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Abstract—3D integration opens up new opportunities for 

future multiprocessor chips by enabling fast and highly scalable 

3D Network-on-Chip (NoC) topologies. However, in an aim to 

reduce the cost of Through-silicon via (TSV), partially vertically 

connected NoCs, in which only a few vertical TSV links are 

available, have been gaining relevance. In addition, the number of 

vertical paths can be expected to be further reduced due to defects 

and runtime failures. To reliably route packets under such 

conditions, we introduce a lightweight, efficient and highly 

resilient adaptive routing algorithm targeting partially vertically 

connected 3D-NoCs named “Rout3D”. It requires a very low 

number of virtual channels (VCs) to achieve deadlock-freedom (2 

VCs in the East and North directions and 1 VC in all other 

directions), and guarantees packet delivery as long as one healthy 

TSV connecting all layers is available anywhere in the network. 

We combine our algorithm with a novel offline reconfiguration 

method requiring only 4 bits per router to maintain connectivity 

upon the occurrence of faults while minimizing the 

implementation cost. Simulation results reveal that our algorithm 

is capable of sustaining a very good level of performance 

compared to related works, in spite of using less virtual channels. 

Keywords—network-on-chip; fault-tolerance; 3D-NoC; TSV 

failure; vertically partially connected 3D-NoC; 

I. INTRODUCTION 

Networks-on-Chip (NoCs) [1] have effectively become the 
go-to paradigm for on-chip interconnections in modern 
manycore systems, offering a high-performance communication 
infrastructure for Chip Multiprocessors (CMPs), Multiprocessor 
Systems-on-Chip (MPSoCs) and even Graphics Processing 
Units (GPUs) [2], [4]. If NoCs were already perceived as a 
highly scalable and efficient alternative to the traditional bus, 
they are even more so with the recent emergence of 3D 
integration, which enables the stacking of several silicon layers 
and allowing for inherently low-latency three-dimensional NoC 
topologies (3D-NoCs) to be considered [3], [6]. 

Through-Silicon Via (TSV) has been accepted as one of the 
most viable technologies to enable vertical communication 
between different NoC layers [7]. However, due to its non-
negligible cost, the number of vertical links must be kept to a 
minimum, resulting in incomplete 3D-NoC topologies 
commonly referred to as Vertically-Partially-Connected NoCs. 
In addition, due to the vulnerability of TSVs to manufacturing 
defects as well as runtime failures [18], the number of available 
TSV links may end up being reduced even further. 

Under such extreme conditions, a flexible routing algorithm 
that guarantees packet delivery with a limited number of vertical 
links is necessary. Perhaps the most challenging aspect in 
designing such algorithms is ensuring correct operation 

(Deadlock-freedom, livelock-freedom, connectivity) at a 
reasonable cost, without heavily limiting the flexibility of the 
algorithm and the number of fault scenarios it can tolerate. More 
specifically, deadlock-avoidance often requires adding a certain 
number of Virtual Channels (VCs) in each router, which consist 
of disjoint flit FIFOs used to separate different flows. As these 
FIFOs occupy the largest part of a NoC router’s area [17], an 
algorithm that can operate using a small number of VCs is 
strongly desirable. While several algorithms requiring no or few 
virtual channels have been recently proposed [16], [8], they 
often follow specific routing rules that pose restrictions on the 
location and the selection of vertical links, hindering both 
reliability and performance. A routing algorithm capable of 
relaxing these restrictions while keeping the implementation 
cost to a minimum is yet to be introduced. 

In this paper, we address this challenge by introducing an 
efficient and highly resilient routing algorithm targeting 
partially vertically connected 3D-NoCs named “Rout3D” (reads 
“Routed”). Our algorithm requires a very low number of virtual 
channels to achieve deadlock-freedom (2 VCs in the East and 
North directions and 1 VC in all other directions), and 
guarantees packet delivery as long as one healthy TSV 
connecting all layers is available in the network, regardless of its 
position. Moreover, it is capable of routing packets adaptively 
within each layer, so as to avoid congested areas. A novel offline 
reconfiguration method requiring only 4 bits per router is also 
introduced and combined with our flexible algorithm to 
maintain connectivity upon the occurrence of faults. Despite the 
reduced number of virtual channels, we report a very good level 
of performance compared to related works thanks to an 
optimized utilization of the available resources. 

The remainder of this paper is organized as follows: In 
section II we explore existing solutions in the context of 3D 
routing, with an emphasis on the works that are closest related 
to our contribution. In section III, the target system architecture 
as well as the proposed routing algorithm are described in detail. 
In section IV, we compare our algorithm by simulation to other 
works from the literature before concluding in section V. 

II. RELATED WORKS 

In the context of 3D-NoCs, several routing algorithms have 
been proposed. From simple deterministic algorithms such as 
ZXY, to fully adaptive algorithms such as 3D-FAR [19] and 
DyXYZ [21]. Fully adaptive algorithms were shown to perform 
well but they only operate in fully connected meshes. An 
extension of 3D-FAR, called 3D-FT was introduced in [19], 
which is capable of tolerating the absence of vertical or 
horizontal links. However, like 3D-FAR, it requires a very large 
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number of virtual channels (2, 2 and 4 along the Z, X and Y 
dimensions respectively). In [20], the authors extend the turn 
model for 2D meshes [5] to the third dimension and propose an 
algorithm that tolerates faults by replicating each packet and 
sending it in two different virtual networks, one using the 3D 
negative-first algorithm and the other using the 3D positive-first 
algorithm. AFRA [22] is another algorithm that can tolerate a 
certain number of faulty vertical links in fully connected NoCs. 

Only a few proposals have been made in the context of 
partially vertically connected 3D-NoCs. In [9], the authors 
propose to use any deterministic deadlock-free 2D mesh routing 
algorithm to deliver a packet to an elevator (vertical link), which 
will be used to deliver the packet to its destination layer, then to 
continue routing using the planar routing algorithm until the 
packet reaches its destination. It was proven to be deadlock-free 
using 2 virtual channels along the X and Y dimensions. This 
approach, named “Elevator-First”, is appealing because of its 
simplicity, its support for any layer topology, and because it does 
not impose any constraints on the position of healthy vertical 
links. Routing a packet towards an elevator requires the insertion 
of a temporary header containing the elevator’s address. 
Addresses of the up and down elevators are stored inside each 
router [17], requiring an amount of storage that increases with 
the network size. In order to reduce the requirements of 
Elevator-First in terms of virtual channels, authors in [16] add 
certain constraints on the usage of the elevators and show that 
routing is possible without the use of virtual channels. In [15], 
another algorithm that does not require the use of virtual 
channels is presented, but it requires the presence of one vertical 
link at the north-east corner.  

The ETW (East-then-West) routing algorithm [8] employs a 
clever subnetwork decomposition to limit the virtual channel 
requirements, while offering partial adaptiveness to mitigate 
congestion. ETW uses 1, 2 and 1 virtual channels along the X, 
Y and Z dimensions respectively. The authors have also 
proposed some solutions to tolerate runtime failures using the 
dynamic elevator assignment in [12] or the propagation of TSV 
status in [10]. Unfortunately, ETW poses some very limiting 
constraints on both the location, and the selection of the 
elevators. It requires the existence of at least one elevator in the 
east-most column, and for packets heading south, an elevator 
located east to the destination must be taken, leading to highly 
inefficient routes in some cases. In addition, because the choice 
of the elevator depends on the destination, 3 elevator addresses 
need to be stored in each router. 

Finally, the 3D variant of the LBDR (Logic Based 
Distributed Routing) was recently presented in [11]. As is the 
case of LBDR, LBDR3D supports a variety of partially adaptive 
routing algorithms and is fully reconfigurable to tolerate faulty 
horizontal and vertical links. It was proven deadlock- and 
livelock- free similarly to Elevator-First and requires the same 
minimum number of virtual channels as Elevator-First to 
separate between Upward and Downward flows. However, in 
LBDR3D, only a fixed number of bits are stored within each 
router to locate healthy elevators. 

The algorithm that we propose in this paper also targets 
partially vertically connected 3D NoCs and aims at using as few 
virtual channels as possible while offering adaptivity to avoid 

congestion. To help the reader clearly position our contribution, 
a comparison between some of the aforementioned algorithms 
and Rout3D is summarized in table 1. Our algorithm uses the 
same total number of VC FIFOs as ETW but does not have any 
requirements with regards to the position of the elevators. Like 
ETW and unlike Elevator-First and LBDR3D, it requires that the 
vertical connections be pillars, i.e. for Rout3D, a healthy TSV is 
one that connects all layers. To keep track of healthy elevators 
without having to store router addresses, we propose a scalable 
method that uses a small number of bits per router (only 4 bits) 
to guide packets to their nearest healthy elevator.  

III. THE ROUTING ALGORITHM 

In this section, we introduce the proposed routing solution 
after describing the target NoC architecture. 

A. Preliminary setup 

In this work, we consider a NoC consisting of stacked mesh 
layers connected to each other using TSV pillars called 
« elevators », as shown in fig. 1. At design time, for cost 
reduction purposes, we assume that only some of the routers are 
connected by vertical links. Therefore, the NoC consists of 2D 
routers including only 5 input/output ports (Local, East/X+, 
West/X-, North/Y+, South/Y-), and 3D routers which include 2 
additional ports (Up/Z+, Down/Z-) [17].  

In addition, we consider that some TSV (Through-Silicon 
Via) connections may become unavailable either due to 
manufacturing defects, aging or wear-out, rendering some 
elevators unusable. An elevator is considered healthy only if it 
connects all layers (i.e. if it is still a pillar). For instance, the 
vertical link at router B in fig. 1 is not considered healthy. 

B. Locating Healthy Elevators with the Elevator Compass 

In partially vertically connected 3D-NoCs, routers need a 
way to locate the available elevators in the network. To avoid 
storing complete node addresses inside each router, we suggest 
using the following approach. Each router stores 4 
reconfigurable bits (𝐶𝑒𝑎𝑠𝑡 , 𝐶𝑤𝑒𝑠𝑡 ,  𝐶𝑛𝑜𝑟𝑡ℎ, 𝐶𝑠𝑜𝑢𝑡ℎ)  that are used 
as a compass to point to the nearest elevator, hence the name 
Elevator Compass. As an example, in fig. 1, if router A wants to 
communicate with a node in a different layer, it has to take the 
nearest elevator located at router D, which is south-east to node 
A. Therefore, its compass bits are set to 
(𝐶𝑒𝑎𝑠𝑡, 𝐶𝑤𝑒𝑠𝑡 , 𝐶𝑛𝑜𝑟𝑡ℎ,  𝐶𝑠𝑜𝑢𝑡ℎ)  =  (1, 0, 0, 1) . Similarly, routers B 
and C store the following values to also point to router D: 
(𝐶𝑒𝑎𝑠𝑡, 𝐶𝑤𝑒𝑠𝑡 , 𝐶𝑛𝑜𝑟𝑡ℎ,  𝐶𝑠𝑜𝑢𝑡ℎ)  =  (0, 0, 0, 1)  and 
 (𝐶𝑒𝑎𝑠𝑡, 𝐶𝑤𝑒𝑠𝑡, 𝐶𝑛𝑜𝑟𝑡ℎ,  𝐶𝑠𝑜𝑢𝑡ℎ)  =  (1, 0, 0, 0).  

TABLE I.  A COMPARISON BETWEEN ROUT3D AND OTHER ALGORITHMS 

Routing 

algorithm 

VCs / 

router 

Elevator 

position 

Storage / 

router Pillar Adaptive 

Elevator-
first [9] 

10 Any 2 IDs No No 

ETW [12] 8 
East-most 
column 

3 IDs Yes Yes 

LBDR-3D 
[11] 

10 Any 22bits No Yes 

Proposed 8 Any 4bits Yes Yes 
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Fig. 1. Overview on the NoC architecture 

This is analogous to the Vertical Bits used by LBDR3D [11]. 
However, the algorithm used to set these bits in LBDR3D does 
not guarantee that following vertical bits starting from an initial 
node leads to the intended Elevator, as different hops along the 
way may have a different view of where the closest elevator is, 
which is why additional signals had to be introduced to prevent 
livelocks [11]. We introduce an algorithm for setting the 
Elevator Compass bits that does not suffer from this limitation. 
The algorithm is presented in Algorithm 1. Instead of iterating 
over the nodes and finding the nearest elevator for each node 
independently as was done in [11], we iterate through each 
healthy elevator in turn and check if it is the nearest elevator to 
every node in the network. Even if the distance from some node 
to the new elevator is the same as its previously assigned nearest 
elevator, the new elevator is still preferred as the nearest elevator 
node. This ensures that starting from any initial node A, whose 
compass is pointing to node E, following the compass in the 
direction of E reaches a node B that points to the same nearest 
elevator E. If B had a nearest elevator node F different from E, 
then according to Algorithm 1, F would also be the nearest 
elevator to A. Therefore, our algorithm inherently guarantees 
that packets always reach their nearest elevator. Algorithm 1 is 
executed offline every time a new TSV fault is detected. 

C. Constructing the Rout3D algorithm 

The general approach we take to construct our routing 
algorithm is similar to that taken in several previous works [19], 
[12], which consists in identifying a set of virtual networks that 
ensure connectivity and deadlock-freedom. Our proposal starts 
by defining 3 virtual networks as shown in fig. 2. The first and 
third virtual networks (V0, V2) only use the X+ and Y+ physical 
channels. The second virtual network (V1) includes all the 
remaining directions (X-, Y-, Z+, Z-). 

Because the X+ and Y+ physical channels are shared 
between two virtual networks, two virtual channels are required 
in these directions. The two virtual channels at the X+ direction 
are noted (X0+, X1+), whereas the virtual channels in the Y+ 
direction are noted (Y0+, Y1+). The other directions, which are 
only used by V1, do not necessitate additional virtual channels. 

Packets may traverse virtual networks only in increasing 
order (V0 → V1 → V2). Moreover, in order to enhance the 
utilization of virtual channels, packets of the highest virtual 
network (V2) are allowed to request both virtual channels in 
the X+ and Y+ directions (X0+, X1+, Y0+, Y1+) as long as they 
wait for both virtual channels simultaneously, whereas packets 
of the lowest virtual network (V0) can only request one of the 
two virtual channels (namely X0+ and Y0+).  

The routing algorithm can be simply described as follows: If 
a packet has reached (or has originated in) the destination layer, 
route it towards its destination using the negative directions first 
(V1 then V2). Otherwise, route the packet towards the chosen 
elevator using the positive directions first (V0 then V1) and use 
V1 to elevate the packet to the destination layer. When a packet 
is headed East-North or West-South, routing can be performed 
adaptively and the least congested route is selected.  

Two examples are shown in fig. 3 to illustrate this routing 
process. In fig. 3 (a), the source “S” and the destination “D” are 
located on the same layer so the packet is delivered adaptively 
using the Negative-First algorithm [5]. In the second example 
the source and destination are located at different layers so the 
closest elevator is taken first following the positive directions 
first before routing towards the destination in Negative-first 
order. 

D. Deadlock-freedom, livelock-freedom and connectivity 

It is easy to prove that cycles cannot form within each virtual 
network as none of the defined virtual networks spans two full 
dimensions, which is a requirement for completing a cycle. 
However, because some virtual channels are shared among two 
virtual networks, we cannot rely on the absence of cyclic 

Algorithm 1: Setting Elevator Compass bits     

00: Function set_compass { 

01:  

02: Variables: 

03:    Dist[NumNodes] : Distance to closest elevator 

04: Output: 

05:    Compass[NumNodes] : Compass bits 

06: 

07: For each node i do 

08:    Initialize Dist[i] to infinity 

09:    Initialize Compass[i] to all zeros 

10: End for 

11: 

12: For each healthy elevator (xE, yE) do 

13:    For each node i of coord (x, y, z) do 

14:        If |xE-x| + |yE-y| <= Dist[i] then 

15:            Dist[i] = |xE-x| + |yE-y| 

16:            Compass[i].North = (yE > y) 

17:            Compass[i].South = (yE < y) 

18:            Compass[i].West  = (xE < x) 

19:            Compass[i].East  = (xE > x) 

20:        End if 

21:    End for 

22: End for 

23:} 
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dependencies to prove freedom from deadlocks. Instead, we 
elaborate our proof based on two facts. (1) First, packets in the 
highest virtual network (V2) are always able to request virtual 
channels X1+ and Y1+, which are dedicated to V2 and can never 
be acquired by packets of other virtual networks. This implies 
that packets of V2 cannot be blocked indefinitely because these 
virtual channels can either be free or occupied by other packets 
of V2, which, as was previously mentioned, cannot form cycles 
between them due to the absence of negative directions. Second, 
our algorithm ensures that virtual networks are traversed in 
increasing order. This means that packets of V0 may be waiting 
for other packets of V0, in which case no cycles can form, or for 
packets in V1, which in turn can only wait for other packets in 
V1 or packets in V2. From (1) we know that packets in V2 
always have an escape VC available. Therefore, deadlocks can 
never occur. It is worth noting that the absence of cycles in the 
channel dependency graph has been proven unnecessary for 
deadlock-freedom and overly restrictive in many previous 
studies [13], [14]. Rout3D has no such limitation and allows the 
presence of cycles in order to enhance the utilization of VCs and 
increase network throughput. 

Because the individual virtual networks do not allow packets 
to loop indefinitely, and because they are traversed in increasing 
order, the algorithm is also livelock-free. In the worst case a 
packet reaches the north-east corner in V0, then the west-south 
corner of either the top or the bottom layer in V1 then end up in 
the north-east corner of that same layer in V2.  

One thing to notice is that routing within each layer with 
Rout3D is equivalent to routing using the minimal 
Negative/Positive-first turn model [5], which is connected. This 
means that routing from any source node to any elevator, and 
from any elevator to any destination node is always possible. 
Therefore, as long as one elevator exists, regardless of its 
position, packet delivery is guaranteed. 

E. Rout3D+: Enhancing Rout3D with additional VCs 

As a way of improving our algorithm in terms of 
performance, we propose another variant, called Rout3D+, 
which includes one additional virtual channel per vertical port 
compared to Rout3D. These VCs are used without restrictions 
by all V1 packets for the sole purpose of boosting performance. 
Assigning these extra VCs to the Z dimension has two major 
benefits: First, these additional VCs are not present in 2D 
routers. This means that Rout3D+ still uses less virtual channels 
in 2D routers than Elevator-First, but now uses the same number 
of VCs in 3D routers, leading to a lower total cost in terms of 
VC FIFOs. The second reason for selecting the Z dimension is 
because there is likely to be a high contention on the elevators 
as few vertical connections may be shared between numerous 
flows. Therefore, adding virtual channels can reduce the 
pressure on the vertical links. 

F. Complexity analysis 

To have an approximate idea about the expected cost of 
Rout3D, we compare its implementation requirements to those 
of the Elevator-First implementation that uses XY routing [17]. 
Because Rout3D uses a very simple routing logic, we expect the 
cost of the routing function, which is purely combinational, to 
be only slightly more complex than the XY logic used by 

Elevator-First. However, while the use of XY routing removes 
the need to connect all input-output pairs in the switch allocator 
and the crossbar (turns from Y to X are not required), Rout3D 
allows turns from any dimension to the other, which means that 
more connections need to be added if adaptiveness must be 
achieved. In addition, Elevator-First does not require input VC 
arbiters because every packet can only request one same VC 
during its entire transit. Conversely, because Rout3D and 
Rout3D+ make it possible for some packets to request several 
VCs (section III-C and section III-D), arbiters are necessary to 
select among free output VCs. Finally, because our algorithm is 
adaptive, extra hardware may be necessary for congestion 
management if using the locally available information does not 
offer the desired level of performance [24]. However, this choice 
is up to the application designer and is not intrinsic to our routing 
algorithm. Despite these additions, because the router’s area is 
largely dominated by the number of virtual channel FIFOs [17], 
we expect both Rout3D and Rout3D+ to be less costly than 
Elevator-First overall. The elevator selection policy (amount of 
storage + logic) also contributes to the router’s area 
requirements and using the Elevator Compass method proposed 
in this section guarantees that the cost does not increase 
proportionally with the network size. However, similarly to 
congestion management, this method is not specific to Rout3D 
and can be used in conjunction with the Elevator-first algorithm 
as well. Also, in cases where the Nearest Elevator is not the 
optimal criterion of selection, any other selection method can 
also be used in conjunction with the Rout3D algorithm. 

IV. EXPERIMENTAL RESULTS 

In this section, we compare on the same platform the 
performance of Rout3D and Rout3D+ to Elevator-first [9]. 
Although the original Elevator-first is associated with 
deterministic routing (XY), the approach can be generalized to 
support other 2D deadlock-free algorithms as was done in [11]. 
We compare our algorithm with two variants of Elevator-first, 
the original one using XY (‘Elevator-First-XY’), and an 
adaptive version that uses the Negative-first algorithm 
(‘Elevator-First-NF’). We should point out that because we want 
to test topologies with random fault scenarios, we will not 
include algorithms that have special requirements about the 
location of TSVs in this evaluation. Also, because LBDR3D is 
not a routing algorithm per se but rather a scalable and 
reconfigurable method for implementing Elevator-First 
algorithms in hardware, a comparison with Elevator-first is 
equivalent to a comparison with LBDR3D as long as we are only 
comparing performance at the system level. 

Fig. 2. Physical channels used by the three virtual networks 
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Fig. 3. An example demonstrating the operation of Rout3D 

For simulations, we use an in-house GPU-based parallel 
cycle-accurate NoC simulator that we validated against an RTL 
NoC implementation [23]. We simulate a 256-node network 
consisting of 4 stacked 8x8 meshes. For all four algorithms, we 
use 4-flit deep FIFOs, and packets have a fixed size of 5 flits. 
Each algorithm uses the minimum number of VCs it requires to 
operate. All algorithms use the Manhattan Distance –based 
elevator selection as described in section III-B. Adaptive 
algorithms select the least congested output port, based on a 
local congestion metric, when several candidates are available.  

At the beginning of each simulation, a specific number of 
TSV pillars are assigned randomly. We perform two series of 
tests: one with 48 pillars (75% vertical connections) and another 
with only 16 pillars (25% vertical connections). For each 
configuration, 100 iterations lasting 100000 cycles each are 
executed and the average results are presented.  

For performance evaluation, 4 types of synthetic traffic 
modes are considered: 

Uniform Random: Each source sends its packets to a random 
destination following a uniform distribution. 

Hotspot: One node in the network is designated as a hotspot 
node and 10% of the packets generated by each source is 
destined to this hotspot node. The rest of the packets are sent to 
a random destination. In our case, we chose router (𝑋, 𝑌, 𝑍)  =
 (7,7,2) to be the hotspot node. This choice is justified later. 

Bit complement: Node (𝑋, 𝑌, 𝑍) sends all of its packets to node 
(�̅�, �̅�, �̅�) where �̅� is the two’s complement of 𝑋. 

Shuffle: If N is the number of nodes, a node of ID 𝑖𝑑 < 𝑁/2 
sends packets to node of ID 2 × 𝑖𝑑. A node of 𝑖𝑑 ≥ 𝑁/2 sends 
its packets to the node of ID 2 × 𝑖𝑑 + 1 𝑚𝑜𝑑 𝑁.  

 As a performance metric we consider the average packet 
latency, which is the average time it takes a packet to reach its 
destination, including the time it spends in the source queue. Our 
results are presented in fig. 4. 

 We first examine the results when 75% of TSVs are 
available. Although Rout3D would be expected to be 
outperformed by Elevator-First due to its lower number of VCs, 
we can see that in some cases (hotspot and bit complement 
traffic profiles) it can yield better performance than Elevator-
first. This is explained by the fact that Rout3D is more flexible 
in its usage of VCs. Because packets having reached their 
destination layer are able to request both VCs in the north and 
east directions, they experience less blocking as they move 

forward if their destination is located in the north east. By 
contrast, in Elevator-first, packets may only request one VC 
during their entire journey. This explanation is confirmed by the 
large difference in latency under hotspot traffic, where we 
expressly chose the hotspot to be located in the north east corner 
to highlight this property. Another thing to take note of is that 
although Rout3D performs better than Elevator-First-NF under 
complement traffic, it is outperformed by Elevator-First-XY. 
This result is not surprising because both uniform and bit 
complement traffics are known to favor deterministic routing 
over adaptive routing. 

 One interesting but perhaps counterintuitive final 
observation, is that although Rout3D+ (Section III-E) 
expectedly outperforms Rout3D in uniform, hotspot and 
complement traffics, we can see cases where adding a VC in the 
Z dimension does not have the desired effect on performance. 
This is the case, for instance, in Shuffle traffic. We explain this 
based on two factors. One is the fact that the tested network 
consists of very large layers (64 nodes), and the second is the 
availability of a relatively large number of elevators. Because 
packets are able to quickly reach their destination layer, due to a 
high elevator availability, packets spend most of their time in the 
destination layer. In such scenarios, performance is not limited 
by the vertical bandwidth, but rather by the multiplexing taking 
place within each layer. Because adding a VC in the vertical 
ports means that packets in their destination layer are 
multiplexed not with one, but two packets coming from other 
layers, packets in their destination layer experience a larger 
delay. Of course, this is only valid for traffic scenarios where 
many nodes communicate with other nodes of the same layer, 
which is the case of Shuffle traffic. When the number of TSVs 
is reduced, we can see that, as predicted in Section III-E, the use 
of these vertical VCs yields a significant performance 
improvement. 

Fig. 4. Performance evaluation results  
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V. CONCLUSION 

 In this paper, we have presented a novel algorithm targeting 
partially vertically connected 3D-NoCs named “Rout3D” that 
guarantees packet delivery as long as one TSV pillar is available 
anywhere in the network. Although our algorithm uses the same 
number of virtual channels as other low-cost algorithms, it is in 
the way these virtual channels are exploited that lies all of its 
strength. What we have demonstrated in this paper is that by 
carefully placing these virtual channels and appropriately 
defining the routing rules, it was possible to eliminate all the 
restrictions that other solutions impose on both the supported 
fault patterns and the runtime elevator selection, which can 
negatively impact the resilience and performance of the NoC. 
Moreover, we have shown, through Rout3D+, that by adding 
one VC in the vertical dimension, it was possible to dramatically 
boost the NoC’s performance in presence of a few vertical 
connections, while still ensuring a lower implementation cost 
than state-of-the-art algorithms. 

 In partially vertically connected NoCs, routers need a way to 
locate the available elevators in the network. In order to avoid 
storing complete node addresses within each router, we have 
proposed a low-overhead scalable technique named the 
“Elevator Compass”, requiring only 4 bits of storage per router 
to point to the nearest elevator. These bits can be reconfigured 
every time the state of the network changes because of faults. In 
addition, this method is not specific to Rout3D and can be 
combined with any other routing algorithm.  

 Beyond the low implementation cost, it is also the elegance 
and simplicity of the proposed routing solution that make it a 
highly attractive option to implement into future many-core 
chips that need to support resiliency against defects with 
minimum effort.  
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