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a b s t r a c t 

This paper investigates a group decision making (GDM) method with interval valued fuzzy preference 

relations (IVFPRs). According to the geometric consistency of IVFPR, the max-consistency index and min- 

consistency index of an IVFPR are developed respectively. Combining the max-consistency index with 

min-consistency index, the geometric consistent index of an IVFPR is defined to measure the consistency 

level of the IVFPR by considering decision maker’s (DM’s) risk attitude. For improving the unacceptable 

geometric consistency of an IVFPR, a goal programming model is constructed to derive an acceptable 

geometric consistent IVFPR. By regarding the geometric consistent conditions of an IVFPR as fuzzy con- 

straints, a fuzzy logarithmic program is established to generate the interval priority weights. In GDM 

problems, the individual interval priority weights are obtained by solving the corresponding fuzzy loga- 

rithmic programs. The similarities between DMs are calculated based on their individual interval priority 

weights. Subsequently the confidence degrees of DMs are defined to determine DMs’ weights. To obtain 

the collective interval priority weights, a parametric linear program is constructed and transformed into a 

linear program to resolve. The order of alternatives is generated by the collective interval priority weights. 

Some examples are analyzed to verify the effectiveness of the proposed method. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Decision making problems are common to all aspects of mod-

rn life, such as human resource performance evaluation, facility

ocation, and investment project selection. In general, the best al-

ernative is selected from a set of finite alternatives by decision

aking methods. Since the evaluation factors are numerous in

omplex decision problems, it is difficult for decision makers (DMs)

o provide the ratings of alternatives on each attribute. Thus, orig-

nated from analytic hierarchy process (AHP) method, the prefer-

nce relation began to appear. Now, the preference relation is not

estricted to the framework of AHP. It becomes an important form

f DM’s opinion for expressing preference on alternatives. As the

odern society developed, the complication and uncertainty of the

eal-world problems are highlighted during the decision process

1,2] . Classical numerical decision methods could not be suitable

or solving such problems. Thus, the interval valued fuzzy prefer-

nce relation (IVFPR) is developed, where the judgments on the
∗ Corresponding author. 
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VFPR are represented by intervals. Since intervals can flexibly cap-

ure and describe the ambiguity and uncertainty of human’s ap-

raisal, IVFPRs are more flexible to represent the uncertain pref-

rences over alternatives. At present, research on IVFPRs mainly

oncentrates on the consistency analysis and the determination of

riority weights. 

(1) Consistency analysis of IVFPR 

The consistency of IVFPR requires that DMs’ judgments yield

o contradiction. Due to the complexity of the problems, it may

e impossible for DMs to provide completely consistent judgments

n alternatives in some specific situations. However, it can not

uarantee the reliability of the decision results using the priority

eights derived by inconsistent matrices. Hence, the consistency

f IVFPR is an important topic. Lots of works have been done on

he topic. By extending the additive and multiplicative consistent

uzzy preference relations, Xu and Chen [3] firstly proposed the ad-

itive and multiplicative consistent IVFPRs, respectively. According

o the interval multiplicative transitivity of an IVFPR, Genç et al.

4] tested the consistency of an IVFPR by judging whether there

s a constructed IVFPR obtained from the original IVFPR. Chen and

hou [5] defined the expected value fuzzy preference relations cor-

esponding to an IVFPR and presented the consistency indicator of

http://dx.doi.org/10.1016/j.inffus.2017.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
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an IVFPR. Liu et al. [6] proposed the consistency definition of an

IVFPR by judging whether two fuzzy preference relations obtained

by the IVFPR are consistent or not. Based on the additive transitiv-

ity and multiplicative transitivity of an IVFPR, Wang and Li [7] de-

fined the additive and multiplicative IVFPRs and used some func-

tions about priority weights to construct the additive and multi-

plicative IVFPRs, respectively. Xu et al. [8] developed the additive

consistency of an IVFPR by introducing the interval [0.5,0.5] and

analyzed the relationship between the multiplicative consistency of

an interval multiplicative reciprocal preference relation and the ad-

ditive consistency of its converted IVFPR. Wu and Chiclana [9] pre-

sented the consistent IVFPR according to the multiplicative transi-

tive IVFPR. Then the multiplicative consistency index of an IVFPR

is proposed to measure the level of consistency of the information

provided by DMs. Liu et al. [10] defined a multiplicative consis-

tent IVFPR by judging whether the two additive reciprocal matri-

ces generated from the IVFPR are multiplicatively consistent. Us-

ing the interval ratio of DM’s preference intensity, Wang and Chen

[11] proposed the geometric consistency of an IVFPR based on its

geometric transitivity. The proposed geometric consistency defini-

tion is robust to permutations of DM’s judgments for determining

whether an IVFPR is consistent or not. Wang and Li [12] investi-

gated the multiplicative transitivity defined in [7] and introduced

some properties for multiplicative consistent IVFPR. 

(2) Determination of the priority weights 

Since the priority weights are used to generate the ranking

order of alternatives, it is important to determine the priority

weights from an IVFPR in the decision making. By introducing the

deviation variables, Xu and Chen [3] established some linear pro-

gramming models to obtain the priority weights from consistent

or inconsistent IVFPRs. Genç et al. [4] proposed a straightforward

approach to checking whether an IVFPR is consistent or not and

obtained the priority weights from a consistent IVFPR by a sim-

ple formula. Xu [13] established two goal programming models to

derive the priority weights from additive and multiplicative con-

sistent IVFPRs, respectively. Chen and Zhou [5] presented a con-

sistency induced generalized continuous ordered weighted aver-

aging operator to obtain the priority weights of alternatives in

group decision making (GDM) with IVFPRs. Wang and Li [7] pro-

posed some goal programming-based models for deriving inter-

val weights from IVFPRs. Based on the defined additive consistent

IVFPRs, Wang et al. [14] established linear programming models

to generate interval priority weights that are more accurate than

those obtained by method [3] . According to a formula for interval

priority weights, Liu et al. [6] derived the interval priority weights

from two fuzzy preference relations obtained by an IVFPR. An al-

gorithm was proposed to obtaining the priority weights. Xu and

Liu [15] established an expected value matrix from an IVFPR and

used method [13] to derive the numerical priority weights. Xu et

al. [16] studied a distance-based aggregation approach to assess-

ing the relatively important weights for GDM with IVFPRs. Based

on the additive consistency of fuzzy preference relation, Zhang et

al. [17] demonstrated how to obtain the priority weights from an

IVFPR by extracting consistent additive-based pairwise comparison

matrices. Bentkowska et al. [18] addressed some transitivity prop-

erties of IVFPRs, such as weak transitivity and 0.5-transitivity. Then

a method was proposed to take the solution alternative using the

nondominance algorithm. To find a group interval valued priority

vector, Wang and Li [12] established a logarithmic goal program-

ming model that minimizes the deviations between an IVFPR and

the corresponding matrix obtained by priority weights. Meng et al.

[19] presented several consistency-based linear programming mod-

els to derive the interval priority weights from IVFPRs, which can

cope with the consistent and inconsistent cases. Based on the geo-

metric consistency of an IVFPR defined in [7] , Wang [20] developed

a two-stage linear goal programming approach to eliciting interval
eights from IVFPRs. In view of the geometric transitivity in mod-

ling the consistency of fuzzy preference relations, Zhang [21] pro-

osed a goal programming model to obtain the priority weights

rom an IVFPR. 

Previous studies have significantly advanced the research on de-

ision making with IVFPRs. Nevertheless, there are still some limi-

ations as follows: 

1) In the above literature [3,4,6-8,10-12] , the definitions of a con-

sistent IVFPR are generally proposed by extending the consis-

tency of a fuzzy preference relation. These definitions can be

applied to judge whether an IVFPR is consistent or not. How-

ever, none of them measures the consistency level of an incon-

sistent IVFPR. In some actual decision making problems, an in-

consistent IVFPR may be accepted if it has a high level of con-

sistency (See Examples 2 and 3 in Section 6 ). Such an IVFPR can

be regarded as an acceptable consistent IVFPR. As a result, it is

necessary to define the consistency index for discussing the ac-

ceptable consistent IVFPR from an inconsistent one. 

2) Some methods [5,6,15,16,18] directly use the formulas between

the priority weights and elements in IVFPR to derive the pri-

ority weights. Such methods would be invalid for inconsistent

IVFPRs since they are only suitable for consistent IVFPRs. Other

methods [3,4,7,12-14,19-21] apply some linear or goal program-

ming models to obtain the priority weights. These methods

merely minimize the deviation between an original IVFPR and

the converted consistent one obtained by priority weighs as

much as possible. However, for extremely inconsistent IVFPR,

the priority weights derived by such methods are unreasonable

and cannot be accepted in decision making. 

To overcome the above limitations, this paper focuses on a new

DM method with IVFPRs based on geometric consistency. The

otivations of this paper mainly come from the following facts: 

1) With the increasing complexity of the practical problems, the

amount of knowledge and information is greatly increased. A

single DM has no ability to handle such complex problems.

Thus, the GDM participated by several DMs is becoming more

and more prevalent [22–24] . Due to different understanding

and cognition of various DMs, the decision opinions provided

by DMs are diversified and even conflicting. However, some ex-

isting methods are not effective enough to deal with high com-

plexity and uncertainties in GDM with IVFPRs. 

2) Prior scholars ignored the consistency level of an IVFPR. In real-

ity, some DMs can accept the acceptable consistent IVFPR since

they have diverse risk attitudes. Incorporating DMs’ risk atti-

tude into the consistency level of IVFPR is reasonable and suit-

able for actual decision problems. 

3) The final solution should be agreed by all the DMs in GDM.

Hence, the ranking order of alternatives should be generated by

the collective priority weights. However, the previous research

failed to consider the determination of the collective priority

weights. It is necessary to introduce DMs’ preference principles

to obtain the collective priority weights from the individual pri-

ority weights. 

In this paper, the geometric consistent index of an IVFPR is first

efined considering DM’s risk preference. Then a goal program-

ing model is built to adjust an unacceptable geometric consis-

ent IVFPR to derive an acceptable geometric consistent IVFPR. By

onstructing the membership functions of fuzzy geometric consis-

ent conditions, a fuzzy logarithmic program is established to de-

ive the interval priority weights from an IVFPR. In GDM problems,

he similarities between DMs are defined according to the individ-

al interval priority weight vectors. DMs’ weights are determined

y the confidence degrees of each DM. Subsequently, a parametric

inear programming model is constructed to derive the collective
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nterval priority weights which are used to rank alternatives. Fi-

ally, some examples are provided to verify the effectiveness and

racticability of the proposed method. The main innovations of this

ork are highlighted at four aspects: 

1) Wang and Chen [11] defined the geometric consistency of IVFPR

to check whether an IVFPR is geometric consistent or not. The

consistency level of an inconsistent IVFPR cannot be deter-

mined by [11] . To measure the consistency level of an IVFPR,

this paper defines the geometric consistent index based on the

geometric consistent definition in [11] . A max-consistency index

and a min-consistency index of the IVFPR are proposed based

on the majority principle and minority principle, respectively.

Combining the max-consistency index with min-consistency in-

dex, the geometric consistent index of an IVFPR is defined by

considering DM’s risk attitude adequately. 

2) To repair and improve the geometric consistency of an un-

acceptable geometric consistent IVFPR, a goal programming

model is constructed to obtain acceptable geometric consistent

one. 

3) The geometric consistent conditions about priority weights are

treated as fuzzy constraints. By constructing the membership

functions, a fuzzy logarithmic programming model is estab-

lished to derive the interval priority weights from an IVFPR,

which takes DM’s satisfaction into account. 

4) In GDM problems, the similarities between DMs are calculated

by the individual interval priority weights. Then the confidence

degrees of DMs are defined to determine DMs’ weights. Consid-

ering DMs’ preference principles, a parametric linear program-

ming model is established to derive the collective interval pri-

ority weights of alternatives. 

The remainder of this paper unfolds as follows. In Section 2 ,

ome preliminaries are reviewed, including some basic definitions

ssociated with intervals and IVFPRs. Section 3 defines the geomet-

ic consistent index of an IVFPR. Then a goal programming model

s proposed to derive the acceptable geometric consistent IVFPR

rom an unacceptable geometric consistent one. In Section 4 , a

uzzy logarithmic program is proposed to obtain the interval pri-

rity weights of an IVFPR. Section 5 constructs a parametric linear

rogramming model to determine the collective priority weights

y integrating all the individual interval priority weights. Then a

ew method is proposed to solve GDM with IVFPRs. In Section 6 ,

ome examples are analyzed to demonstrate the proposed method.

inally, Section 7 is concluding remarks. 

. Preliminaries 

To render this paper self-contained, some preliminaries are pre-

ented in this section. 

efinition 1. [25] . An IVFPR 

˜ R on the alternative set X =
 x 1 , x 2 , . . . , x n } is denoted by an interval valued fuzzy judgment

atrix ˜ R = ( ̃ r i j ) n ×n ⊂ X × X , where interval ˜ r i j = [ r i j , ̄r i j ] indicates

hat the preference degree or intensity of alternative x i over x j is

etween r i j and r̄ i j . Furthermore, r i j and r̄ i j fulfill the following

onditions: 

0 < r i j ≤ r̄ i j < 1 , r i j + ̄r ji = 1 , r ii = r̄ ii = 0 . 5 for all 

i, j = 1 , 2 , . . . , n. 

efinition 2. [11] . An IVFPR 

˜ R = ( ̃ r i j ) n ×n with ˜ r i j = [ r i j , ̄r i j ] is geo-

etric consistent if it satisfies the geometric transitivity as: 
 

r ik 
r̄ ki 

r̄ ik 
r ki 

= 

√ 

r i j 

r̄ ji 

r̄ i j 

r ji 

√ 

r jk 

r̄ k j 

r̄ jk 

r k j 

for all i, j, k = 1 , 2 , . . . , n. (1)

Let ˜ R = ( ̃ r i j ) n ×n with ˜ r i j = [ r i j , ̄r i j ] be an IVFPR. According to

efinition 2 , ˜ R is geometric consistent iff one of the following con-
itions is satisfied. 

i) r i j ̄r i j r jk ̄r jk ̄r ki r ki = r ik ̄r ik r k j ̄r k j r ji ̄r ji for all 

i < j < k, i, j, k = 1 , 2 , . . . , n. (2) 

ii) ln r i j + ln ̄r i j + ln r jk + ln ̄r jk + ln (1 − r ik ) + ln (1 − r̄ ik ) 

= ln r ik + ln ̄r ik + ln (1 − r̄ jk ) + ln (1 − r jk ) + ln (1 − r̄ i j ) 

+ ln (1 − r i j ) (i < j < k, i, j, k = 1 , 2 , . . . , n ) (3) 

It can be concluded that Eqs. (1) –( 3 ) are equivalent. That is to

ay, any one of Eqs. (1) –( 3 ) can be applied to check the geometric

onsistency of an IVFPR. Since Eq. (3) is additive and only contains

he upper triangular elements in an IVFPR, using Eq. (3) can sim-

lify the calculation in the process of decision making. 

A weight vector ˜ w = ( ̃  w 1 , ˜ w 2 , . . . , ˜ w n ) 
T is called a normal-

zed interval weight vector if ˜ w i = [ w i , w̄ i ] , 0 ≤ w i ≤ w̄ i ≤ 1 , w i +
 n 
j =1 , j � = i w̄ j ≥ 1 and w̄ i + 

∑ n 
j =1 , j � = i w j ≤ 1 for all i = 1 , 2 , . . . , n [7].

enote a 2 n -dimensional simplex by 

 = 

{
˜ w = ( ̃  w 1 , ˜ w 2 , . . . , ˜ w n ) 

T | ̃  w i = [ w i , w̄ i ] ∈ [0 , 1] , w i 

+ 

∑ n 

j =1 , j � = i w̄ j ≥ 1 , w̄ i + 

∑ n 

j =1 , j � = i w j ≤ 1 , i = 1 , 2 , . . . , n 

} 

. 

efinition 3. [11] . An IVFPR 

˜ R = ( ̃ r i j ) n ×n is geometric consis-

ent if there exists a normalized interval priority weight vector

˜  = ( ̃  w 1 , ˜ w 2 , . . . , ˜ w n ) 
T such that 

˜ 
 i j = 

[
r i j , ̄r i j 

]
= 

⎧ ⎨ ⎩ 

[ 0 . 5 , 0 . 5 ] , if i = j [ 
w i 

w i + αi j ̄w j 
, 

αi j ̄w i 

αi j ̄w i + w j 

] 
, if i � = j 

(4) 

here 

√ 

w i w j 

w̄ i ̄w j 
≤ αi j ≤ 1 and αi j = α ji (i, j = 1 , 2 , . . . , n ; i � = j) . 

Eq. (4) can be written as follows: 

 

αi j (1 − r̄ i j ) ̄w i − r̄ i j w j = 0 (i, j = 1 , 2 , . . . , n, i � = j) 

αi j r i j w̄ j − (1 − r i j ) w i = 0 (i, j = 1 , 2 , . . . , n, i � = j) 
(5) 

According to Definition 1 , Eq. (5) can be simplified as 

 

 

 

 

 

 

 

 

 

 

 

ln w̄ i − ln w j + ln αi j + ln (1 − r̄ i j ) − ln ̄r i j = 0 

(i, j = 1 , 2 , . . . , n, i < j) 

ln w̄ j − ln w i + ln αi j + ln r i j − ln (1 − r i j ) = 0 

(i, j = 1 , 2 , . . . , n, i < j) 

(6) 

To rank intervals, Xu and Da [26] proposed the concept of the

ikelihood of intervals. For intervals ˜ r i = [ r i , ̄r i ] (i = 1 , 2 , . . . , n ) , the

ikelihood of intervals ˜ r i > ̃  r h (i.e., interval ˜ r i is larger than interval

˜  h ) is defined as 

( ̃ r i > 

˜ r h ) = max 

{
1 − max 

{
r̄ h − r i 

r̄ h − r h + ̄r i − r i 
, 0 

}
, 0 

}
for all i, h = 1 , 2 , . . . , n. (7) 

Then the priority weight v i of interval ˜ r i is calculated as follows

27] : 

 i = 

1 
n (n −1) 

( 
∑ n 

h =1 
l( ̃ r i > 

˜ r h ) + 

n 
2 

− 1) for all i = 1 , 2 , . . . , n. (8)

The bigger the value of priority weight v i , the larger the interval

˜  i . Thus, the ranking order of intervals can be obtained according

o the descending order of the priority weights v (i = 1 , 2 , . . . , n ) . 
i 
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3. Geometric consistency of interval-valued fuzzy preference 

relation 

In this section, the geometric consistent index of an IVFPR is

defined considering DM’s risk attitude. Then a goal programming

model is constructed to obtain the acceptable geometric consistent

IVFPR from an unacceptable geometric consistent one. 

3.1. Geometric consistent index of interval valued fuzzy preference 

relation 

In some specified circumstances, it is difficult for DMs to

provide completely geometric consistent IVFPRs. According to

Definition 2 , Wang and Chen [11] only proposed the concept of ge-

ometric consistent IVFPR, which can be applied to check whether

an IVFPR is geometric consistent or not. The consistency level of an

inconsistent IVFPR cannot be determined by Wang and Chen [11] .

To measure the consistency level of an IVFPR, the consistency in-

dex of IVFPR is defined in the following. 

Based on Eq. (3) , the consistency level of IVFPR
˜ R = ( ̃ r i j ) n ×n can be measured by the deviation between

ln r i j + ln ̄r i j + ln r jk + ln ̄r jk + ln (1 − r ik ) + ln (1 − r̄ ik ) and

ln r ik + ln ̄r ik + ln (1 − r̄ jk ) + ln (1 − r jk ) + ln (1 − r̄ i j ) + ln (1 − r i j ) 

for all i < j < k, i, j, k = 1 , 2 , . . . , n . 

Based on p -metric, the total deviation of IVFPR 

˜ R = ( ̃ r i j ) n ×n is

determined by Minkowski distance as 

D ( ̃  R ) = 

{ ∑ n 

i =1 

∑ n 

j= i +1 

∑ n 

k = j+1 

∣∣[ln r i j + ln ̄r i j + ln r jk 

+ ln ̄r jk + ln (1 − r ik ) + ln (1 − r̄ ik ) 
]

− [ ln r ik + ln ̄r ik 

+ ln (1 −r̄ jk ) + ln (1 −r jk ) + ln (1 − r̄ i j ) + ln (1 − r i j ) 
]∣∣p 

} 1 /p

where parameter p ( p ≥ 0) reflects the importance assigned to the

largest deviation. As p increases, more importance is assigned to

the largest deviations. If p = 1, the Minkowski distance for IVFPR
˜ R = ( ̃ r i j ) n ×n is reduced to Hamming distance; If p → ∞ , the

Minkowski distance for IVFPR 

˜ R = ( ̃ r i j ) n ×n is reduced to Chebyshev

distance. Thus, a geometric consistent index for an IVFPR can be

defined by these two special cases ( p = 1 and p → ∞ ). 

Definition 4. A max-consistency index measures the level of geo-

metric consistency of an IVFPR 

˜ R by Hamming distance, which is

defined as 

MCI ( ̃  R ) = 

1 
C 3 n 

∑ n 

i =1 

∑ n 

j= i +1 

∑ n 

k = j+1 
| [ln r i j + ln ̄r i j 

+ ln r jk + ln ̄r jk + ln (1 − r ik ) + ln (1 − r̄ ik ) 
]

−
[
ln r ik + ln ̄r ik + ln (1 − r̄ jk ) + ln (1 − r jk ) 

+ ln (1 − r̄ i j ) + ln (1 − r i j ) 
]| (9)

Definition 5. A min-consistency index measures the level of geo-

metric consistency of an IVFPR 

˜ R by Chebyshev distance, which is

defined as 

SCI 
(˜ R 

)
= max 

1 ≤i< j<k ≤n 

{∣∣[ln r ij + ln ̄r ij + ln r jk + ln ̄r jk 

+ ln ( 1 − r ik ) + ln ( 1 − r̄ ik ) ] −
[
ln r ik + ln ̄r ik + ln 

(
1 − r̄ jk 

)
+ ln 

(
1 − r jk 

)
+ ln 

(
1 − r̄ ij 

)
+ ln 

(
1 − r ij 

)]∣∣} (10

In Eq. (9) the Hamming distance between both sides of

Eq. (3) is employed to measure the consistency level of an IVFPR,

which is based on the majority principle. It shows that such a

DM is optimistic. Hence, Eq. (9) is called the max-consistency in-

dex. This case would lead to a more robust estimation. Differ-

ent from Eq. (9) , the Chebyshev distance between both sides of

Eq. (3) is used to measure the consistency level of IVFPR, which is
ased on the minority principle. It implies that such a DM is pes-

imistic. Hence, Eq. (10) is called the min-consistency index. This

ase would result in a more sensitive estimation of extreme devi-

tion. 

efinition 6. Combining the max-consistency index with min-

onsistency index, the geometric consistent index of an IVFPR R̃

s defined as 

I( ̃  R ) = δMCI ( ̃  R ) + (1 − δ) SCI ( ̃  R ) , (11)

here parameter δ ∈ [0, 1] reflects DM’s risk attitude. If δ = 1, only

he max-consistency index is considered, which shows that the DM

s optimistic; if δ = 0, only the min-consistency index is considered,

hich indicates the DM is pessimistic; if δ = 0 . 5 , the DM is neu-

ral which means that the DM is indifferent to the risk. The larger

he value of δ, the more optimistic the DM. The smaller of the

alue of δ, the more pessimistic the DM. By introducing parameter

as a tradeoff between the max-consistency index and the min-

onsistency index, the geometric consistent index of Definition 6 is

ore flexible and appropriate for various DMs with different risk

ttitudes. 

The geometric consistent index reflects the reliability of the in-

ormation provided by DM. Clearly, the smaller the value of CI( ̃  R ) ,

he more consistent and reliable the information in IVFPR 

˜ R . More-

ver, it is easy to verify that the geometric consistent index CI( ̃  R )

atisfies 0 ≤ CI( ̃  R ) ≤ 1 . If CI( ̃  R ) = 0 , then IVFPR 

˜ R is completely ge-

metric consistent. 

emark 1. Wu and Chiclana [9] defined a consistency index of

n IVFPR by calculating the distance between the IVFPR and its

orresponding multiplicative consistency based estimated IVFPR. In

eneral, different methods would derive diverse multiplicative con-

istency based estimated IVFPRs, which would lead to various con-

istency indices for an IVFPR. Chen and Zhou [5] introduced the ex-

ected value fuzzy preference relations corresponding to an IVFPR.

hen the consistency indicator of an IVFPR is defined by calculat-

ng the deviation between its expected value fuzzy preference re-

ation and the corresponding consistent fuzzy preference relation.

he consistency indicator relies on the original IVFPR and its cor-

esponding consistent fuzzy preference relation. However, the con-

istency level of an IVFPR should not be changed with its corre-

ponding consistent fuzzy preference relation. Moreover, Chen and

hou [5] transformed an IVFPR into the corresponding fuzzy pref-

rence relation, which may result in information loss to some de-

ree. In this paper, the geometric consistency index of an IVFPR

efined in Definition 6 is stable and reliable since it only depends

n the information of the original IVFPR. In addition, incorporat-

ng DM’s risk attitude into the consistent index is more accordance

ith the real-world decision making. 

Introducing a predefined consistency threshold CI , an accept-

ble geometric consistent IVFPR is defined as follows: 

efinition 7. Let CI be a predefined consistency threshold satisfy-

ng CI ∈ [0 , 1] . If CI( ̃  R ) ≤ CI , then IVFPR 

˜ R is acceptable geometric

onsistent. Otherwise, ˜ R is unacceptable geometric consistent. Es-

ecially, if CI( ̃  R ) = 0 , IVFPR 

˜ R is completely geometric consistent. 

In general, the consistency threshold CI is predefined in the in-

erval [0,1] artificially. Although the determination of consistency

hreshold is important to the decision making, there is no a unified

pproach for DMs to determining the proper consistency thresh-

ld. The consistency threshold can be determined by all DMs or a

uper DM according to the characteristic and need of real-world

ecision making problems. If the decision is significant, a more re-

trictive value should be adapted to the consistency threshold; if

he decision is urgent and needs to select alternative(s) quickly, a

ess restrictive value should be allocated. 
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.2. Derive the acceptable geometric consistent interval valued fuzzy 

reference relation 

For an unacceptable geometric consistent IVFPR 

˜ R 

′ with ˜ r ′ 
i j 

=
 r ′ 

i j 
, ̄r ′ 

i j 
] , an important task is to find an acceptable geometric con-

istent IVFPR 

˜ R = ( ̃ r i j ) n ×n with ˜ r i j = [ r i j , ̄r i j ] which is close to ˜ R 

′ as

uch as possible. To fulfill this task, we can minimize the devia-

ion between the original IVFPR 

˜ R 

′ and the acceptable geometric

onsistent IVFPR 

˜ R . Therefore, a mathematical programming model

s constructed as follows: 

in 

∑ n 

i =1 

∑ n 

j= i +1 
(| r ′ i j − r i j | + | ̄r ′ i j − r̄ i j | ) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δ
C 3 n 

∑ n 
i =1 

∑ n 
j= i +1 

∑ n 
k = j+1 | 

[
ln r i j + ln ̄r i j + ln r jk + ln ̄r jk 

+ ln (1 − r ik ) + ln (1 − r̄ ik ) ] −
[
ln r ik + ln ̄r ik + ln (1 − r̄ jk ) 

+ ln (1 − r jk ) + ln (1 − r̄ i j ) + ln (1 − r i j ) 
]| 

+(1 − δ) max 
1 ≤i< j<k ≤n 

{| [ln r i j + ln ̄r i j + ln r jk + ln ̄r jk 

+ ln (1 − r ik ) + ln (1 − r̄ ik ) ] −
[
ln r ik + ln ̄r ik + ln (1 − r̄ jk ) 

+ ln (1 − r jk ) + ln (1 − r̄ i j ) + ln (1 − r i j ) 
]| } ≤ CI 

0 < r i j ≤ r̄ i j < 1 (i, j = 1 , 2 , . . . , n, i < j) 

(12) 

In Eq. (12) , the first condition ensures that the obtained matrix
˜ 
 is acceptable geometric consistent, and the second guarantees

he upper triangular elements in 

˜ R are intervals. 

To solve Eq. (12) , some parameters are introduced as 

g −
ij 

= 

(
r ′ ij − r ij 

)
∨ 0 , h 

−
ij 

= 

(
r ij − r ′ ij 

)
∨ 0 , 

g + 
ij 

= 

(
r̄ ′ ij − r̄ ij 

)
∨ 0 , h 

+ 
ij 

= 

(
r̄ ij − r̄ ′ ij 

)
∨ 0 , 

 

−
ijk 

= f ijk ∨ 0 , ε + 
ijk 

= 

(
− f ikj 

)
∨ 0 , 

λ = max 
1 ≤i< j<k ≤n 

{
ε −

ijk 
+ ε + 

ijk 

}
, 

here f ijk = [ ln r ij + ln ̄r ij + ln r jk + ln ̄r jk + ln (1 − r ik ) + ln (1 − r̄ ik )]

[ ln r ik + ln ̄r ik + ln (1 − r̄ jk ) + ln (1 − r jk ) + ln (1 − r̄ ij ) + ln (1 − r ij )] 

(i, j, k = 1 , 2 , . . . , n ) . 

Then Eq. (12) can be converted into a goal programming model

s follows: 

in 

∑ n 
i =1 

∑ n 
j= i +1 (g −

i j 
+ h 

−
i j 

+ g + 
i j 

+ h 

+ 
i j 
) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δ
C 3 n 

∑ n 
i =1 

∑ n 
j= i +1 

∑ n 
k = j+1 (ε 

−
i jk 

+ ε + 
i jk 

) + (1 − δ) λ ≤ CI 

λ ≥ ε −
i jk 

+ ε + 
i jk 

(i, j, k = 1 , 2 , . . . , n, i < j < k ) 

g −
i j 

− h 

−
i j 

= r ′ i j − r i j , g 
+ 
i j 

− h 

+ 
i j 

= r̄ ′ 
i j 

− r̄ i j (i, j = 1 , 2 , . . . , n, i < j) [
ln r i j + ln ̄r i j + ln r jk + ln ̄r jk + ln (1 − r ik ) + ln (1 − r̄ ik ) 

]
−
[
ln r ik + ln ̄r ik + ln (1 − r̄ jk ) + ln (1 − r jk ) + ln (1 − r̄ i j ) 

+ ln (1 − r i j ) 
]

= ε −
i jk 

− ε + 
i jk 

(i, j, k = 1 , 2 , . . . , n, i < j < k ) 

0 ≤ r i j ≤ r̄ i j ≤ 1 ( i, j = 1 , 2 , . . . , n, i < j ) 

(13) 

Solving Eq. (13) yields the optimal solutions r i j and r̄ i j for all

, j = 1 , 2 , . . . , n and i < j . According to Definition 1 , the acceptable

eometric consistent IVFPR 

˜ R = ( ̃ r i j ) n ×n derived from the original

VFPR 

˜ R 

′ can be generated by 

˜ 
 ij = 

⎧ ⎪ ⎨ ⎪ ⎩ 

[
r ij , ̄r ij 

]
, if i < j 

[ 0 . 5 , 0 . 5 ] , if i = j [ ] (14) 
1 − r̄ ij , 1 − r ij , if i > j f  
. Derive the interval priority weights from an IVFPR 

In this section, a fuzzy logarithmic program is proposed to de-

ive the interval priority weights of IVFPR. Then a new method is

eveloped for individual decision making with IVFPR. 

.1. A fuzzy logarithmic program to derive the interval priority 

eights of IVFPR 

Motivated by the idea of fuzzy programming method (FPM)

28] , in the following we develop a new fuzzy logarithmic program

o derive the interval priority weights from an IVFPR. 

As per Definition 3 , if an IVFPR 

˜ R = ( ̃ r i j ) n ×n is not geometric

onsistent, there is not a normalized interval priority weight vector

˜  that satisfies Eq. (6) simultaneously. Therefore, a good enough

olution is to find an interval priority weight vector that satisfies

q. (6) as well as possible. Due to the fuzziness and uncertainty of

uman thinking and recognition, Eq. (6) may be hold in the sense

f approximation. It means that a good enough solution has to sat-

sfy all judgments approximately, i.e., 
 

 

 

 

 

 

 

 

 

ln w i − ln w j + ln αij + ln 

(
1 − r̄ ij 

)
− ln ̄r ij ∼= 

0 

( i, j = 1 , 2 , . . . , n, i < j ) 

ln w j − ln w i + ln αij + ln r ij − ln 

(
1 − r ij 

) ∼= 

0 

( i, j = 1 , 2 , . . . , n, i < j ) 

(15) 

here symbol ∼= 

denotes the statement “fuzzy equal to”. 

Let 

 

+ 
i j 
( ̃  w ) = ln w̄ i − ln w j + ln αi j + ln (1 − r̄ i j ) − ln ̄r i j , 

(i, j = 1 , 2 , . . . , n, i < j) (16) 

nd 

 

−
i j 
( ̃  w ) = ln w̄ j − ln w i + ln αi j + ln r i j − ln (1 − r i j ) , 

(i, j = 1 , 2 , . . . , n, i < j) . (17) 

To further simplify the notations, the parameters d + 
i j 
( ̃  w ) and

 

−
i j 
( ̃  w ) are unified into d c 

i j 
( ̃  w ) (c = + , −) . Thus Eq. (15) can be

ewritten as the fuzzy constraints as 

 

c 
i j ( ̃  w ) ∼= 

0 (i, j = 1 , 2 , . . . , n ; i < j; c = + , −) , (18)

The fuzzy constraint d c 
i j 
( ̃  w ) ∼= 

0 can be represented by a fuzzy

et on the universe W as follows: 

 

c 
ij = 

{(˜ w , μc 
ij ( ̃  w ) 

)∣∣˜ w ∈ W 

}
, 

here the membership function μc 
i j 
( ̃  w ) ∈ [0 , 1] can be appropri-

tely constructed. Especially, if μc 
i j 
( ̃  w ) = 1 , then fuzzy constraint

 

c 
i j 
( ̃  w ) ∼= 

0 reduces to the traditional crisp constraint d c 
i j 
( ̃  w ) = 0 . 

For fuzzy constraint d c 
i j 
( ̃  w ) ∼= 

0 , its membership function
c 
i j 
( ̃  w ) is constructed as 

c 
i j ( ̃  w ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 , if d c 
i j 
( ̃  w ) = 0 

1 − d c 
i j 
( ̃  w ) 

θ c 
i j 

, if 0 < d c 
i j 
( ̃  w ) ≤ θ c 

i j 

1 + 

d c 
i j 
( ̃  w ) 

θ c 
i j 

, if − θ c 
i j 

≤ d c 
i j 
( ̃  w ) < 0 

0 , else 

(19) 

here the tolerance parameter θ c 
i j 

> 0 (i, j = 1 , 2 , . . . , n ; j > i ; c =
 , −) . 

The membership function μc 
i j 
( ̃  w ) represents the satisfaction de-

ree of fuzzy constraint d c 
i j 
( ̃  w ) ∼= 

0 and is depicted in Fig. 1 . 

It is clear that μc 
i j 
( ̃  w ) ∈ [0 , 1] . For the fuzzy constraint d c 

i j 
( ̃  w ) ∼=

 , if d c 
i j 
( ̃  w ) = 0 , then μc 

i j 
( ̃  w ) = 1 which means “complete satis-

action”; if d c 
i j 
( ̃  w ) ≥ θ c 

i j 
or d c 

i j 
( ̃  w ) ≤ −θ c 

i j 
, then μc 

i j 
( ̃  w ) = 0 which
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Fig. 1. Membership function of d c 
i j 
( ̃  w ) ∼= 

0 . 
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means “complete dissatisfaction”; if −θ l 
i j 

< d c 
i j 
( ̃  w ) < 0 or 0 <

d c 
i j 
( ̃  w ) < θ c 

i j 
, then μc 

i j 
( ̃  w ) ∈ (0 , 1) which means “approximate sat-

isfaction”. 

According to Bellman and Zadeh’s extension principle [29] , a

fuzzy decision S can be viewed as a fuzzy set S = { ( ̃  w , μS ( ̃  w )) | ̃  w ∈
 } , where 

μS ( ̃  w ) = min 

{
μc 

ij ( ̃  w ) 
∣∣i, j = 1 , 2 , . . . , n ; j > i ; c = + , −

}
. 

Thus, Eq. (18) can be transformed into the following system of

crisp inequalities: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

μc 
i j 
( ̃  w ) ≥ β (i, j = 1 , 2 , . . . , n ; j > i ; c = + , −) √ 

w i w j 

w̄ i ̄w j 
≤ αi j ≤ 1 (i, j = 1 , 2 , . . . , n ; j > i ) 

0 ≤ β ≤ 1 

where β denotes the minimal satisfaction degree of fuzzy con-

straints. 

To obtain the optimal interval priority weight vector ˜ w , a single

objective fuzzy logarithmic programming model is constructed by

maximizing the minimal satisfaction degree β as follows: 

max β

s.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

μc 
i j 
( ̃  w ) ≥ β (i, j = 1 , 2 , . . . , n ; j > i ; c = + , −) 

ln w i + ln w j − ln w̄ i − ln w̄ j 

≤ 2 ln αi j ≤ 0 (i, j = 1 , 2 , . . . , n ; j > i ) 

0 ≤ β ≤ 1 , ˜ w ∈ W 

(20)

In Eq. (20) , the second line constraints are the logarithmic

forms to the constraints 

√ 

w i w j 

w̄ i ̄w j 
≤ αi j ≤ 1 (i, j = 1 , 2 , . . . , n ; i � = j) in

Definition 3 . 

Set α′ 
i j 

= ln αi j . Plugging Eqs. (16) , ( 17 ) and ( 19 ) into Eq. (20) , a

fuzzy logarithmic program is derived as 

max β

s.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(β − 1) θ+ 
i j 

≤ ln w̄ i − ln w j + ln (1 − r̄ i j ) − ln ̄r i j + α′ 
i j 

≤ (1 − β) θ+ 
i j 

(i, j = 1 , 2 , . . . , n ; j > i ) 

(β − 1) θ−
i j 

≤ ln w̄ j − ln w i + ln r i j − ln (1 − r i j ) + α′ 
i j 

≤ (1 − β) θ−
i j 

(i, j = 1 , 2 , . . . , n ; j > i ) 

ln w i + ln w j −ln w̄ i −ln w̄ j ≤ 2 α′ 
i j ≤ 0 (i, j =1 , 2 , . . . , n ; j > i ) 

w i + 

∑ n 
j =1 , j � = i w̄ j ≥ 1 , w̄ i + 

∑ n 
j =1 , j � = i w j ≤ 1 (i = 1 , 2 , . . . , n ) 

0 ≤ β ≤ 1 

(21)

By solving the above fuzzy logarithmic program ( Eq. (21) ), the

optimal solution ( ̃  w 

∗, β∗, α′ ∗
i j ) can be obtained, where ˜ w 

∗ is the

interval priority weight vector and β∗ is the maximum acceptance

degree of fuzzy constraints. If β∗= 1, then IVFPR 

˜ R = ( ̃ r i j ) n ×n is
ompletely geometric consistent. In general, the tolerance parame-

ers θ c 
i j 

(i, j = 1 , 2 , . . . , n ; j > i ; c = + , −) should be chosen enough

arge that makes the optimal solution non-empty. 

.2. A new method for individual decision making with IVFPR 

For a set of alternatives X = { x 1 , x 2 , . . . , x n } , a DM provides an

VFPR 

˜ R 

′ = ( ̃ r ′ 
i j 
) n ×n where ˜ r ′ 

i j 
= [ r ′ 

i j 
, ̄r ′ 

i j 
] is the preference degree of

lternative x i over x j . Based on the above analysis, a new method

or individual decision making with IVFPR is put forward as fol-

ows: 

Step 1 . Set the values of parameter δ and the consistency

threshold CI a priori. 

Step 2 . By Eq. (11) , calculate the geometric consistent index

CI( ̃  R 

′ ) of IVFPR 

˜ R 

′ . If CI( ̃  R 

′ ) ≤ CI , then IVFPR 

˜ R 

′ is acceptable

geometric consistent, thus let ˜ R = 

˜ R 

′ and go to Step 4. Oth-

erwise, IVFPR 

˜ R 

′ is unacceptable geometric consistent and go

to the next step. 

Step 3 . Solving Eq. (13) , the optimal solutions r i j and r̄ i j for all

i, j = 1 , 2 , . . . , n and i < j are derived. Then the acceptable

geometric consistent IVFPR 

˜ R is generated by Eq. (14) . 

Step 4 . According to Eq. (21) , determine the interval prior-

ity weights ˜ w i = [ w i , w̄ i ] (i = 1 , 2 , . . . , n ) from the acceptable

geometric consistent IVFPR 

˜ R . 

Step 5 . Based on Eq. (7) , the likelihood matrix L = ( l ih ) n ×n is

established where 

l ih = l( ̃  w i > ̃

 w h ) = max 

{
1 −max 

{
w̄ h −w i 

w̄ h −w h + w̄ i − w i 

, 0 

}
, 0 

}
(i, h = 1 , 2 , . . . , n ) . (22)

Then the priority weights v i (i = 1 , 2 , . . . , n ) are obtained by

q. (8) . Thus, the ranking order of alternatives can be generated

y descending the priority weights v i (i = 1 , 2 , . . . , n ) . 

. Method for GDM with IVFPRs 

In the section, the GDM problems with IVFPRs are described.

Ms’ weights are determined by the similarity between DMs. Then

 parametric linear programming model is constructed to obtain

he collective interval priority weights. A new method is proposed

o solve GDM with IVFPRs. 

.1. Problem description for GDM with IVFPRs 

The following assumptions or notations are used to represent

he GDM problem with IVFPRs: 

1) The alternatives are known. Let X = { x 1 , x 2 , . . . , x n } be a discrete

set of alternatives. 

2) DMs are known. Let E = { e 1 , e 2 , . . . , e m 

} be a set of DMs. 

3) The information about DMs’ weights is unknown. Let ω =
( ω 1 , ω 2 , . . . , ω m 

) T be DMs’ weight vector where ω t ≥ 0 and∑ m 

t=1 ω t = 1 . 

4) Assume that ˜ R 

′ 
t = ( ̃ r ′ 

i jt 
) n ×n (t = 1 , 2 , . . . , m ) is the individual

IVFPR provided by DM e t , where ˜ r i jt = [ r i jt , ̄r i jt ] is the prefer-

ence degree of alternative x i over x j given by DM e t . 

For individual IVFPR 

˜ R 

′ 
t = ( ̃ r ′ 

i jt 
) n ×n (t = 1 , 2 , . . . , m ) , the individ-

al interval priority weight vector ˜ w t = ( ̃  w 1 t , ˜ w 2 t , . . . , ˜ w nt ) 
T (t =

 , 2 , . . . , m ) of DM e t can be derived by the individual decision

aking method in Section 4.2 . Denote the collective interval prior-

ty weight vector by ˜ w = ( ̃  w 1 , ˜ w 2 , . . . , ˜ w n ) T with ˜ w i = [ w i , w̄ i ] (i =
 , 2 , . . . , n ) . In GDM, the final solution should be agreed by all the

Ms. Thus, the individual interval priority weight vectors should
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e integrated into the collective interval priority weight vector

hich is used to derive the collective ranking of alternatives. 

.2. Determining the collective interval priority weights in GDM 

The similarity between DMs e t and e l (t, l = 1 , 2 , . . . , m ) is mea-

ured by the corresponding individual interval priority weight vec-

ors. It is defined as 

 tl = 1 − 1 
2 n 

∑ n 

i =1 
(| w it − w il | + | ̄w it − w̄ il | ) (t, l = 1 , 2 , . . . , m ) 

(23) 

here ˜ w it = [ w it , w̄ it ] and ˜ w il = [ w il , w̄ il ] (i = 1 , 2 , . . . , n, t, l =
 , 2 , . . . , m ) are the interval priority weight of alternative x i for DM

 t and e l , respectively. 

The larger the value of S tl , the higher the similarity between

Ms e t and e l . It is easy to verify that the similarity S tl satisfies

ome properties: i) 0 ≤ S tl ≤ 1; ii) S tt = 1 ; iii) S tl = S lt . If two DMs

ave the same opinions, then the similarity degree between them

s equal to 1. 

Thus, the confidence degree CS t of DM e t is calculated as 

 S t = 

∑ m 

l =1 ,l � = t S tl (t = 1 , 2 , . . . , m ) . (24)

The confidence degree reflects the support degree of a DM from

ll the others. The higher the confidence degree of a DM, the larger

he support degree of a DM from all the others. Therefore, a DM

ith higher confidence degree should be assigned a larger weight;

 DM with lower confidence degree should be allocated a smaller

eight. In other words, the higher the confidence degree of a DM,

he larger the DM’s weight. Thus normalizing the confidence de-

rees CS t (t = 1 , 2 , . . . , m ) , DMs’ weights are obtained as 

 t = C S t / 
∑ m 

t=1 
C S t (t = 1 , 2 , . . . , m ) . (25)

To derive the collective interval priority weights ˜ w i = [ w i , w̄ i ]

(i = 1 , 2 , . . . , n ) , a reasonable method is to minimize all the

eighted deviations between ˜ w i = [ w i , w̄ i ] and ˜ w it = [ w it , w̄ it ] (i =
 , 2 , . . . , n, t = 1 , 2 , . . . , m ) . The weighted deviations between ˜ w i =
 w i , w̄ i ] and ˜ w it = [ w it , w̄ it ] can be introduced as ω t | w i − w it | and

 t | ̄w i − w̄ it | , respectively. 

Inspired by the mathematical programming model with p -

etric [30,31] , a minimization deviation model is constructed as

ollows: 

in T = 

∑ n 
i =1 

∑ m 

t=1 [ ( ω t | w i − w it | ) p + ( ω t | ̄w i − w̄ it | ) p ] 1 /p 

.t. ̃  w ∈ W 

(26) 

here ω t is the weight of DM e t calculated by Eq. (25) and param-

ter p reflects the importance assigned to the largest deviation. As

 increases, more importance is assigned to the largest deviations

31] . 

Particularly, if p = 1 , Eq. (26) is converted into 

in T = 

∑ n 
i =1 

∑ m 

t=1 ω t (| w i − w it | + | ̄w i − w̄ it | ) 
.t. ̃  w ∈ W 

(27) 

If p → + ∞ , Eq. (26) is rewritten as 

in max 
i,t 

{ ω t | w i − w it | , ω t | ̄w i − w̄ it |} 
.t. ̃  w ∈ W 

(28) 

The objective function in Eq. (27) is to minimize the sum

f all weighted deviations ω t | w i − w it | and ω t | ̄w i − w̄ it | (i =
 , 2 , . . . , n, t = 1 , 2 , . . . , m ) , which is based on the majority princi-

le similar to the model in Wang and Li [7] . This case would lead

o a more robust estimation. Different from Eq. (27) , the objective

unction in Eq. (28) is to minimize the maximum weighted de-

iation between ω t | w i − w it | and ω t | ̄w i − w̄ it | (i = 1 , 2 , . . . , n, t =
 , 2 , . . . , m ) , which is based on the minority principle. This case
ould result in a more sensitive estimation of extreme deviation

30] . 

Combining Eqs. (27) and ( 28 ), a parametric mathematical pro-

ram is constructed by introducing parameter ψ as follows: 

min T = ψ 

∑ n 

i =1 

∑ m 

t=1 
ω t (| w i − w it | + | ̄w i − w̄ it | ) 

+(1 − ψ) max 
i,t 

{ ω t | w i − w it | , ω t | ̄w i − w̄ it |} 
s.t. ̃  w ∈ W (29) 

here ψ is a control parameter that is a trade-off between ma-

ority and minority principles satisfying 0 ≤ ψ ≤ 1. If ψ = 1,

q. (29) can be reduced to the model ( 27 ), which only considers

he majority principle; if ψ = 0.5, Eq. (29) considers both the ma-

ority principle and the minority principle; if ψ = 0, Eq. (29) can be

educed to the model ( 28 ), which only considers the minority prin-

iple. Therefore, Eq. (29) can be regarded as an integrated model

hich includes the above two particular cases ( Eqs. (27) and ( 28 ))

y parameter ψ . 

To solve Eq. (29) , let 

u = max 
i,t 

{ ω t | w i − w it | , ω t | ̄w i − w̄ it |} , 
 

+ 
it = 

1 
2 
ω t (| w i − w it | + ( w i − w it )) , 

 

−
it = 

1 
2 
ω t (| w i − w it | − ( w i − w it )) , 

 ̄

+ 
it 

= 

1 
2 
ω t (| ̄w i − w̄ it | + (| ̄w i − w̄ it | )) , 

 ̄

−
it 

= 

1 
2 
ω t (| ̄w i − w̄ it | − ( w̄ i − w̄ it )) . 

Thus, Eq. (29) is transformed into a parametric linear program-

ing model as follows: 

in T = ψ 

∑ n 
i =1 

∑ m 

t=1 ( d 
+ 
it + d 

−
it + d̄ + 

it 
+ d̄ −

it 
) + (1 − ψ) u 

.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ω t ( w i − w it ) − d 
+ 
it + d 

−
it = 0 (i = 1 , 2 , . . . , n, t = 1 , 2 , . . . , m ) 

ω t ( w̄ i − w̄ it ) − d̄ + 
it 

+ d̄ −
it 

= 0 (i = 1 , 2 , . . . , n, t = 1 , 2 , . . . , m ) 

d 
+ 
it + d 

−
it ≤ u, d̄ + 

it 
+ d̄ −

it 
≤ u (i = 1 , 2 , . . . , n, t = 1 , 2 , . . . , m ) 

w i + 

n ∑ 

j =1 , j � = i 
w̄ j ≥ 1 , w̄ i + 

n ∑ 

j =1 , j � = i 
w j ≤ 1 (i = 1 , 2 , . . . , n ) 

0 ≤ w i ≤ w̄ i ≤ 1 (i = 1 , 2 , . . . , n ) 

(30) 

Solving Eq. (30) , the collective interval priority weights ˜ w i =
 w i , w̄ i ] (i = 1 , 2 , . . . , n ) can be obtained. Then the collective rank-

ng order of alternatives is generated by the collective interval pri-

rity weights ˜ w i (i = 1 , 2 , . . . , n ) . 

.3. Method for GDM with IVFPRs 

Summarizing the aforesaid analyzes, a new method for GDM

ith IVIFPRs is developed below. 

Step 1 . Set the values of parameter δ and the predefined con-

sistency threshold CI . Suppose that T is an empty set. 

Step 2 . By Eq. (11) , calculate the geometric consistent in-

dex CI( ̃  R 

′ 
t ) for individual IVFPR 

˜ R 

′ 
t (t = 1 , 2 , . . . , m ) . When

CI( ̃  R 

′ 
t ) ≤ CI , IVFPR 

˜ R 

′ 
t is acceptable geometric consistent, thus

let ˜ R t = 

˜ R 

′ 
t . When CI( ̃  R 

′ 
t ) > CI , IVFPR 

˜ R 

′ 
t is unacceptable ge-

ometric consistent and add 

˜ R 

′ 
t to the set T . If all IVFPRs ˜ R 

′ 
t 

(t = 1 , 2 , . . . , m ) are geometric consistent, i.e., T is an empty

set, then go to Step 4; otherwise, go to the next step. 

Step 3 . Solving Eq. (13) , the optimal solutions r i jt and r̄ i jt ( i, j =
1 , 2 , . . . , n, i < j) are derived from unacceptable geometric

consistent IVFPRs ˜ R 

′ 
t , t ∈ { l| ̃  R 

′ 
l 
∈ T } . By Eq. (14) , the cor-

responding acceptable geometric consistent IVFPRs ˜ R t (t ∈
{ l| ̃  R 

′ 
l 
∈ T } ) are generated. 
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Step 4 . According to Eq. (21) , determine the individual interval

priority weight vectors ˜ w t = ( ̃  w 1 t , ˜ w 2 t , . . . , ˜ w nt ) 
T for DMs e t 

(t = 1 , 2 , . . . , m ) . 

Step 5 . The similarities S tl between DMs e t and e l (t, l =
1 , 2 , . . . , m ) are computed by Eq. (23) . 

Step 6 . The confidence degrees CS t of DMs e t (t = 1 , 2 , . . . , m )

are calculated via Eq. (24) . 

Step 7 . Using Eq. (25) , DMs’ weights ω t (t = 1 , 2 , . . . , m ) are de-

termined. 

Step 8 . According to Eq. (30) , the collective interval priority

weights ˜ w i = [ w i , w i ] (i = 1 , 2 , . . . , n ) are obtained. 

Step 9 . Based on Eq. (7) , the likelihood matrix L = ( l ih ) n ×n is

constructed where 

l ih = l( ̃  w i > 

˜ w h ) = max 

{
1 −max 

{
w̄ h −w i 

w̄ h − w h + w̄ i − w i 

, 0 

}
, 0 

}
.

(31)

Utilizing Eq. (8) , the priority weights v i of interval priority

weights ˜ w i (i = 1 , 2 , . . . , n ) are obtained. Thus, the collective rank-

ing order of alternatives can be generated by comparing the prior-

ity weights v i (i = 1 , 2 , . . . , n ) . 

The above process for GDM with IVFPRs is depicted in Fig. 2 . 

Remark 2. The above method is proposed for solving GDM with

IVFPRs. When solving a decision making problem with a sin-

gle DM, Steps 5–8 that are used to derive the collective priority

weights could be omitted. So the above method is exactly reduced

to the method for individual decision making with IVFPR proposed

in Section 4.2 . Thus, the developed method can not only be applied

to solve GDM with IVFPRs, but also be used to solve the individual

min (g −
12 

+ h −
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13 
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14 
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24 

= 0 . 8 − r̄ 24 , g 
+ 
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[ ln r 34 + ln ̄r 34 + ln r 45 + ln ̄r 45 + ln (1 − r 35 ) + ln (1 − r̄ 35 ) ] − [ ln r 35 + ln ̄r

0 ≤ r 12 ≤ r̄ 12 ≤ 1 , 0 ≤ r 13 ≤ r̄ 13 ≤ 1 , 0 ≤ r 14 ≤ r̄ 14 ≤ 1 , 0 ≤ r 15 ≤ r̄ 15 ≤ 1 , 0

0 ≤ r 24 ≤ r̄ 24 ≤ 1 , 0 ≤ r 25 ≤ r̄ 25 ≤ 1 , 0 ≤ r 34 ≤ r̄ 34 ≤ 1 , 0 ≤ r 35 ≤ r̄ 35 ≤ 1 , 0
decision making with IVFPR. 
. Application examples and comparative analyzes 

In this section, some examples are applied to individual deci-

ion making with IVFPR and GDM with IVFPRs, respectively. Com-

arative analyzes with existing methods [4,11,21] are also per-

ormed. 

.1. Application to individual decision making with IVFPR 

Firstly, two examples for individual decision making with IVFPR

re given to interpret the advantages of the method for individual

ecision making with IVFPR proposed in Section 4.2 . 

xample 1. This example is taken from Genc et al. [4] . Suppose

hat a DM provides his/her preference information over a collec-

ion of alternatives x i (i = 1 , 2 , . . . , 5) with the following IVFPR: 

˜ 
 

′ = 

⎛ ⎜ ⎜ ⎝ 

[0 . 5 , 0 . 5] [0 . 5 , 0 . 6] [0 . 2 , 0 . 5] [0 . 3 , 0 . 7] [0 . 3 , 0 . 5] 
[0 . 4 , 0 . 5] [0 . 5 , 0 . 5] [0 . 3 , 0 . 6] [0 . 6 , 0 . 8] [0 . 2 , 0 . 4] 
[0 . 5 , 0 . 8] [0 . 4 , 0 . 7] [0 . 5 , 0 . 5] [0 . 7 , 0 . 8] [0 . 4 , 0 . 5] 
[0 . 3 , 0 . 7] [0 . 2 , 0 . 4] [0 . 2 , 0 . 3] [0 . 5 , 0 . 5] [0 . 1 , 0 . 4] 
[0 . 5 , 0 . 7] [0 . 6 , 0 . 8] [0 . 5 , 0 . 6] [0 . 6 , 0 . 9] [0 . 5 , 0 . 5] 

⎞⎟⎟⎠
Considering that there is a single DM, the method for individual

ecision making with IVFPR proposed in Section 4.2 is applied to

olve this example. 

Step 1 . Set δ = 0 . 5 and CI = 0 . 1 . 

Step 2 . By Eq. (11) , calculate the geometric consistent index

CI( ̃  R 

′ ) = 1.6895. Since CI( ̃  R 

′ ) > CI , IVFPR 

˜ R 

′ is unacceptable

geometric consistent and go to step 3. 

Step 3 . Using Eq. (13) , a goal programming model is constructed

as follows: 

 h −
15 

+ g + 
15 

+ h + 
15 

+ g −
23 

+ h −
23 

+ g + 
23 

+ h + 
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+ g −
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+ h −
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+ g −
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+ h −
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+ h + 
45 
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+ 
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+ ε −
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+ ε −
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+ ε + 
235 

+ ε −
245 

+ ε + 
245 

+ 

 

5 
, 

 

45 
, 

 . 3 − r 15 , g 
−
23 

− h −
23 

= 0 . 3 − r 23 , 

 . 4 − r 35 , g 
−
45 

− h −
45 

= 0 . 1 − r 45 , 

 5 − r̄ 15 , g 
+ 
23 

− h + 
23 

= 0 . 6 − r̄ 23 , 

 . 5 − r̄ 35 , g 
+ 
45 

− h + 
45 

= 0 . 4 − r̄ 45 , 

 (1 − r̄ 23 ) + ln (1 − r 23 ) + ln (1 − r̄ 12 ) + ln (1 − r 12 ) ] = ε −
123 

− ε + 
123 

 (1 − r̄ 24 ) + ln (1 − r 24 ) + ln (1 − r̄ 12 ) + ln (1 − r 12 ) ] = ε −
124 

− ε + 
124 

 (1 − r̄ 25 ) + ln (1 − r 25 ) + ln (1 − r̄ 12 ) + ln (1 − r 12 ) ] = ε −
125 

− ε + 
125 

 (1 − r̄ 34 ) + ln (1 − r 34 ) + ln (1 − r̄ 13 ) + ln (1 − r 13 ) ] = ε −
134 

− ε + 
134 

 (1 − r̄ 35 ) + ln (1 − r 35 ) + ln (1 − r̄ 13 ) + ln (1 − r 13 ) ] = ε −
135 

− ε + 
135 

 (1 − r̄ 45 ) + ln (1 − r 45 ) + ln (1 − r̄ 14 ) + ln (1 − r 14 ) ] = ε −
145 

− ε + 
145 

n (1 − r̄ 34 ) + ln (1 − r 34 ) + ln (1 − r̄ 23 ) + ln (1 − r 23 ) ] = ε −
234 

− ε + 
234 

n (1 − r̄ 35 ) + ln (1 − r 35 ) + ln (1 − r̄ 23 ) + ln (1 − r 23 ) ] = ε −
235 

− ε + 
235 

n (1 − r̄ 45 ) + ln (1 − r 45 ) + ln (1 − r̄ 24 ) + ln (1 − r 24 ) ] = ε −
245 

− ε + 
245 

n (1 − r̄ 45 ) + ln (1 − r 45 ) + ln (1 − r̄ 34 ) + ln (1 − r 34 ) ] = ε −
345 

− ε + 
345 

 

≤ r̄ 23 ≤ 1 , 

5 ≤ r̄ 45 ≤ 1 . 

(32)
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Fig. 2. Decision making process for GDM with IVFPRs. 

 

 

R

[0 . 30 0 0 , 0 . 9256] [0 . 30 0 0 , 0 . 50 0 0] 

[0 . 60 0 0 , 0 . 7273] [0 . 2759 , 0 . 40 0 0] 
[0 . 70 0 0 , 0 . 80 0 0] [0 . 40 0 0 , 0 . 50 0 0] 
[0 . 50 0 0 , 0 . 50 0 0] [0 . 0968 , 0 . 40 0 0] 
[0 . 60 0 0 , 0 . 9032] [0 . 50 0 0 , 0 . 50 0 0] 

⎞ ⎟ ⎟ ⎟ ⎠ 

 

 

Solving Eq. (32) , the optimal solutions r i j and r̄ i j for all i, j =
1 , 2 , . . . , 5 and i < j are derived. 

Then the acceptable geometric consistent IVFPR 

˜ R is gener-

ated by Eq. (14) as 

˜ 
 = 

⎛ ⎜ ⎜ ⎜ ⎝ 

[0 . 50 0 0 , 0 . 50 0 0] [0 . 50 0 0 , 0 . 60 0 0] [0 . 3637 , 0 . 50 0 0] 

[0 . 40 0 0 , 0 . 50 0 0] [0 . 50 0 0 , 0 . 50 0 0] [0 . 2222 , 0 . 60 0 0] 
[0 . 50 0 0 , 0 . 6363] [0 . 40 0 0 , 0 . 7778] [0 . 50 0 0 , 0 . 50 0 0] 
[0 . 0744 , 0 . 70 0 0] [0 . 2727 , 0 . 40 0 0] [0 . 20 0 0 , 0 . 30 0 0] 
[0 . 50 0 0 , 0 . 70 0 0] [0 . 60 0 0 , 0 . 7241] [0 . 50 0 0 , 0 . 60 0 0] 

Step 4 . Set θ+ 
i j 

= θ−
i j 

= 0 . 5 for i, j = 1 , 2 , . . . , 5 and i < j . Accord-

ing to Eq. (21) , a fuzzy logarithmic program is established

as 
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Table 1 

Ranking orders of alternatives with different parameter values in Example 1 . 

The proposed method for individual decision making Genc et al.’s method in [4] 

CI = 0.1, δ = 0 CI = 0.1, δ = 0.5 CI = 0.1, δ = 1 CI = 0.01, δ = 0.5 

˜ w 1 [0.1386,0.3429] [0.1374,0.3736] [0.1398,0.3458] [0.1445,0.3573] [0.1364,0:2442] 

˜ w 2 [0.1386,0.1962] [0.1510,0.2176] [0.1398,0.2083] [0.1445,0.1872] [0.1111,0.2029] 

˜ w 3 [0.2080,0.2286] [0.2266,0.2266] [0.2097,0.2305] [0.2058,0.2382] [0.2029,0.3218] 

˜ w 4 [0.0404,0.2286] [0.0495,0.2191] [0.0950,0.2305] [0.0426,0.2382] [0.0662,0.1154] 

˜ w 5 [0.2080,0.2080] [0.1993,0.1993] [0.2097,0.2097] [0.2167,0.2167] [0.2442,0.3899] 

Ranking order 
x 3 
 x 1 
 x 5 

 x 4 
 x 2 

x 3 
 x 1 
 x 5 

 x 4 
 x 2 

x 3 
 x 1 
 x 5 

 x 4 
 x 2 

x 3 
 x 1 
 x 5 

 x 4 
 x 2 

x 5 
 x 3 
 x 1 

 x 2 
 x 4 

Fitted error 0.2305 0.2422 0.2483 0.2267 0.3495 
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(β − 1) θ+ 
12 

≤ ln w̄ 1 − ln w 2 + ln (1 − 0 . 6) − ln 0 . 6 + α′ 
12 ≤ (1 − β) θ+ 

12 
, (β −

(β − 1) θ+ 
14 

≤ ln w̄ 1 − ln w 4 + ln (1 − 0 . 9256) − ln 0 . 9256 + α′ 
14 ≤ (1 − β) θ

(β − 1) θ+ 
23 

≤ ln w̄ 2 − ln w 3 + ln (1 − 0 . 6) − ln 0 . 6 + α′ 
23 ≤ (1 − β) θ+ 

23 
, (β −

(β − 1) θ+ 
25 

≤ ln w̄ 2 − ln w 5 + ln (1 − 0 . 4) − ln 0 . 4 + α′ 
25 ≤ (1 − β) θ+ 

25 
, (β −

(β − 1) θ+ 
35 

≤ ln w̄ 3 − ln w 5 + ln (1 − 0 . 5) − ln 0 . 5 + α′ 
35 ≤ (1 − β) θ+ 

35 
, (β −

(β − 1) θ−
12 

≤ ln w̄ 1 − ln w 2 + ln 0 . 5 − ln (1 − 0 . 5) + α′ 
12 ≤ (1 − β) θ−

12 
, (β −

(β − 1) θ−
14 

≤ ln w̄ 1 − ln w 4 + ln 0 . 3 − ln (1 − 0 . 3) + α′ 
14 ≤ (1 − β) θ−

14 
, (β −

(β − 1) θ−
23 

≤ ln w̄ 2 − ln w 3 + ln 0 . 2222 − ln (1 − 0 . 2222) + α′ 
23 ≤ (1 − β) θ

(β − 1) θ−
25 

≤ ln w̄ 2 − ln w 5 + ln 0 . 2759 − ln (1 − 0 . 2759) + α′ 
25 ≤ (1 − β) θ

(β − 1) θ−
35 

≤ ln w̄ 3 − ln w 5 + ln 0 . 4 − ln (1 − 0 . 4) + α′ 
35 ≤ (1 − β) θ−

35 
, (β −

ln w 1 + ln w 2 − ln w̄ 1 − ln w̄ 2 ≤ 2 α′ 
12 ≤ 0 , ln w 1 + ln w 3 − ln w̄ 1 − ln w̄ 3 ≤

ln w 1 + ln w 4 − ln w̄ 1 − ln w̄ 4 ≤ 2 α′ 
14 ≤ 0 , ln w 1 + ln w 5 − ln w̄ 1 − ln w̄ 5 ≤

ln w 2 + ln w 3 − ln w̄ 2 − ln w̄ 3 ≤ 2 α′ 
23 ≤ 0 , ln w 2 + ln w 4 − ln w̄ 2 − ln w̄ 4 ≤

ln w 2 + ln w 5 − ln w̄ 2 − ln w̄ 5 ≤ 2 α′ 
25 ≤ 0 , ln w 3 + ln w 4 − ln w̄ 3 − ln w̄ 4 ≤

ln w 3 + ln w 5 − ln w̄ 3 − ln w̄ 5 ≤ 2 α′ 
35 ≤ 0 , ln w 4 + ln w 5 − ln w̄ 4 − ln w̄ 5 ≤

w 1 + w̄ 2 + w̄ 3 + w̄ 4 + ̄w 5 ≥ 1 , w̄ 1 + w 2 + w̄ 3 + w̄ 4 + ̄w 5 ≥ 1 , w̄ 1 + w̄ 2 + w 3 +
w̄ 1 + w 2 + w 3 + w 4 + w 5 ≤ 1 , w 1 + w̄ 2 + w 3 + w 4 + w 5 ≤ 1 , w 1 + w 2 + ̄w 3 + w 4 + w

w 1 + w 2 + w 3 + w 4 + ̄w 5 ≤ 1 , 0 ≤ w 1 ≤ w̄ 1 ≤ 1 , 0 ≤ w 2 ≤ w̄ 2 ≤ 1 , 0 ≤ w 3 ≤ w̄

Solving Eq. (33) , the interval priority weights are determined as

˜ w 1 = [0.1374,0.3736], ˜ w 2 = [0.1511,0.2176], ˜ w 3 = [0.226 6,0.226 6], 

˜ w 4 = [0.0495,0.2191], ˜ w 5 = [0.1993,0.1993]. 

Step 5 . Based on Eq. (22) , the likelihood matrix L = ( l ih ) 5 ×5 is

established as follows: 

L = 

⎛ ⎜ ⎜ ⎝ 

0 . 50 0 0 0 . 7352 0 . 6225 0 . 7987 0 . 7378 

0 . 2648 0 . 50 0 0 0 0 . 7118 0 . 2740 

0 . 3775 1 0 . 50 0 0 1 1 

0 . 2013 0 . 2882 0 0 . 50 0 0 0 . 1165 

0 . 2622 0 . 7260 0 0 . 8838 0 . 50 0 0 

⎞ ⎟ ⎟ ⎠ 

Then the priority weights are obtained by Eq. (8) as 

v 1 = 0 . 2447 , v 2 = 0 . 1625 , v 3 = 0 . 2689 , 

v 4 = 0 . 1303 , v 5 = 0 . 1936 . 

By descending the priority weights v i (i = 1 , 2 , . . . , 5) , the rank-

ing order of alternatives is generated as x 3 
x 1 
x 5 
x 4 
x 2 . 

With different values of parameters CI and δ, the ranking re-

sults are derived and shown in Table 1 . 

It can be seen from Table 1 that the ranking order of alterna-

tives is always x 3 
x 1 
x 5 
x 4 
x 2 by the method for individual deci-

sion making with IVFPR proposed in this paper, which is different

from that obtained by Genc et al. [4] . To compare method [4] with

the proposed method effectively, we resort to the fitted error orig-

inated from Wang and Elhag [32] . 
 

3 
≤ ln w̄ 1 − ln w 3 + ln (1 − 0 . 5) − ln 0 . 5 + α′ 

13 ≤ (1 − β) θ+ 
13 

, 

− 1) θ+ 
15 

≤ ln w̄ 1 − ln w 5 + ln (1 − 0 . 5) − ln 0 . 5 + α′ 
15 ≤ (1 − β) θ+ 

15 
, 

+ 
4 

≤ ln w̄ 2 − ln w 4 + ln (1 − 0 . 7273) − ln 0 . 7273 + α′ 
24 ≤ (1 − β) θ+ 

24 
, 

+ 
4 

≤ ln w̄ 3 − ln w 4 + ln (1 − 0 . 8) − ln 0 . 8 + α′ 
34 ≤ (1 − β) θ+ 

34 
, 

 

5 
≤ ln w̄ 4 − ln w 5 + ln (1 − 0 . 4) − ln 0 . 4 + α′ 

45 ≤ (1 − β) θ+ 
45 

, 

3 
≤ ln w̄ 1 − ln w 3 + ln 0 . 3637 − ln (1 − 0 . 3637) + α′ 

13 ≤ (1 − β) θ−
13 

, 

5 
≤ ln w̄ 1 − ln w 5 + ln 0 . 3 − ln (1 − 0 . 3) + α′ 

15 ≤ (1 − β) θ−
15 

, 

− 1) θ−
24 

≤ ln w̄ 2 − ln w 4 + ln 0 . 6 − ln (1 − 0 . 6) + α′ 
24 ≤ (1 − β) θ−

24 
, 

− 1) θ−
34 

≤ ln w̄ 3 − ln w 4 + ln 0 . 7 − ln (1 − 0 . 7) + α′ 
34 ≤ (1 − β) θ−

34 
, 

5 
≤ ln w̄ 4 − ln w 5 + ln 0 . 0968 − ln (1 − 0 . 0968) + α′ 

45 ≤ (1 − β) θ−
45 

, 

≤ 0 , 

≤ 0 , 

≤ 0 , 

≤ 0 , 

≤ 0 , 

¯  5 ≥ 1 , w̄ 1 + w̄ 2 + w̄ 3 + w 4 + ̄w 5 ≥ 1 , w̄ 1 + w̄ 2 + w̄ 3 + w̄ 4 + w 5 ≥ 1 , 

 , w 1 + w 2 + w 3 + ̄w 4 + w 5 ≤ 1 , 

 , 0 ≤ w 4 ≤ w̄ 4 ≤ 1 , 0 ≤ w 5 ≤ w̄ 5 ≤ 1 , 0 ≤ β ≤ 1 

(33)

Similar to Wang and Elhag [32] , the fitted IVFPR 

¯̃
 R = ( ̄̃ r i j ) n ×n 

s constructed by interval priority weights ˜ w i = [ w i , w̄ i ] (i =
 , 2 , . . . , n ) , where 

¯̃
 

 i j = 

[
r −

i j 
, r + 

i j 

]
= 

⎧ ⎨ ⎩ 

[ 0 . 5 , 0 . 5 ] , if i = j [ 
w i 

w i + αi j ̄w j 
, 

αi j ̄w i 

αi j ̄w i + w j 

] 
, if i � = j 

(34)

Especially, since Genc et al. [4] proposed 

¯̃
 r i j = [ 

w i 
w i + ̄w j 

, 
w̄ i 

w̄ i + w j 
] in

heorem 4, the fitted IVFPR 

¯̃
 R = ( ̄̃ r i j ) n ×n is obtained by setting αij 

 1 in method [4] . 

Then the fitted error between the fitted IVFPR 

¯̃
 R = ( ̄̃ r i j ) n ×n and

he original IVFPR 

˜ R 

′ is defined as follows: 

 ( ̄̃  R , ˜ R 

′ ) = 

2 
n (n −1) 

∑ n −1 

i =1 

∑ n 

j= i +1 
(| r −

i j 
− r i j | + | r + 

i j 
− r̄ i j | ) (35)

Apparently, F ( ̄̃  R , ˜ R 

′ ) ∈ [0 , 1] . The smaller the value of F ( ̄̃  R , ˜ R 

′ ) ,
he more reliable the decision method. 

Using Eqs. (34) and ( 35 ), the fitted errors derived from different

nterval priority weights are calculated and listed in the last line of

able 1 . It is clear that all the fitted errors of the proposed method

re smaller than that of method [4] . Thus, the proposed method

ould avoid information loss and contain more original informa-

ion on IVFPR 

˜ R 

′ , which verifies the effectiveness of the proposed

ethod. 
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Table 2 

Ranking orders of alternatives with different parameter values in Example 2 . 

The proposed method for individual decision making Wang and Chen’s method in [11] 

CI = 0.1, δ = 0 CI = 0.1, δ = 0.5 CI = 0.1, δ = 1 CI = 0.01, δ = 0.5 CI = 0, δ = 0.5 

˜ w 1 [0.2831,0.2831] [0.2325,0.2325] [0.2325,0.2325] [0.2889,0.2889] [0.2404,0.2404] [0.1580,0.3873] 

˜ w 2 [0.2831,0.4668] [0.2234,0.3833] [0.2234,0.3833] [0.2889,0.4763] [0.2253,0.3964] [0.2338,0.5371] 

˜ w 3 [0.1589,0.1717] [0.1580,0.3536] [0.1580,0.3536] [0.1498,0.1752] [0.1634,0.3714] [0.1310,0.3782] 

˜ w 4 [0.0911,0.2620] [0.1410,0.2584] [0.1410,0.2584] [0.0850,0.2470] [0.0953,0.1999] [0.1793,0.4771] 

Ranking order x 2 
x 1 
x 4 
x 3 x 2 
x 3 
x 1 
x 4 x 2 
x 3 
x 1 
x 4 x 2 
x 1 
x 4 
x 3 x 2 
x 3 
x 1 
x 4 x 2 
x 4 
x 1 
x 3 
Fitted error 0.2562 0.2328 0.2328 0.2586 0.2787 0.2817 
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xample 2. Consider the following IVFPR provided by method

11] . 

˜ 
 

′ = 

⎛ ⎜ ⎝ 

[0 . 5 , 0 . 5] [0 . 3 , 0 . 4] [0 . 5 , 0 . 7] [0 . 4 , 0 . 5] 
[0 . 6 , 0 . 7] [0 . 5 , 0 . 5] [0 . 6 , 0 . 8] [0 . 2 , 0 . 6] 
[0 . 3 , 0 . 5] [0 . 2 , 0 . 4] [0 . 5 , 0 . 5] [0 . 4 , 0 . 8] 
[0 . 5 , 0 . 6] [0 . 4 , 0 . 8] [0 . 2 , 0 . 6] [0 . 5 , 0 . 5] 

⎞ ⎟ ⎠ 

When θ+ 
i j 

= θ−
i j 

= 0 . 5 , the interval priority weights are derived

y the method proposed in Section 4.2 with different values of

arameters CI and δ. Then the corresponding ranking orders of

lternatives are generated. Moreover, the fitted errors derived by

ifferent interval priority weights are also calculated, respectively.

able 2 presents these computation results. 

From Table 2 , it can be found that the ranking orders obtained

y the proposed method are diverse with different values of pa-

ameters CI and δ. Moreover, although the best alternatives ob-

ained by the proposed method and method [11] are the same x 2 ,

he corresponding ranking orders are not identical. The proposed

ethod can make DMs select different values of parameters to

erive the interval priority weight vector according to the actual

ecision making, which embodies the flexibility of the proposed

ethod. Additionally, the fitted errors of this paper are smaller

han that of method [11] . Thus, the proposed method retains more

riginal decision information than method [11] and can avoid the

oss of information. 

It can be seen from Table 2 that the ranking orders in these

hree cases are completely identical, i.e., x 2 
x 3 
x 1 
x 4 . That is to

ay, the ranking orders derived from the two acceptable geomet-

ic consistent IVFPRs with high levels of consistency (i.e., the case

I = 0.1 and δ = 0.5 and the case CI = 0.1 and δ = 1 in Table 2 ) 

re completely the same as that derived from the completely

eometric consistent IVFPR (i.e. the case CI = 0 and δ = 0.5 in

able 2 ). Furthermore, the best alternatives derived from another

wo acceptable geometric consistent IVFPRs with high levels of

onsistency (i.e., the case CI = 0.1 and δ = 0 and the case CI = 0.01

nd δ = 0.5 in Table 2 ) are completely the same as that derived

rom the completely geometric consistent IVFPR (i.e., the case CI

 0 and δ = 0.5 in Table 2 ). These observations indicate that it

s reasonable to obtain the priority weights from an inconsistent

VFPR with a high level of geometric consistency, i.e., an acceptable

eometric consistent IVFPR. Moreover, the fitted error derived from

ompletely geometric consistent IVFPR (i.e., the case of CI = 0 and

= 0.5 in Table 2 ) is larger than that obtained from the accept-

ble consistent IVFPRs (i.e., the former four cases in Table 2 ). Ap-

˜ 
 1 = 

⎛ ⎜ ⎝ 

[0 . 50 0 0 , 0 . 50 0 0] [0 . 6 402 , 0 . 6 402] [0 . 50 0 0 , 0 . 60 0 0] 
[0 . 3598 , 0 . 3598] [0 . 50 0 0 , 0 . 50 0 0] [0 . 30 0 0 , 0 . 550 0] 
[0 . 40 0 0 , 0 . 50 0 0] [0 . 450 0 , 0 . 70 0 0] [0 . 50 0 0 , 0 . 50 0 0] 
[0 . 0831 , 0 . 70 0 0] [0 . 3772 , 0 . 50 0 0] [0 . 30 0 0 , 0 . 450 0] 

˜ 
 3 = 

⎛ ⎜ ⎝ 

[0 . 50 0 0 , 0 . 50 0 0] [0 . 450 0 , 0 . 550 0] [0 . 30 0 0 , 0 . 8636] 
[0 . 450 0 , 0 . 550 0] [0 . 50 0 0 , 0 . 50 0 0] [0 . 60 0 0 , 0 . 6 6 67] 
[0 . 1364 , 0 . 70 0 0] [0 . 3333 , 0 . 40 0 0] [0 . 50 0 0 , 0 . 50 0 0] 
[0 . 250 0 , 0 . 50 0 0] [0 . 3777 , 0 . 3777] [0 . 350 0 , 0 . 650 0] 
arently, using the acceptable geometric consistent IVFPR can con-

ain more original information during the decision making process.

hus, an inconsistent IVFPR can be accepted if it has a high level

f consistency in some specified situations. 

.2. Application to GDM with IVFPRs 

.2.1. An enterprise resource planning system selection example 

An example is provided to illustrate the effectiveness of the

DM method proposed in this paper. 

xample 3. As the continual growth of business, a firm needs to

nstall a new enterprise resource planning (ERP) system. After pre-

iminary screening, four ERP systems, i.e., x 1 , x 2 , x 3 and x 4 are re-

ained for further evaluation. Three DMs e 1 , e 2 and e 3 are invited

o form a decision group. DMs e t (t = 1 , 2 , 3) provide their prefer-

nce information on alternatives expressed by intervals and elicit

he corresponding IVFPRs ˜ R 

′ 
t = ( ̃ r ′ 

i jt 
) 4 ×4 as follows: 

˜ 
 

′ 
1 = 

⎛ ⎜ ⎝ 

[0 . 50 , 0 . 50] [0 . 65 , 0 . 80] [0 . 50 , 0 . 60] [0 . 30 , 0 . 55] 
[0 . 20 , 0 . 35] [0 . 50 , 0 . 50] [0 . 30 , 0 . 55] [0 . 50 , 0 . 65] 
[0 . 40 , 0 . 50] [0 . 45 , 0 . 70] [0 . 50 , 0 . 50] [0 . 55 , 0 . 70] 
[0 . 45 , 0 . 70] [0 . 35 , 0 . 50] [0 . 30 , 0 . 45] [0 . 50 , 0 . 50] 

⎞ ⎟ ⎠ 

˜ 
 

′ 
2 = 

⎛ ⎜ ⎝ 

[0 . 50 , 0 . 50] [0 . 65 , 0 . 70] [0 . 60 , 0 . 80] [0 . 75 , 0 . 90] 
[0 . 30 , 0 . 35] [0 . 50 , 0 . 50] [0 . 50 , 0 . 60] [0 . 70 , 0 . 75] 
[0 . 20 , 0 . 40] [0 . 40 , 0 . 50] [0 . 50 , 0 . 50] [0 . 60 , 0 . 75] 
[0 . 10 , 0 . 25] [0 . 25 , 0 . 30] [0 . 25 , 0 . 40] [0 . 50 , 0 . 50] 

⎞ ⎟ ⎠ 

˜ 
 

′ 
3 = 

⎛ ⎜ ⎝ 

[0 . 50 , 0 . 50] [0 . 45 , 0 . 55] [0 . 30 , 0 . 65] [0 . 50 , 0 . 75] 
[0 . 45 , 0 . 55] [0 . 50 , 0 . 50] [0 . 60 , 0 . 85] [0 . 25 , 0 . 55] 
[0 . 35 , 0 . 70] [0 . 15 , 0 . 40] [0 . 50 , 0 . 50] [0 . 35 , 0 . 65] 
[0 . 25 , 0 . 50] [0 . 45 , 0 . 75] [0 . 35 , 0 . 65] [0 . 50 , 0 . 50] 

⎞ ⎟ ⎠ 

Step 1 . Set parameter δ = 0.5 and the predefined consistency

threshold CI = 0.1. Suppose T is an empty set. 

Step 2 . By Eq. (11) , calculate the geometric consistent indices

for individual IVFPRs as follows: 

CI( ̃  R 

′ 
1 
) = 1.125, CI( ̃  R 

′ 
2 
) = 0.087, CI( ̃  R 

′ 
3 
) = 2.610. 

Since only CI( ̃  R 

′ 
2 
) ≤ CI , IVFPR 

˜ R 

′ 
2 

is acceptable geometric con-

sistent and let ˜ R 2 = 

˜ R 

′ 
2 
. IVFPRs ˜ R 

′ 
1 

and 

˜ R 

′ 
3 

are unacceptable

geometric consistent. Thus one has T = { ̃  R 

′ 
1 
, ˜ R 

′ 
3 
} and then go

to the next step. 

Step 3 . Solving Eq. (13) , the optimal solutions r i jt and r̄ i jt ( i, j =
1 , 2 , . . . , n, i < j) are derived from unacceptable geometric

consistent IVFPRs ˜ R 

′ 
t for t ∈ {1, 3}. By Eq. (14) , the corre-

sponding acceptable geometric consistent IVFPRs ˜ R t ( t ∈ {1,

3}) are generated as 

 30 0 0 , 0 . 9169] 
 50 0 0 , 0 . 6228] 
 550 0 , 0 . 70 0 0] 
 50 0 0 , 0 . 50 0 0] 

⎞ ⎟ ⎠ 

 50 0 0 , 0 . 750 0] 
 6223 , 0 . 6223] 
 350 0 , 0 . 650 0] 
 50 0 0 , 0 . 50 0 0] 

⎞ ⎟ ⎠ 
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Step 4 . Set θ+ 
i j 

= θ−
i j 

= 0 . 5 (i, j = 1 , 2 , 3 , 4 , i < j) . According to

Eq. (21) , the individual interval priority weight vectors ˜ w t 

(t = 1 , 2 , 3) are obtained as 

˜ w 1 = ([0.2571,0.5178],[0.1872,0.1872],[0.2221,0.2646], 

[0.0730,0.2910]) T , 

˜ w 2 = ([0.2513,0.5392],[0.2212,0.2723],[0.1659,0.2722], 

[0.0737,0.2042]) T , 

˜ w 3 = ([0.2106,0.4794],[0.2600,0.2993],[0.1142,0.3178], 

[0.1204,0.1723]) T . 

Step 5 . The similarities between DMs are computed by

Eq. (23) as follows: 

S 12 = S 21 = 0.0372, S 13 = S 31 = 0.0746, S 23 = S 32 = 0. 0428. 

Step 6 . The confidence degrees of DMs are calculated via

Eq. (24) : 

CS 1 = 0.1118, CS 2 = 0.0800, CS 3 = 0.1174. 

Step 7 . Using Eq. (25) , DMs’ weights ω t (t = 1 , 2 , 3) are deter-

mined as 

ω 1 = 0.3316, ω 2 = 0.3372, ω 3 = 0.3312. 

Step 8 . Set ψ = 0.5. According to Eq. (30) , the collective interval

priority weights ˜ w i (i = 1 , 2 , 3 , 4) are derived as follows: 

˜ w 1 = [0.2513,0.5178], ˜ w 2 = [0.2212,0.2723], ˜ w 3 = [0.1659,0.2722],

˜ w 4 = [0.0737,0.2042]. 

Step 9 . Utilizing Eq. (31) , the likelihood matrix is constructed as

L = 

⎛ ⎜ ⎝ 

0 . 5 0 . 9339 0 . 9439 1 

0 . 0 6 61 0 . 5 0 . 6760 1 

0 . 0 561 0 . 3240 0 . 5 0 . 8383 

0 0 0 . 1617 0 . 5 

⎞ ⎟ ⎠ 

According to Eq. (8) , the priority weights are obtained as 

v 1 = 0 . 3648 , v 2 = 0 . 2702 , v 3 = 0 . 2265 , v 4 = 0 . 1385 . 

By descending the priority weights v i (i = 1 , 2 , 3 , 4) , the collec-

tive ranking order of alternatives is generated as x 1 
x 2 
x 3 
x 4 . 

For different values of parameters CI , δ and ψ , the correspond-

ing computation results are shown in Table 3 . Table 3 shows that

the ranking orders of alternatives are always x 1 
x 2 
x 3 
x 4 for dif-

ferent values of parameters. Especially, the ranking order derived

from the completely geometric consistent IVFPR (i.e., the case CI

= 0, δ = 0.5, ψ = 0.5 in Table 3 ) is the same as that obtained from

the acceptable geometric consistent IVFPRs (i.e., the other cases of

the proposed GDM method in Table 3 ). Therefore, it may be useful

and effective to directly apply the acceptable geometric consistent

IVFPR for generating the priority weights in practice. 

6.2.2. Fitted error analysis of the obtained results 

To illustrate the effectiveness of the results obtained by the

proposed method, the collective fitted error is defined. Similarly,

the fitted collective IVFPR 

˜ R 

∗ = ( ̃ r ∗
i j 
) n ×n with ˜ r ∗

i j 
= [ ̃ r ∗−

i j 
, ̃  r ∗+ 

i j 
] is con-

structed by the derived collective interval priority weights ˜ w i =
[ w i , w i ] (i = 1 , 2 , . . . , n ) , where 

˜ r ∗i j = 

[
˜ r ∗−
i j 

, ̃  r ∗+ 
i j 

]
= 

⎧ ⎨ ⎩ 

[0 . 5 , 0 . 5] , if i = j [ 
w i 

w i + αi j w j 
, 

αi j w i 

αi j w i + w j 

] 
, if i � = j 

(36)

Considering that there exist several DMs in GDM, the individual

fitted error between 

˜ R 

∗ = ( ̃ r ∗
i j 
) n ×n and 

˜ R t for DM e t is defined as

follows: 

F ( ̃  R 

∗, ˜ R t ) = 

2 
n (n −1) 

∑ n −1 

i =1 

∑ n 

j= i +1 
(| r −

i jt 
− ˜ r ∗−

i j 
| + | r + 

i jt 
− ˜ r ∗+ 

i j 
| ) . (37)

Then the collective fitted error F ∗ for the group of DMs is cal-

culated as 

F ∗ = 

1 
m 

∑ m 

F ( ̃  R 

∗, ˜ R t ) . (38)

t=1 



S. Wan et al. / Information Fusion 40 (2018) 87–100 99 

Table 4 

Ranking results of two decomposed subproblems. 

Subproblem 1 Subproblem 2 

CI = 0.1, δ = 0.5, ψ = 0 CI = 0.1, δ = 0.5, ψ = 0.5 CI = 0.1, δ = 0.5, ψ = 1 CI = 0.1, δ = 0.5, ψ = 0 CI = 0.1, δ = 0.5, ψ = 0.5 CI = 0.1, δ = 0.5, ψ = 1 

ω 

T (0.3321,0.3368,0.3311) (0.3321,0.3368,0.3311) (0.3321,0.3368,0.3311) (0.3347,0.3273,0.3380) (0.3347,0.3273,0.3380) (0.3347,0.3273,0.3380) 

˜ w 1 [0.3801,0.4892] [0.3088,0.5505] [0.3088,0.5505] [0.3933,0.5150] [0.3529,0.4698] [0.3529,0.3933] 

˜ w 2 [0.2474,0.3562] [0.2839.0.3562] [0.2839.0.3562] – – –

˜ w 3 [0.1546,0.2637] [0.1656,0.3416] [0.1656,0.3416] [0.2665,0.3883] [0.2665,0.4280] [0.2665,0.5045] 

˜ w 4 — — – [0.1022,0.2184] [0.1022,0.3402] [0.1022,0.3402] 

Ranking order x 1 
x 2 
x 3 x 1 
x 2 
x 3 x 1 
x 2 
x 3 x 1 
x 3 
x 4 x 1 
x 3 
x 4 x 1 
x 3 
x 4 
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F  
Apparently, F ∗ ∈ [0, 1]. The smaller the value of F ∗, the more

eliable the GDM method. 

Using Eqs. (36) –( 38 ), the individual and collective fitted errors

erived from different interval priority weights are calculated and

hown in Table 3 . 

From Table 3 , it can be observed that the collective fitted er-

or of the priority weights obtained from the completely geomet-

ic consistent IVFPR (i.e., case CI = 0, δ = 0.5, ψ = 0.5 in Table 3 )

s larger than that derived from the acceptable geometric consis-

ent IVFPRs (i.e., the other cases of the proposed GDM method in

able 3 ). This analysis again verifies that an inconsistent IVFPR that

as a high level of geometric consistency (i.e., the acceptable ge-

metric consistent IVFPR in Table 3 ) can be accepted during the

ecision making process as mentioned in Introduction. 

To further verify the superiority of the proposed GDM method,

ank reversal test is carried out in Section 6.2.3 . In addition, we

ompare the results obtained by Zhang’s method [21] with that ob-

ained by the proposed method in Section 6.2.4 . 

.2.3. Rank reversal test of the proposed GDM with IVFPRs 

Since Wang and Luo [33] found that the rank reversal phe-

omenon occurs in many decision making methods, the rank re-

ersal has become a common criterion to measure the perfor-

ance of the decision making methods. A reasonable method

hould avoid the rank reversal by adding or deleting of an al-

ernative. In other words, if an alternative is added or deleted

rom the problem, then any other two alternatives should keep the

ame ranking order. To test the rank reversal of the proposed GDM

ethod, the original ERP system selection example is decomposed

nto Subproblem 1 with alternative set { x 1 , x 2 , x 3 } and Subproblem

 with alternative set { x 1 , x 3 , x 4 }, respectively. Subproblem 1 is ob-

ained by deleting alternative x 4 and Subproblem 2 is obtained by

eleting alternative x 2 from the original problem. Using the pro-

osed GDM method, the corresponding computation results are re-

pectively generated for different parameters and given in Table 4 . 

It is evident from Table 4 that the ranking order is x 1 
x 2 
x 3 for

ubproblem 1 and x 1 
x 3 
x 4 for Subproblem 2, which are consis-

ent with the ranking x 1 
x 2 
x 3 
x 4 for the original problem. The

anking for alternatives x 1 , x 2 and x 3 is x 1 
x 2 
x 3 before alterna-

ive x 4 is introduced, keeps the same after x 4 is added. The same

onclusion can be observed for alternatives x 1 , x 3 and x 4 . There

s no any rank reversal phenomenon for any two alternatives by

ddition or deletion of an alternative. Thus, the proposed method

an well avoid rank reversal. The examination of the rank reversal

hows the validity and practicability of the GDM method proposed

n this paper. 

.2.4. Comparison with Zhang’s method 

Based on the multiplicative consistency, Zhang [21] proposed a

oal programming model to derive the priority weights for solv-

ng GDM with IVFPRs. Using Zhang’s method to solve Example 3 ,

he ranking orders of alternatives are generated for different DMs’

eights. In particular, setting αij = 1, the collective fitted errors de-

ived from the priority weights of method [21] are calculated by
qs. (36) –( 38 ). For comparison convenience, these computation re-

ults are also listed in Table 3 . 

It can be seen from Table 3 that the ranking order obtained

y method [21] is different from that obtained by the proposed

ethod. The primary reasons may come from two aspects: 

1) Zhang [21] gave DMs’ weights a priori and ignored the deter-

mination of DMs’ weights, which may lead to unreasonable de-

cision results. By contrast, this paper determines DMs’ weight

by the similarity between DMs, which can avoid the subjective

randomness and improve convincingness of decision results. 

2) The geometric consistent IVFPR in this paper considers the dif-

ferent values of parameter αij , while the multiplicative consis-

tent IVFPR in Zhang [21] overlooked the parameter αij (i.e., set

αij = 1 for i, j = 1,2,…,n). Hence, the later is a special case of the

former and the former is a more general extension of the later.

3) To obtain the interval weight vector, Zhang [21] constructed a

goal programming model that only minimizes the deviation be-

tween the original IVFPR and the converted consistent one. In

this paper, the geometric consistent index of IVFPR is intro-

duced to derive the individual interval priority weights. To ob-

tain the collective interval priority weights, a minimization de-

viation model is constructed and transformed into a paramet-

ric linear programming model to resolve considering DMs’ pref-

erence principles. The proposed method is more flexible and

comprehensive. 

4) The collective fitted errors obtained by the proposed method

are smaller than those obtained by method [21] . Thus, the pro-

posed method could retain more original information on the

initial IVFPRs and is more reliable than method [21] . 

. Conclusion 

This paper aims to propose a GDM method with IVFPRs based

n geometric consistency. Firstly, to measure the geometric consis-

ency of IVFPR, the max-consistency index and the min-consistency

ndex are defined, respectively. Combining these two indices, the

eometric consistent index of IVFPR is presented by considering

M’s risk attitude. Then a goal programming model is constructed

o obtain the acceptable geometric consistent IVFPR from an un-

cceptable geometric consistent one. By constructing the member-

hip function of the geometric consistent conditions for an IVFPR, a

uzzy logarithmic program is established to derive the interval pri-

rity weights. For GDM with IVFPRs, the individual acceptable ge-

metric IVFPRs are derived from original IVFPRs and the individual

nterval priority weights are obtained by solving the correspond-

ng fuzzy logarithmic programs. Through analyzing the similarity

etween DMs, DMs’ weights are determined. A parametric linear

rogramming model is developed to obtain the collective interval

riority weights. Then the ranking order of alternatives is gener-

ted by the collective interval priority weights. Some examples are

nalyzed to illustrate the feasibility and effectiveness of the pro-

osed method. 

Further research is needed to address some significant issues.

or instance, it is unclear how to deal with the consistency level
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and priority weights from the original incomplete IVFPRs provided

by DMs. It is unknown to the determination of values of these pa-

rameters in the proposed method. After these issues are properly

addressed, it would be worthwhile to investigate how the current

framework can be adapted to handle these cases. 
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