .

[12] OpenNetworkFoundation: https://www.opennetworking.org/sdn-resources/

onf- specific- ations/openflow .
[13] X. Feng , Computational Complexity, University of Electronic Science and Tech-

nology: China Machine Press, 2005 .
[14] The internet topology zoo: http://www.topology-zoo.org/index.html .

[15] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, in: Nox: To-
wards an Operating System for Networks, SIGCOMM CCR, 2008, pp. 105–110,

doi: 10.1145/1384609.1384625 .

[16] Floodlight: http://www.projectfloodlight.org/floodlight/ .
[17] S. Yeganeh, Y. Ganjali, in: Kandoo: A Framework for Efficient and Scalable

Offloading of Control Applications, HotSDN, 2012, pp. 19–24, doi: 10.1145/
2342441.2342446 .

[18] D. Erickson, in: The Beacon Openflow Controller, HotSDN, 2013, pp. 13–18,
doi: 10.1145/2491185.2491189 .

[19] P. Berde, M. Gerola, Hart, in: Onos: Towards an Open, Distributed SDN OS,

HotSDN, 2014, pp. 1–6, doi: 10.1145/2620728.2620744 .
20] M. Monaco, O. Michel, E. Keller, in: Applying Operating System Principles to

SDN Controller Design, HotNet, 2013, pp. 1–7, doi: 10.1145/2535771.2535789 .
[21] L. Vanbever, J. Reich, T. Benson, N. Foster, J. Rexford, in: Hotswap: Correct and

Efficient Controller Upgrades for Software-Defined Networks, HotSDN, 2013,
pp. 133–138, doi: 10.1145/2491185.2491194 .

22] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, H. Jonat, Improving the perfor-

mance of load balancing in software-defined networks through load variance-
based synchronization, Comput. Networks 68 (2014) 95–109, doi: 10.1016/j.

comnet.2013.12.004 .
23] Y. Chen, Q. Li, Y. Yang, Q. Li, Y. Jiang, X. Xiao, in: Towards Adaptive Elastic

Distributed Software Defined Networking, IPCCC, 2015, pp. 1–8, doi: 10.1109/
PCCC.2015.7410280 .

tware Defined Networking, Computer Communications (2016),

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0001
http://dx.doi.org/10.1145/1282380.1282382
http://dx.doi.org/10.1145/1096536.1096541
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0004
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/2342441.2342443
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0007
http://dx.doi.org/10.1145/2491185.2491198
http://dx.doi.org/10.1145/1879141.1879175
http://dx.doi.org/10.1145/2491185.2491193
https://www.opennetworking.org/sdn-resources/-sdn-library/whitepapers
https://www.opennetworking.org/sdn-resources/onf-specific-ations/openflow
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30603-X/sbref0011
http://www.topology-zoo.org/index.html
http://dx.doi.org/10.1145/1384609.1384625
http://www.projectfloodlight.org/floodlight/
http://dx.doi.org/10.1145/2342441.2342446
http://dx.doi.org/10.1145/2491185.2491189
http://dx.doi.org/10.1145/2620728.2620744
http://dx.doi.org/10.1145/2535771.2535789
http://dx.doi.org/10.1145/2491185.2491194
http://dx.doi.org/10.1016/j.comnet.2013.12.004
http://dx.doi.org/10.1109/PCCC.2015.7410280
http://dx.doi.org/10.1016/j.comcom.2016.11.009

	Adaptive Distributed Software Defined Networking
	1 Introduction
	2 Background
	3 Problem statement and modeling
	4 The offline algorithm
	5 ESDN design
	5.1 Overview
	5.2 Monitoring the network
	5.3 Making decisions and adjusting the network

	6 The online algorithms
	6.1 Shrinking controller pool
	6.2 Expanding controller pool
	6.3 Balancing load among controllers

	7 Evaluation
	7.1 Methodology
	7.2 Results
	7.2.1 Algorithm effectiveness
	7.2.2 Computation overhead
	7.2.3 Comparison with optimal algorithm
	7.2.4 Experiment in Mininet

	8 Related work
	9 Conclusion
	 Acknowledgments
	 References

