
Rout3D: A Lightweight Adaptive Routing Algorithm

for Tolerating Faulty Vertical Links in 3D-NoCs
Amir Charif, Nacer-Eddine Zergainoh, Alexandre Coelho, Michael Nicolaidis

Univ. Grenoble Alpes, TIMA, F-38000 Grenoble, France

CNRS, TIMA, F-38000 Grenoble, France

{Amir.Charif, Nacer-Eddine.Zergainoh, Alexandre.Coelho, Michael.Nicolaidis}@imag.fr

Abstract—3D integration opens up new opportunities for

future multiprocessor chips by enabling fast and highly scalable

3D Network-on-Chip (NoC) topologies. However, in an aim to

reduce the cost of Through-silicon via (TSV), partially vertically

connected NoCs, in which only a few vertical TSV links are

available, have been gaining relevance. In addition, the number of

vertical paths can be expected to be further reduced due to defects

and runtime failures. To reliably route packets under such

conditions, we introduce a lightweight, efficient and highly

resilient adaptive routing algorithm targeting partially vertically

connected 3D-NoCs named “Rout3D”. It requires a very low

number of virtual channels (VCs) to achieve deadlock-freedom (2

VCs in the East and North directions and 1 VC in all other

directions), and guarantees packet delivery as long as one healthy

TSV connecting all layers is available anywhere in the network.

We combine our algorithm with a novel offline reconfiguration

method requiring only 4 bits per router to maintain connectivity

upon the occurrence of faults while minimizing the

implementation cost. Simulation results reveal that our algorithm

is capable of sustaining a very good level of performance

compared to related works, in spite of using less virtual channels.

Keywords—network-on-chip; fault-tolerance; 3D-NoC; TSV

failure; vertically partially connected 3D-NoC;

I. INTRODUCTION

Networks-on-Chip (NoCs) [1] have effectively become the
go-to paradigm for on-chip interconnections in modern
manycore systems, offering a high-performance communication
infrastructure for Chip Multiprocessors (CMPs), Multiprocessor
Systems-on-Chip (MPSoCs) and even Graphics Processing
Units (GPUs) [2], [4]. If NoCs were already perceived as a
highly scalable and efficient alternative to the traditional bus,
they are even more so with the recent emergence of 3D
integration, which enables the stacking of several silicon layers
and allowing for inherently low-latency three-dimensional NoC
topologies (3D-NoCs) to be considered [3], [6].

Through-Silicon Via (TSV) has been accepted as one of the
most viable technologies to enable vertical communication
between different NoC layers [7]. However, due to its non-
negligible cost, the number of vertical links must be kept to a
minimum, resulting in incomplete 3D-NoC topologies
commonly referred to as Vertically-Partially-Connected NoCs.
In addition, due to the vulnerability of TSVs to manufacturing
defects as well as runtime failures [18], the number of available
TSV links may end up being reduced even further.

Under such extreme conditions, a flexible routing algorithm
that guarantees packet delivery with a limited number of vertical
links is necessary. Perhaps the most challenging aspect in
designing such algorithms is ensuring correct operation

(Deadlock-freedom, livelock-freedom, connectivity) at a
reasonable cost, without heavily limiting the flexibility of the
algorithm and the number of fault scenarios it can tolerate. More
specifically, deadlock-avoidance often requires adding a certain
number of Virtual Channels (VCs) in each router, which consist
of disjoint flit FIFOs used to separate different flows. As these
FIFOs occupy the largest part of a NoC router’s area [17], an
algorithm that can operate using a small number of VCs is
strongly desirable. While several algorithms requiring no or few
virtual channels have been recently proposed [16], [8], they
often follow specific routing rules that pose restrictions on the
location and the selection of vertical links, hindering both
reliability and performance. A routing algorithm capable of
relaxing these restrictions while keeping the implementation
cost to a minimum is yet to be introduced.

In this paper, we address this challenge by introducing an
efficient and highly resilient routing algorithm targeting
partially vertically connected 3D-NoCs named “Rout3D” (reads
“Routed”). Our algorithm requires a very low number of virtual
channels to achieve deadlock-freedom (2 VCs in the East and
North directions and 1 VC in all other directions), and
guarantees packet delivery as long as one healthy TSV
connecting all layers is available in the network, regardless of its
position. Moreover, it is capable of routing packets adaptively
within each layer, so as to avoid congested areas. A novel offline
reconfiguration method requiring only 4 bits per router is also
introduced and combined with our flexible algorithm to
maintain connectivity upon the occurrence of faults. Despite the
reduced number of virtual channels, we report a very good level
of performance compared to related works thanks to an
optimized utilization of the available resources.

The remainder of this paper is organized as follows: In
section II we explore existing solutions in the context of 3D
routing, with an emphasis on the works that are closest related
to our contribution. In section III, the target system architecture
as well as the proposed routing algorithm are described in detail.
In section IV, we compare our algorithm by simulation to other
works from the literature before concluding in section V.

II. RELATED WORKS

In the context of 3D-NoCs, several routing algorithms have
been proposed. From simple deterministic algorithms such as
ZXY, to fully adaptive algorithms such as 3D-FAR [19] and
DyXYZ [21]. Fully adaptive algorithms were shown to perform
well but they only operate in fully connected meshes. An
extension of 3D-FAR, called 3D-FT was introduced in [19],
which is capable of tolerating the absence of vertical or
horizontal links. However, like 3D-FAR, it requires a very large

2017 22nd IEEE European Test Symposium (ETS)

!

978-1-5090-5457-2/17/$31.00 ©2017 IEEE

!

number of virtual channels (2, 2 and 4 along the Z, X and Y
dimensions respectively). In [20], the authors extend the turn
model for 2D meshes [5] to the third dimension and propose an
algorithm that tolerates faults by replicating each packet and
sending it in two different virtual networks, one using the 3D
negative-first algorithm and the other using the 3D positive-first
algorithm. AFRA [22] is another algorithm that can tolerate a
certain number of faulty vertical links in fully connected NoCs.

Only a few proposals have been made in the context of
partially vertically connected 3D-NoCs. In [9], the authors
propose to use any deterministic deadlock-free 2D mesh routing
algorithm to deliver a packet to an elevator (vertical link), which
will be used to deliver the packet to its destination layer, then to
continue routing using the planar routing algorithm until the
packet reaches its destination. It was proven to be deadlock-free
using 2 virtual channels along the X and Y dimensions. This
approach, named “Elevator-First”, is appealing because of its
simplicity, its support for any layer topology, and because it does
not impose any constraints on the position of healthy vertical
links. Routing a packet towards an elevator requires the insertion
of a temporary header containing the elevator’s address.
Addresses of the up and down elevators are stored inside each
router [17], requiring an amount of storage that increases with
the network size. In order to reduce the requirements of
Elevator-First in terms of virtual channels, authors in [16] add
certain constraints on the usage of the elevators and show that
routing is possible without the use of virtual channels. In [15],
another algorithm that does not require the use of virtual
channels is presented, but it requires the presence of one vertical
link at the north-east corner.

The ETW (East-then-West) routing algorithm [8] employs a
clever subnetwork decomposition to limit the virtual channel
requirements, while offering partial adaptiveness to mitigate
congestion. ETW uses 1, 2 and 1 virtual channels along the X,
Y and Z dimensions respectively. The authors have also
proposed some solutions to tolerate runtime failures using the
dynamic elevator assignment in [12] or the propagation of TSV
status in [10]. Unfortunately, ETW poses some very limiting
constraints on both the location, and the selection of the
elevators. It requires the existence of at least one elevator in the
east-most column, and for packets heading south, an elevator
located east to the destination must be taken, leading to highly
inefficient routes in some cases. In addition, because the choice
of the elevator depends on the destination, 3 elevator addresses
need to be stored in each router.

Finally, the 3D variant of the LBDR (Logic Based
Distributed Routing) was recently presented in [11]. As is the
case of LBDR, LBDR3D supports a variety of partially adaptive
routing algorithms and is fully reconfigurable to tolerate faulty
horizontal and vertical links. It was proven deadlock- and
livelock- free similarly to Elevator-First and requires the same
minimum number of virtual channels as Elevator-First to
separate between Upward and Downward flows. However, in
LBDR3D, only a fixed number of bits are stored within each
router to locate healthy elevators.

The algorithm that we propose in this paper also targets
partially vertically connected 3D NoCs and aims at using as few
virtual channels as possible while offering adaptivity to avoid

congestion. To help the reader clearly position our contribution,
a comparison between some of the aforementioned algorithms
and Rout3D is summarized in table 1. Our algorithm uses the
same total number of VC FIFOs as ETW but does not have any
requirements with regards to the position of the elevators. Like
ETW and unlike Elevator-First and LBDR3D, it requires that the
vertical connections be pillars, i.e. for Rout3D, a healthy TSV is
one that connects all layers. To keep track of healthy elevators
without having to store router addresses, we propose a scalable
method that uses a small number of bits per router (only 4 bits)
to guide packets to their nearest healthy elevator.

III. THE ROUTING ALGORITHM

In this section, we introduce the proposed routing solution
after describing the target NoC architecture.

A. Preliminary setup

In this work, we consider a NoC consisting of stacked mesh
layers connected to each other using TSV pillars called
« elevators », as shown in fig. 1. At design time, for cost
reduction purposes, we assume that only some of the routers are
connected by vertical links. Therefore, the NoC consists of 2D
routers including only 5 input/output ports (Local, East/X+,
West/X-, North/Y+, South/Y-), and 3D routers which include 2
additional ports (Up/Z+, Down/Z-) [17].

In addition, we consider that some TSV (Through-Silicon
Via) connections may become unavailable either due to
manufacturing defects, aging or wear-out, rendering some
elevators unusable. An elevator is considered healthy only if it
connects all layers (i.e. if it is still a pillar). For instance, the
vertical link at router B in fig. 1 is not considered healthy.

B. Locating Healthy Elevators with the Elevator Compass

In partially vertically connected 3D-NoCs, routers need a
way to locate the available elevators in the network. To avoid
storing complete node addresses inside each router, we suggest
using the following approach. Each router stores 4
reconfigurable bits (𝐶𝑒𝑎𝑠𝑡 , 𝐶𝑤𝑒𝑠𝑡 , 𝐶𝑛𝑜𝑟𝑡ℎ, 𝐶𝑠𝑜𝑢𝑡ℎ) that are used
as a compass to point to the nearest elevator, hence the name
Elevator Compass. As an example, in fig. 1, if router A wants to
communicate with a node in a different layer, it has to take the
nearest elevator located at router D, which is south-east to node
A. Therefore, its compass bits are set to
(𝐶𝑒𝑎𝑠𝑡, 𝐶𝑤𝑒𝑠𝑡 , 𝐶𝑛𝑜𝑟𝑡ℎ, 𝐶𝑠𝑜𝑢𝑡ℎ) = (1, 0, 0, 1) . Similarly, routers B
and C store the following values to also point to router D:
(𝐶𝑒𝑎𝑠𝑡, 𝐶𝑤𝑒𝑠𝑡 , 𝐶𝑛𝑜𝑟𝑡ℎ, 𝐶𝑠𝑜𝑢𝑡ℎ) = (0, 0, 0, 1) and
 (𝐶𝑒𝑎𝑠𝑡, 𝐶𝑤𝑒𝑠𝑡, 𝐶𝑛𝑜𝑟𝑡ℎ, 𝐶𝑠𝑜𝑢𝑡ℎ) = (1, 0, 0, 0).

TABLE I. A COMPARISON BETWEEN ROUT3D AND OTHER ALGORITHMS

Routing

algorithm

VCs /

router

Elevator

position

Storage /

router Pillar Adaptive

Elevator-
first [9]

10 Any 2 IDs No No

ETW [12] 8
East-most
column

3 IDs Yes Yes

LBDR-3D
[11]

10 Any 22bits No Yes

Proposed 8 Any 4bits Yes Yes

!

!

Fig. 1. Overview on the NoC architecture

This is analogous to the Vertical Bits used by LBDR3D [11].
However, the algorithm used to set these bits in LBDR3D does
not guarantee that following vertical bits starting from an initial
node leads to the intended Elevator, as different hops along the
way may have a different view of where the closest elevator is,
which is why additional signals had to be introduced to prevent
livelocks [11]. We introduce an algorithm for setting the
Elevator Compass bits that does not suffer from this limitation.
The algorithm is presented in Algorithm 1. Instead of iterating
over the nodes and finding the nearest elevator for each node
independently as was done in [11], we iterate through each
healthy elevator in turn and check if it is the nearest elevator to
every node in the network. Even if the distance from some node
to the new elevator is the same as its previously assigned nearest
elevator, the new elevator is still preferred as the nearest elevator
node. This ensures that starting from any initial node A, whose
compass is pointing to node E, following the compass in the
direction of E reaches a node B that points to the same nearest
elevator E. If B had a nearest elevator node F different from E,
then according to Algorithm 1, F would also be the nearest
elevator to A. Therefore, our algorithm inherently guarantees
that packets always reach their nearest elevator. Algorithm 1 is
executed offline every time a new TSV fault is detected.

C. Constructing the Rout3D algorithm

The general approach we take to construct our routing
algorithm is similar to that taken in several previous works [19],
[12], which consists in identifying a set of virtual networks that
ensure connectivity and deadlock-freedom. Our proposal starts
by defining 3 virtual networks as shown in fig. 2. The first and
third virtual networks (V0, V2) only use the X+ and Y+ physical
channels. The second virtual network (V1) includes all the
remaining directions (X-, Y-, Z+, Z-).

Because the X+ and Y+ physical channels are shared
between two virtual networks, two virtual channels are required
in these directions. The two virtual channels at the X+ direction
are noted (X0+, X1+), whereas the virtual channels in the Y+
direction are noted (Y0+, Y1+). The other directions, which are
only used by V1, do not necessitate additional virtual channels.

Packets may traverse virtual networks only in increasing
order (V0 → V1 → V2). Moreover, in order to enhance the
utilization of virtual channels, packets of the highest virtual
network (V2) are allowed to request both virtual channels in
the X+ and Y+ directions (X0+, X1+, Y0+, Y1+) as long as they
wait for both virtual channels simultaneously, whereas packets
of the lowest virtual network (V0) can only request one of the
two virtual channels (namely X0+ and Y0+).

The routing algorithm can be simply described as follows: If
a packet has reached (or has originated in) the destination layer,
route it towards its destination using the negative directions first
(V1 then V2). Otherwise, route the packet towards the chosen
elevator using the positive directions first (V0 then V1) and use
V1 to elevate the packet to the destination layer. When a packet
is headed East-North or West-South, routing can be performed
adaptively and the least congested route is selected.

Two examples are shown in fig. 3 to illustrate this routing
process. In fig. 3 (a), the source “S” and the destination “D” are
located on the same layer so the packet is delivered adaptively
using the Negative-First algorithm [5]. In the second example
the source and destination are located at different layers so the
closest elevator is taken first following the positive directions
first before routing towards the destination in Negative-first
order.

D. Deadlock-freedom, livelock-freedom and connectivity

It is easy to prove that cycles cannot form within each virtual
network as none of the defined virtual networks spans two full
dimensions, which is a requirement for completing a cycle.
However, because some virtual channels are shared among two
virtual networks, we cannot rely on the absence of cyclic

Algorithm 1: Setting Elevator Compass bits

00: Function set_compass {

01:

02: Variables:

03: Dist[NumNodes] : Distance to closest elevator

04: Output:

05: Compass[NumNodes] : Compass bits

06:

07: For each node i do

08: Initialize Dist[i] to infinity

09: Initialize Compass[i] to all zeros

10: End for

11:

12: For each healthy elevator (xE, yE) do

13: For each node i of coord (x, y, z) do

14: If |xE-x| + |yE-y| <= Dist[i] then

15: Dist[i] = |xE-x| + |yE-y|

16: Compass[i].North = (yE > y)

17: Compass[i].South = (yE < y)

18: Compass[i].West = (xE < x)

19: Compass[i].East = (xE > x)

20: End if

21: End for

22: End for

23:}

!

!

dependencies to prove freedom from deadlocks. Instead, we
elaborate our proof based on two facts. (1) First, packets in the
highest virtual network (V2) are always able to request virtual
channels X1+ and Y1+, which are dedicated to V2 and can never
be acquired by packets of other virtual networks. This implies
that packets of V2 cannot be blocked indefinitely because these
virtual channels can either be free or occupied by other packets
of V2, which, as was previously mentioned, cannot form cycles
between them due to the absence of negative directions. Second,
our algorithm ensures that virtual networks are traversed in
increasing order. This means that packets of V0 may be waiting
for other packets of V0, in which case no cycles can form, or for
packets in V1, which in turn can only wait for other packets in
V1 or packets in V2. From (1) we know that packets in V2
always have an escape VC available. Therefore, deadlocks can
never occur. It is worth noting that the absence of cycles in the
channel dependency graph has been proven unnecessary for
deadlock-freedom and overly restrictive in many previous
studies [13], [14]. Rout3D has no such limitation and allows the
presence of cycles in order to enhance the utilization of VCs and
increase network throughput.

Because the individual virtual networks do not allow packets
to loop indefinitely, and because they are traversed in increasing
order, the algorithm is also livelock-free. In the worst case a
packet reaches the north-east corner in V0, then the west-south
corner of either the top or the bottom layer in V1 then end up in
the north-east corner of that same layer in V2.

One thing to notice is that routing within each layer with
Rout3D is equivalent to routing using the minimal
Negative/Positive-first turn model [5], which is connected. This
means that routing from any source node to any elevator, and
from any elevator to any destination node is always possible.
Therefore, as long as one elevator exists, regardless of its
position, packet delivery is guaranteed.

E. Rout3D+: Enhancing Rout3D with additional VCs

As a way of improving our algorithm in terms of
performance, we propose another variant, called Rout3D+,
which includes one additional virtual channel per vertical port
compared to Rout3D. These VCs are used without restrictions
by all V1 packets for the sole purpose of boosting performance.
Assigning these extra VCs to the Z dimension has two major
benefits: First, these additional VCs are not present in 2D
routers. This means that Rout3D+ still uses less virtual channels
in 2D routers than Elevator-First, but now uses the same number
of VCs in 3D routers, leading to a lower total cost in terms of
VC FIFOs. The second reason for selecting the Z dimension is
because there is likely to be a high contention on the elevators
as few vertical connections may be shared between numerous
flows. Therefore, adding virtual channels can reduce the
pressure on the vertical links.

F. Complexity analysis

To have an approximate idea about the expected cost of
Rout3D, we compare its implementation requirements to those
of the Elevator-First implementation that uses XY routing [17].
Because Rout3D uses a very simple routing logic, we expect the
cost of the routing function, which is purely combinational, to
be only slightly more complex than the XY logic used by

Elevator-First. However, while the use of XY routing removes
the need to connect all input-output pairs in the switch allocator
and the crossbar (turns from Y to X are not required), Rout3D
allows turns from any dimension to the other, which means that
more connections need to be added if adaptiveness must be
achieved. In addition, Elevator-First does not require input VC
arbiters because every packet can only request one same VC
during its entire transit. Conversely, because Rout3D and
Rout3D+ make it possible for some packets to request several
VCs (section III-C and section III-D), arbiters are necessary to
select among free output VCs. Finally, because our algorithm is
adaptive, extra hardware may be necessary for congestion
management if using the locally available information does not
offer the desired level of performance [24]. However, this choice
is up to the application designer and is not intrinsic to our routing
algorithm. Despite these additions, because the router’s area is
largely dominated by the number of virtual channel FIFOs [17],
we expect both Rout3D and Rout3D+ to be less costly than
Elevator-First overall. The elevator selection policy (amount of
storage + logic) also contributes to the router’s area
requirements and using the Elevator Compass method proposed
in this section guarantees that the cost does not increase
proportionally with the network size. However, similarly to
congestion management, this method is not specific to Rout3D
and can be used in conjunction with the Elevator-first algorithm
as well. Also, in cases where the Nearest Elevator is not the
optimal criterion of selection, any other selection method can
also be used in conjunction with the Rout3D algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we compare on the same platform the
performance of Rout3D and Rout3D+ to Elevator-first [9].
Although the original Elevator-first is associated with
deterministic routing (XY), the approach can be generalized to
support other 2D deadlock-free algorithms as was done in [11].
We compare our algorithm with two variants of Elevator-first,
the original one using XY (‘Elevator-First-XY’), and an
adaptive version that uses the Negative-first algorithm
(‘Elevator-First-NF’). We should point out that because we want
to test topologies with random fault scenarios, we will not
include algorithms that have special requirements about the
location of TSVs in this evaluation. Also, because LBDR3D is
not a routing algorithm per se but rather a scalable and
reconfigurable method for implementing Elevator-First
algorithms in hardware, a comparison with Elevator-first is
equivalent to a comparison with LBDR3D as long as we are only
comparing performance at the system level.

Fig. 2. Physical channels used by the three virtual networks

!

!

Fig. 3. An example demonstrating the operation of Rout3D

For simulations, we use an in-house GPU-based parallel
cycle-accurate NoC simulator that we validated against an RTL
NoC implementation [23]. We simulate a 256-node network
consisting of 4 stacked 8x8 meshes. For all four algorithms, we
use 4-flit deep FIFOs, and packets have a fixed size of 5 flits.
Each algorithm uses the minimum number of VCs it requires to
operate. All algorithms use the Manhattan Distance –based
elevator selection as described in section III-B. Adaptive
algorithms select the least congested output port, based on a
local congestion metric, when several candidates are available.

At the beginning of each simulation, a specific number of
TSV pillars are assigned randomly. We perform two series of
tests: one with 48 pillars (75% vertical connections) and another
with only 16 pillars (25% vertical connections). For each
configuration, 100 iterations lasting 100000 cycles each are
executed and the average results are presented.

For performance evaluation, 4 types of synthetic traffic
modes are considered:

Uniform Random: Each source sends its packets to a random
destination following a uniform distribution.

Hotspot: One node in the network is designated as a hotspot
node and 10% of the packets generated by each source is
destined to this hotspot node. The rest of the packets are sent to
a random destination. In our case, we chose router (𝑋, 𝑌, 𝑍) =
 (7,7,2) to be the hotspot node. This choice is justified later.

Bit complement: Node (𝑋, 𝑌, 𝑍) sends all of its packets to node
(�̅�, �̅�, �̅�) where �̅� is the two’s complement of 𝑋.

Shuffle: If N is the number of nodes, a node of ID 𝑖𝑑 < 𝑁/2
sends packets to node of ID 2 × 𝑖𝑑. A node of 𝑖𝑑 ≥ 𝑁/2 sends
its packets to the node of ID 2 × 𝑖𝑑 + 1 𝑚𝑜𝑑 𝑁.

 As a performance metric we consider the average packet
latency, which is the average time it takes a packet to reach its
destination, including the time it spends in the source queue. Our
results are presented in fig. 4.

 We first examine the results when 75% of TSVs are
available. Although Rout3D would be expected to be
outperformed by Elevator-First due to its lower number of VCs,
we can see that in some cases (hotspot and bit complement
traffic profiles) it can yield better performance than Elevator-
first. This is explained by the fact that Rout3D is more flexible
in its usage of VCs. Because packets having reached their
destination layer are able to request both VCs in the north and
east directions, they experience less blocking as they move

forward if their destination is located in the north east. By
contrast, in Elevator-first, packets may only request one VC
during their entire journey. This explanation is confirmed by the
large difference in latency under hotspot traffic, where we
expressly chose the hotspot to be located in the north east corner
to highlight this property. Another thing to take note of is that
although Rout3D performs better than Elevator-First-NF under
complement traffic, it is outperformed by Elevator-First-XY.
This result is not surprising because both uniform and bit
complement traffics are known to favor deterministic routing
over adaptive routing.

 One interesting but perhaps counterintuitive final
observation, is that although Rout3D+ (Section III-E)
expectedly outperforms Rout3D in uniform, hotspot and
complement traffics, we can see cases where adding a VC in the
Z dimension does not have the desired effect on performance.
This is the case, for instance, in Shuffle traffic. We explain this
based on two factors. One is the fact that the tested network
consists of very large layers (64 nodes), and the second is the
availability of a relatively large number of elevators. Because
packets are able to quickly reach their destination layer, due to a
high elevator availability, packets spend most of their time in the
destination layer. In such scenarios, performance is not limited
by the vertical bandwidth, but rather by the multiplexing taking
place within each layer. Because adding a VC in the vertical
ports means that packets in their destination layer are
multiplexed not with one, but two packets coming from other
layers, packets in their destination layer experience a larger
delay. Of course, this is only valid for traffic scenarios where
many nodes communicate with other nodes of the same layer,
which is the case of Shuffle traffic. When the number of TSVs
is reduced, we can see that, as predicted in Section III-E, the use
of these vertical VCs yields a significant performance
improvement.

Fig. 4. Performance evaluation results

!

!

V. CONCLUSION

 In this paper, we have presented a novel algorithm targeting
partially vertically connected 3D-NoCs named “Rout3D” that
guarantees packet delivery as long as one TSV pillar is available
anywhere in the network. Although our algorithm uses the same
number of virtual channels as other low-cost algorithms, it is in
the way these virtual channels are exploited that lies all of its
strength. What we have demonstrated in this paper is that by
carefully placing these virtual channels and appropriately
defining the routing rules, it was possible to eliminate all the
restrictions that other solutions impose on both the supported
fault patterns and the runtime elevator selection, which can
negatively impact the resilience and performance of the NoC.
Moreover, we have shown, through Rout3D+, that by adding
one VC in the vertical dimension, it was possible to dramatically
boost the NoC’s performance in presence of a few vertical
connections, while still ensuring a lower implementation cost
than state-of-the-art algorithms.

 In partially vertically connected NoCs, routers need a way to
locate the available elevators in the network. In order to avoid
storing complete node addresses within each router, we have
proposed a low-overhead scalable technique named the
“Elevator Compass”, requiring only 4 bits of storage per router
to point to the nearest elevator. These bits can be reconfigured
every time the state of the network changes because of faults. In
addition, this method is not specific to Rout3D and can be
combined with any other routing algorithm.

 Beyond the low implementation cost, it is also the elegance
and simplicity of the proposed routing solution that make it a
highly attractive option to implement into future many-core
chips that need to support resiliency against defects with
minimum effort.

REFERENCES

[1] Dally, W.J.; Towles, B., "Route packets, not wires: on-chip
interconnection networks," in Design Automation Conference, 2001.
Proceedings , vol., no., pp.684-689, 2001.

[2] A. Bakhoda, J. Kim and T. M. Aamodt, "Throughput-Effective On-Chip
Networks for Manycore Accelerators," 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, Atlanta, GA, 2010, pp.
421-432.

[3] B. S. Feero and P. P. Pande, "Networks-on-Chip in a Three-Dimensional
Environment: A Performance Evaluation," in IEEE Transactions on
Computers, vol. 58, no. 1, pp. 32-45, Jan. 2009.

[4] D. Wentzlaff et al., "On-Chip Interconnection Architecture of the Tile
Processor," in IEEE Micro, vol. 27, no. 5, pp. 15-31, Sept.-Oct. 2007.

[5] C. Glass, L. Ni, “The turn model for adaptive routing”, in: Proceedings of
the 19th Annual International Symposium on Computer architecture
(ISCA ‘92), New York, NY, USA, 1992, pp. 278–287.

[6] V. F. Pavlidis and E. G. Friedman, "3-D Topologies for Networks-on-
Chip," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 10, pp. 1081-1090, Oct. 2007.

[7] W. R. Davis et al., "Demystifying 3D ICs: the pros and cons of going
vertical," in IEEE Design & Test of Computers, vol. 22, no. 6, pp. 498-
510, Nov.-Dec. 2005.

[8] R. Salamat, M. Ebrahimi and N. Bagherzadeh, "An Adaptive, Low
Restrictive and Fault Resilient Routing Algorithm for 3D Network-on-
Chip," 2015 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, Turku, 2015, pp. 392-395.

[9] F. Dubois, A. Sheibanyrad, F. Pétrot and M. Bahmani, "Elevator-First: A
Deadlock-Free Distributed Routing Algorithm for Vertically Partially
Connected 3D-NoCs," in IEEE Transactions on Computers, vol. 62, no.
3, pp. 609-615, March 2013.

[10] R. Salamat, M. Ebrahimi, N. Bagherzadeh and F. Verbeek, "CoBRA: Low
cost compensation of TSV failures in 3D-NoC," 2016 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), Storrs, CT, 2016, pp. 115-120.

[11] B. Niazmand, S. P. Azad, J. Flich, J. Raik, G. Jervan and T. Hollstein,
"Logic-based implementation of fault-tolerant routing in 3D network-on-
chips," 2016 Tenth IEEE/ACM International Symposium on Networks-on-
Chip (NOCS), Nara, 2016, pp. 1-8.

[12] R. Salamat, M. Khayambashi, M. Ebrahimi and N. Bagherzadeh, "A
Resilient Routing Algorithm with Formal Reliability Analysis for
Partially Connected 3D-NoCs," in IEEE Transactions on Computers, vol.
65, no. 11, pp. 3265-3279, Nov. 1 2016.

[13] Verbeek, F.; Schmaltz, J., "On Necessary and Sufficient Conditions for
Deadlock-Free Routing in Wormhole Networks," in Parallel and
Distributed Systems, IEEE Transactions on , vol.22, no.12, pp.2022-2032,
Dec. 2011.

[14] Pinkston, T.M.; Warnakulasuriya, S., "Characterization of deadlocks in k-
ary n-cube networks," in Parallel and Distributed Systems, IEEE
Transactions on , vol.10, no.9, pp.904-921, Sep 1999.

[15] H. Ying, K. Hofmann and T. Hollstein, "Dynamic quadrant partitioning
adaptive routing algorithm for irregular reduced vertical link density
topology 3-Dimensional Network-on-Chips," 2014 International
Conference on High Performance Computing & Simulation (HPCS),
Bologna, 2014, pp. 516-522.

[16] J. Lee and K. Choi, "A deadlock-free routing algorithm requiring no
virtual channel on 3D-NoCs with partial vertical connections," 2013
Seventh IEEE/ACM International Symposium on Networks-on-Chip
(NoCS), Tempe, AZ, 2013, pp. 1-2.

[17] M. Bahmani, A. Sheibanyrad, F. Pétrot, F. Dubois and P. Durante, "A 3D-
NoC Router Implementation Exploiting Vertically-Partially-Connected
Topologies," 2012 IEEE Computer Society Annual Symposium on VLSI,
Amherst, MA, 2012, pp. 9-14.

[18] A. Eghbal, P. M. Yaghini, N. Bagherzadeh and M. Khayambashi,
"Analytical Fault Tolerance Assessment and Metrics for TSV-Based 3D
Network-on-Chip," in IEEE Transactions on Computers, vol. 64, no. 12,
pp. 3591-3604, Dec. 1 2015.

[19] M. Ebrahimi, M. Daneshtalab, P. Liljeberg and H. Tenhunen, "Fault-
tolerant method with distributed monitoring and management technique
for 3D stacked meshes," The 17th CSI International Symposium on
Computer Architecture & Digital Systems (CADS 2013), Tehran, 2013,
pp. 93-98.

[20] S. Pasricha and Y. Zou, "A low overhead fault tolerant routing scheme for
3D Networks-on-Chip," 2011 12th International Symposium on Quality
Electronic Design, Santa Clara, CA, 2011, pp. 1-8.

[21] M. Ebrahimi, X. Chang, M. Daneshtalab, J. Plosila, P. Liljeberg and H.
Tenhunen, "DyXYZ: Fully Adaptive Routing Algorithm for 3D NoCs,"
2013 21st Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, Belfast, 2013, pp. 499-503.

[22] S. Akbari, A. Shafiee, M. Fathy and R. Berangi, "AFRA: A low cost high
performance reliable routing for 3D mesh NoCs," 2012 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
2012, pp. 332-337.

[23] A. Charif, A. Coelho, N-E. Zergainoh, M. Nicolaidis, “Detailed and
Highly Parallelizable Cycle-Accurate Network-on-Chip Simulation on
GPGPU,” The 22nd IEEE/ACM Asia and South Pacific Design
Automation Conference (ASP-DAC), Chiba, 2017.

[24] P. Gratz B. Grot, S.W. Keckler, "Regional congestion awareness for load
balance in networks-on-chip," IEEE 14th International Symposium on
High Performance Computer Architecture, 2008. HPCA 2008., vol., no.,
pp.203,214, 16-20 Feb. 2008.

!

!

