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Abstract: The Finite Difference Time Domain 
method (FDTD) uses centre-difference 
representations of the continuous partial 
differential equations to create iterative numerical 
models of wave propagation. First we study the 
propagation behavior of the wave in single 
dimension without PML and in second part we 
study the absorption using PML for the same wave 
using MATLAB environment. 
 

I.  INTRODUCTION 

Finite-difference time-domain (FDTD) is a popular 
computational electrodynamics modeling technique. 
Since it is a time-domain method, solutions can cover a 
wide frequency range with a single simulation run. 

The FDTD method belongs in the general class of 
grid-based differential time-domain numerical 
modeling methods. The time-dependent Maxwell's 
equations (in partial differential form) are discretized 
using central-difference approximations to the space 
and time partial derivatives. The resulting finite-
difference equations are solved in either software or 
hardware in a leapfrog manner: the electric field vector 
components in a volume of space are solved at a given 
instant in time; then the magnetic field vector 
components in the same spatial volume are solved at 
the next instant in time; and the process is repeated 
over and over again until the desired transient or 
steady-state electromagnetic field behavior is fully 
evolved.When Maxwell's differential equations are 
examined, it can be seen that the change in the E-field 
in time (the time derivative) is dependent on the 
change in the H-field across space (the curl). This 
results in the basic FDTD time-stepping relation that, 
at any point in space, the updated value of the E-field 
in time is dependent on the stored value of the E-field 
and the numerical curl of the local distribution of the 
H-field in space.[1] The H-field is time-stepped in a 
similar manner. At any point in space, the updated 
value of the H-field in time is dependent on the stored  

 

value of the H-field and the numerical curl of the 
local distribution of the E-field in space.The 3D source 
free(J=0) maxwell’s curl equations of a homogeneous 
medium are: 

         

 II.   FDTD   TREATMENT   TO   MAXWELL”S     
EQUATIONS   IN MATLAB 
 

To create arrays for E field and H field, a spatial 
width of say 100  points and temporal width of 2 

for current  
and previous values 

 
S_Width=100; T_Width=2; 
e=zeros(S_Width,T_Width); 
h=zeros(S_Width,T_Width); 

 
If our model is to represent a waveguide of a 

given length (say 2m) 
we can evaluate the spatial resolution with 
 

length=2; 
dx=length/S_Width; 

 
Hence we can determine the temporal resolution using 
the Courant limit 
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C = du∆t , which is 1 for 1D case. Hence type 
∆x 

 
       c=23; 

dt=dx/c; 

Courant–Friedrichs–Lewy(CFL) condition 

In mathematics, the Courant–Friedrichs–Lewy 
condition (CFL condition) is a necessary condition for 
convergence while solving certain partial differential 
equations (usually hyperbolic PDEs) numerically. (It is 
not in general a sufficient condition.) It arises when 
explicit time-marching schemes are used for the 
numerical solution. As a consequence, the timestep 
must be less than a certain time in many explicit time-
marching computer simulations, otherwise the 
simulation will produce wildly incorrect results. The 
condition is named after Richard Courant, Kurt 
Friedrichs, and Hans Lewy who described it in their 
1928 paper. 

For example, if a wave is crossing a discrete grid, 
then the timestep must be less than the time for the 
wave to travel adjacent grid points. As a corollary, 
when the grid point separation is reduced, the upper 
limit for the time step also decreases. In essence, the 
numerical domain of dependence must include the 
analytical domain of dependence in order to assure that 
the scheme can access the information required to form 
the solution. 

The CFL condition is commonly prescribed for 
those terms in PDEs which represent advection 
(hyperbolic part of the PDE). For one-dimensional 
case, the CFL condition is given by 

                        C= ∆T u/∆x;               

Where u is the velocity (L/T)  
is the time step (T)  
is the length interval (L),  

and the constant C depends on the particular equation 
to be solved and not on Δt and Δx. The number is 
called the Courant number. 

In the two-dimensional case this becomes 

The CFL condition can be a very limiting constraint on 
the time step Δt, to the extent that for certain fourth-
order nonlinear partial differential equations it can be 
of the form 

and efforts are often made to avoid it by using implicit 
methods 
 
We also need to set pemittivity and permeability 
eps0 = 8.8541878e-12 
                                   mu0 = 4e-7 * pi 
and                             Q=1/mu0 
Let’s say we want to run the simulation for five 
seconds then we will need declare and set ‘duration’ 
and ‘iterations’ variables with 
 

duration=5; 
iterations=duration/dt; 

 
Let’s decide on an excitation point half way along the 
waveguide with 
 

excitationPoint=S_Width/2; 
 

Hence given the necessary parameters we can 
construct a loop that iterates across the waveguide to 
set pressures and velocities. This loop is then nested 
within another loop that iterates for successive time 
steps. Add to your matlab source code the following 

 
for 

n=2:
iterat
ions 
t=n*
dt; 
for i=2: 
S_Width
-1 

e(i,1)=e(i,2)-(1/eps0)*dt/dx*(h(i+1,2)-
h(i,2)); 
if i==excitatiopoint 
p(i,1)=cos(2*p*500*t); sigma=0.0005; 
t0=3*sigma; 
fs=exp( - ((t-t0)/0.0005)^2 ); e(i,1)= 
e(i,1)+fs+fsprev; fsprev=fs; 
end 
h(i,1)=h(i,2)-(1/mu0)*dt/dx*(e(i,1)-e(i-
1,1)); 
e(i,2)=e(i,1); 
h(i,2)=h(i,1); 

end 
plot(e(:,
2)) 
axis([0 S_Width -2 2]); 
frame = 
getframe(); 

end 
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III. GRID TRUNCATION 

The most commonly used grid truncation techniques 
for open-region FDTD modeling problems are the Mur 
absorbing boundary condition (ABC), the Liao ABC, 
and various perfectly matched layer (PML) 
formulations. The PML (which is technically an 
absorbing region rather than a boundary condition) can 
provide orders-of-magnitude lower reflections. The 
PML concept was introduced by J.-P. Berenger in a 
seminal 1994 paper in the Journal of Computational 
Physics. Since 1994, Berenger's original split-field 
implementation has been modified and extended to the 
uniaxial PML (UPML), the convolutional PML 
(CPML), and the higher-order PML. The latter two 
PML formulations have increased ability to absorb 
evanescent waves, and therefore can in principle be 
placed closer to a simulated scattering or radiating 
structure than Berenger's original formulation. 

The PML, as a lossy medium, is characterized by an 
electrical conductivity sigma and  a magnetic 
conductivity sigma*  . the conductivities are related are 
as  

                  

This relationship ensures a required level of 
attenuation and forces  the wave impedance of the 
PML to be equal to that the free space. Thus a 
reflectionless transmission of a plane wave 
propagation  across the interface is permitted. For 
oblique incidence it is required the Hz component must 
be split into two subcomponents., Hzx and Hzy. It 
leads to four components Ex, Ey, Hzx and Hzy and 

four (rather than the usual three) coupled field 
equations: 
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Implementing Perfectly Matched Layers 
When a wave reaches the ends of the waveguide it is 

reflected back into the medium. This is a problem for 
most simulations that can be solved with the 
implementation of perfectly match layers (PMLs). 
Originally developed by Berenger, the technique 
specifies a new region that surrounds the FDTD 
domain where a set of non physical equations are 
applied giving a high attenuation. Here we used  our 
1D case equations. 

Edit the previous matlab file to include a PML to the 
right hand side of the simulation. Key changes are in 
bold 

 
 
S_Width=100; T_Width=2; 
e=zeros(S_Width+1,T_Width); 
h=zeros(S_Width+1,T_Width); length=2; 
dx=length/S_Width; 
c=22.5; 
dt=dx/c; 
eps0 = 8.8541878e-12 
mu0 = 4e-7 * pi 
duration=5; 
iterations=duration/dt; 

excitationPoint=S_Width/2; 
xPML=10; 
 
for 

n=
2: 

 
t=n
*dt
; 
for i=2: S_Width-1 

 
if i>(S_Width-xPML) 
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xi=xPML-(S_Width-i) 
a0=log(10)/(K*dt);   
a1=a0*(xi/xPML)^2; 
a2=a0*((xi-1/2)/xPML)^2; 

e(i,1)=exp(-(a1*Q)*dt)*e(i,2)-(1-
exp(-          
(a1*Q)*dt))/(a1*Q)*Q*1/dx*(|h(i+1,2)-
h(i,2)); 

h(i,1)=exp(-(a2*Q)*dt)*h(i,2)-(1-exp(-       
(a2*Q)*dt))/(a2*Q)*(1/mu0)*1/dx*(e(i,1)-e(i-1,1)); 
else 
e(i,1)=e(i,2)-(1/eps0)*dt/dx*(h(i+1,2)-h(i,2)); 
 if i==excitationPoint 
 p(i,1)=cos(2*pi*500*t); 
 sigma=0.0005; 
 t0=3*sigma; 
 fs=exp( - ((t-t0)/0.0005)^2 ); 
 e(i,1)= e(i,1)+fs+fsprev; 
 fsprev=fs; 
 end 
 h(i,1)=h(i,2)-(1/mu0)*dt/dx*(e(i,1)-e(i-1,1)); 
 e(i,2)=e(i,1); 
 h(i,2)=h(i,1); 
 end 
 plot(e(:,2)) 
 axis([0 S_Width -2 2]); 
 frame = getframe(); 
end; 
 
 
Note two absorption coefficients a1 and a2 are created 
to take account of  E field and H field being ½ element 
apart in the staggered grid. 

 
IV. SIMULATION RESULTS 
The output of the above program using PML concept is 
shown as a sequence of following three figures: 
 

 
 

 Fig 3(a): Excitation of the Wave Propagation at half points 
 

 
 

Fig 3(b) Continue wave propagation after first strike with wall 
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                   Fig 3(c)  Reflection less transmission at PML 
 
   V.CONCLUSION 
The output of the above PML program is a continue      
propagating    wave which having no reflection from 
the  absorptive boundaries,. Here three consecutive 
state of the  wave just before and after first striking 
with the boundary are .  This wave is starting with hard  
Gaussian source at the middle i.e. half point as an 
excitation point  (depicting in Fig 3(a)). 
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