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a b s t r a c t

In this study, a multi-objective supply chain (SC) network optimization model based on the joint SC net-
work optimization and competitive facility location models is proposed to analyse the results of ignoring
the impacts of SC network decisions on customer demand. The objectives utilized in the model are profit
maximization, sales maximization and SC risk minimization. The unique unknown variable within the
model is the demand. The demand at each customer zone is assumed to be determined by price and
the utility function. The utility function is defined as the availability of same-day transportation from
the distribution centre (DC) to the customer zone. The application of the proposed model is illustrated
through a real-world problem and is solved as single and multi-objective models. The results of single
and multi-objective models are subsequently compared. After solving the problem, a sensitivity analysis
is also conducted to test the applicability of the model with respect to various parameter coefficients,
such as price elasticity, one–day replenishment coverage impact, risk factors (disruption probabilities)
and the relative weights of the objectives.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The optimization of SC networks plays a key role in determining
the competitiveness of the whole SC. Therefore, during the last two
decades, an increasing number of studies have focused on the
optimization of the overall SC network. However, in most of these
optimization studies, the structure of the SC network is consider-
ably simplified (e.g., a single product and a single location layer
are usually assumed), and there is still a need for more comprehen-
sive models that simultaneously capture many aspects that are
relevant to real-world problems such as demand dynamics on
the market.

Facility location decisions—more specifically, decisions on the
physical network structure of a SC network—are important factors
affecting chain’s competitiveness, especially for the SCs serving
retail markets. However, SC network optimization models in the
current literature ignore the impacts of SC network decisions on
customer demand. Nevertheless, competitive facility location
problems model only the distribution part of the SC, even though
they have certain characteristics of SC networks and analyse the
rival chains existing on the market (Bilir, Ekici, & Sweeney, 2015).

In this study, a new model has been proposed in which the con-
cept of SC network optimization modelling is incorporated with
competitive facility location factors (e.g., changing demands that
are dependent not only on price but also on customer service
related functions). The aim of this model is to include the impact
of a SC’s physical network structure on customer demand.

The remainder of the paper is organized as follows: the next
section provides a brief literature review. Section 3 focuses on
the proposed model as well as its objectives, variables, and
parameters. Section 4 defines a real-world problem to which the
proposed model is applied. Section 5 provides the results of the
model that is applied to a real-world scenario. The paper ends with
final conclusions of the study and provides further research
suggestions.

2. Literature review

In order to identify different characteristics of the various mod-
els and common trends, we conducted a comprehensive literature
of recently developed (from 2009 to 2013) SC network optimiza-
tion models. In this review, our focus was on identifying studies
that included a strategic-level SCN model. Models that considered

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2017.04.020&domain=pdf
http://dx.doi.org/10.1016/j.cie.2017.04.020
mailto:canser.bilir@izu.edu.tr
mailto:sonsel@dogus.edu.tr                    
mailto:fulengin@sabanciuniv.edu
http://dx.doi.org/10.1016/j.cie.2017.04.020
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


C. Bilir et al. / Computers & Industrial Engineering 108 (2017) 136–148 137
the reconfiguration or relocation of the SCN nodes and arcs (0–1
decisions) are considered as strategic-level models.

To generate a list of relevant articles published between 2009
and 2013, ‘‘SC network modelling” was entered as a search term
in the Science Direct database. This generated an initial list of arti-
cles, from which 72 that were published only in the most relevant
journals and included strategic level decision variables were
selected and analysed.

Supply chains are dynamic networks consisting of multiple
transaction points with complex transportation, information trans-
actions and financial transactions between entities. Therefore, SC
modelling involves several conflicting objectives, at both the indi-
vidual entity and SC levels. Our survey on SC network model objec-
tives showed that the majority of SC network optimization models
are solely based on cost minimization (e.g., Lundin, 2012; Melo,
Nickel, & Saldanha-da-Gama, 2012; Nagurney, Ladimer, &
Nagurney, 2012) or profit maximization objectives (e.g., Kabak &
Ulengin, 2011; Rezapour & Farahani, 2010; Yamada, Imai,
Nakamura, & Taniguchi, 2011), even though the number of
multi-objective models is increasing and there appears to have
been a major shift from cost minimization to profit maximization
objectives (Bilir et al., 2015).

Indeed, 24% of studies in the SC literature from 2009 to 2014
feature multi-objective functions. When compared to 9% of the
articles reviewed by Melo, Nickel, and Saldanha-da-Gama (2009),
it can be concluded that multi-objective models are becoming
increasingly popular. Multi-objective models typically include a
cost minimization or profit maximization function, together with
customer service, environmental effects or risk mitigation related
objectives (e.g., Akgul, Shah, & Papageorgiou, 2012; Olivares-
Benitez, Ríos-Mercado, & González-Velarde, 2013; Prakash, Chan,
Liao, & Deshmukh, 2012; Shankar, Basavarajappa, Chen, &
Kadadevaramath 2013).

The existence of competition within the market (both among
firms and via other SCs providing the same or substitutable goods)
is an important factor that must be considered when designing a
SC network.

The literature survey that we have conducted regarding compe-
tition modelling for SCs identified only seven papers (Masoumi, Yu,
& Nagurney, 2012; Nagurney, 2010; Nagurney & Yu, 2012;
Rezapour & Farahani, 2010; Rezapour, Farahani, Ghodsipou, &
Abdollahzadeh, 2011; Yu & Nagurney, 2013; Zamarripa, Aguirre,
Méndez, & Espuña, 2012) explicitly modelling competition within
the market. Among these papers, the demand is simultaneously
modelled as a function of both the retailer’s and the competitor’s
price (oligopolistic competition). These authors developed an equi-
librium model to design a centralized SC network operating in
markets under deterministic price-dependent demands and with
a rival SC present. The competing chains provide products, either
identical or highly substitutable, that compete for participating
retailer markets. Using this approach, the authors were able to
model the joint optimizing behaviour of these chains, derive the
equilibrium conditions, and establish and solve the finite-
dimensional variational inequality formulation. In six other models
(Amaro & Barbosa-Póvoa, 2009; Cruz, 2009; Cruz & Zuzang, 2011;
Meng, Huang, & Cheu, 2009; Yamada et al., 2011; Yang, Wang, & Li,
2009), demand is modelled as a function of only the retailer’s price.
Only one study modelled demand as a function of selected
marketing policy (e.g., inventory-based replenishment policy,
made-to-order policy or vendor managed inventory policy)
(Carle, Martel, & Zufferey, 2012). None of the reviewed papers
included customer service related factors—or, more specifically,
the location or number of SC network points—in their demand
models. However, the physical network structure of a SC clearly
influences its performance and is an important factor that affects
a chain’s competitiveness, especially for retail markets.
SC risk management is also an important part of SC network
configuration and optimization. SC risk management involves
designing a robust SC network structure and managing the product
flow throughout the configured network in a manner that enables
the SC to predict and address disruptions (Baghalian, Rezapour, &
Farahani, 2013). The uncertainties associated with disruptive
events such as heavy rain, excessive wind, accidents, strikes and
fires may dramatically interrupt normal operations in SCs.
Hendricks and Singhal (2005) quantified the negative effect of SC
disruptions on long-term financial performance (e.g., profitability,
operating income, sales, assets and inventories).

In the literature survey, nine models (Baghalian et al., 2013;
Bassett & Gardner, 2010; Cruz, 2009, Cruz & Zuzang, 2011;
Kumar & Tiwari, 2013; Lundin, 2012; Masoumi et al., 2012; Pan
& Nagi, 2010; Yu & Nagurney, 2013) explicitly included SC risk
modelling (defined as SC robustness or SC risk models). In those
models, the robustness of the models is quantified in SC risk equa-
tions to identify how it changes through the changes in the SC
network.

A careful analysis of the SC network modelling literature finds
that almost all SC network models assume that customer demands
(either deterministic or stochastic) are not substantially influenced
by the configuration of the SC network itself. However, the physical
network structure of a SC clearly influences its performance and is
one of the most important factors affecting a SC’s competitiveness,
especially for SCs serving retail markets. This disconnect between
models and reality represents a gap in the literature and an oppor-
tunity for future research.

In this paper, the main objective is the integration of competi-
tive facility location factors (e.g., changing demands dependent
not only on price but also on customer service related functions)
into SC network optimization model. As SC networks are multi-
objective in nature, we define our model as multi-objective. Such
multiple objectives might include profit maximization, sales max-
imization and SC risk minimization. Cost minimization and profit
maximization are traditional objectives in SC network optimiza-
tion problems. Sales maximization may also be utilized within
the competitive facility location modelling framework as compa-
nies aim to increase (or at least maintain) their sales by reconfigu-
ration of their SC network and possibly by adding new SC network
point(s) (Plastria, 2001). The third objective proposed in the multi-
objective framework is a risk minimization function. As SC risks
have significant effects on the long- and short-term operational
and financial performance of the SC (Hendricks & Singhal, 2005),
strategic-level SC network decisions should be modelled with a
risk metric to help understand how network decisions influence
SC risks.

The principal contribution of the proposed model is the
improved modelling of demands, which are affected by the price
and service characteristics of SCs. The price and service, in turn,
are substantially influenced by strategic-level SC network model
decisions. As a second contribution of the proposed framework,
SC risk will be included in modelling strategic-level SC decisions.
Among the many published multi-objective SC network optimiza-
tion models, only a few include SC risks as an objective.
3. Model definition

In this research, the model is built as deterministic Mixed Inte-
ger Linear Programming (MILP) with three echelon SC networks,
with multiple products and a single period. The objectives of the
model are to optimize SC configuration and to analyse how the
location and number of DCs will influence SC performance metrics.
The demand at each customer zone is assumed to be determined
by the price and the utility function defined as DC-one day trans-
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portation coverage availability. The SC structure consists of three
echelons: (1) Suppliers, (2) Distribution Centres (DC), and (3) Cus-
tomer Zones. Fig. 1 summarizes our methodology on the definition
and the analysis of the proposed model.

In Phase I, three objectives of the model are identified; profit
maximization, maximization of total sales (Plastria, 2001) and SC
risk minimization (Hendricks & Singhal, 2005). Phase II defines
the mathematical model which integrates the concept of the com-
petitive facility location model into SC Network optimization mod-
els. The details of the proposed model may be found under ‘‘model
overview” section. Phase III provides the results of the models
defined as single objective separately for profit maximization, sales
maximization, and risk minimization. Meanwhile, phase IV
involves a multi-objective optimization model which is con-
structed and solved to compare with the results of single objective
models. In that phase, goal programming algorithm is utilized to
solve the multi-objectivity. In the last phase, a sensitivity analysis
has been conducted to test the applicability of the model with
respect to various parameter coefficients; price elasticity, one–
day replenishment coverage impact, risk factors (disruption prob-
abilities), relative weights of the objectives.

3.1. Model overview

Model objectives: The proposed model has three objectives. The
first objective is the maximization of the total profits. The second
objective is the maximization of the total amount of sales, which
are dependent on the price and the distance between the DC and
the customer zone. Sales volume is not calculated as the sum of
the total products distributed to customer zones, as the model
may choose not to fill some of the demand when it is not prof-
itable. The third objective of the proposed model is the minimiza-
tion of SC risks.
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Fig. 1. Methodology on the definition and the analysis of the proposed model.
Decision variables: There are several decision variables that
need to be determined:

� Number of DCs and their locations
� Capacity of each DC
� The inbound and outbound traffic network
� DC – customer zone allocation
� Demand fill rate

Demand function: In the SC network modelling literature,
demand is generally either defined as deterministic or defined as
a product of price. As the main purpose of the present study is to
prove that adding a utility (attraction) function, which is also
affected by strategic level SC decisions, to the demand model
may have substantial influence on SC network optimization deci-
sions, the demand model is built to include both price elasticity
and utility function. Demand is defined as the product of both
the sales price and the responsiveness of the SC network in terms
of the distance between the DC and customer zones. In this study,
the demand function includes two independent variables:

� Demand to Price elasticity coefficient (a);
� Availability of the one–day replenishment coverage affect

(b); it is assumed that if the distance between the DC and
retail outlet is less than a specified distance, the right pro-
duct will be provided from the DC in one day. Therefore, this
availability will have a positive impact on the sales of the
products by a predefined coefficient (b).

Risk function: To formulate SC risks, a path-based formulation,
as proposed by Baghalian et al. (2013), is utilized. In path-based
formulation, possible disruptions in DCs (DC operations), inbound
and outbound connecting links (transportation links) are consid-
ered and formulated as the probability of disruption occurrence
in SC network nodes and links. Path-based formulation helps the
analyser to visualize the effects of partial disruption cases.

Predetermined probabilities of disruptions at DCs (DC opera-
tions), inbound and outbound connecting links (transportation
links) are formulated in risk value calculations. According to
path-based supply side risk calculation, the SC risk value of one
DC network (current network) is calculated as follows:

SC risk value¼ð1�lÞ � ð1�dÞ� ð1�/Þ¼0:995�0:99�0:98¼0:965

ð1Þ
The first term in the formulation (m) is the probability of trans-

porting the required goods to the DC without any disruptions from
suppliers. m assumed to be 0.5% in the base scenario. The second
term in the formulation (d) is the probability of handling goods
at the DC without any disruptions. d is assumed to be 1% in the
base scenario. The third term in the formulation (/) is the probabil-
ity of transporting the required goods from the current DC to cus-
tomer zones without any disruptions. / is assumed to be 2% in the
base scenario. If more than one DC is utilized within the SC net-
work, the probability of disruption occurrences at each node and
link is assumed to be same. However, the disruption occurs at
the SC network only if all alternatives at any single node or echelon
are disrupted.

Disruption costs: When the SC network does not operate due to
disruptions, there will also be a loss of sales. Therefore, shortage
costs for each product type are also defined in the model. Shortage
costs per product are defined as the net difference between the
sales price and the unit cost of the product. Disruption costs are
calculated as the total sales times the disruption probability of
the whole SC network (total lost sales) multiplied by shortage
costs.
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3.2. Notations and Formulation for the Model

Indices

i
 Products, i = 1, . . . , I

j
 Product suppliers, j = 1, . . . , J

k
 Distribution centres, k = 1, . . . , K

z
 Customer zones, z = 1, . . . , Z

m
 Number of DCs, m = 1, . . . ,M

n
 Alternative cities, n = 1, . . . , N

Inputs

Fk
 Fixed costs for DC k

Ck
 Capacity for DC k

TIijk
 Inbound transportation costs for product (i) from

supplier (j) to DC (k)

TOikz
 Outbound transportation costs for product (i) from DC

(k) to customer zone (z)

ICmi
 Inventory costs per item in case of m DC(s)

Ui
 Unit purchasing cost of the product (i)

Si
 Shortage cost of the product (i)

SRij
 Supply rate for the product i from supplier j

a
 Price elasticity coefficient

b
 One-day replenishment coverage area elasticity

coefficient

m
 Probability of disruption at the transportation link

from suppliers to DC(s).

d
 Probability of disruption at handling goods at DC(s).

/
 Probability of disruption at the transportation link

from DC(s) to customer zones

P0i
 Base (current) price of product (i)

DCKkz
 ‘‘1” if the distance between DC k and customer zone z

is less than 600 km; otherwise, ‘‘0”

D0iz
 Base demand of product (i) at customer zone (z)

DCnk
 ‘‘1” if DC k is at city n; otherwise, ‘‘0”

Outputs-decision variables

Xikz
 Total amount of product i distributed from DC k to

customer zone z

Yijk
 Total amount of product i distributed from supplier j

to DC k

Diz
 Demand of product i at customer zone z

TIC
 Total cost of inventory (changes depending on the

total amount of sales and the number of DCs within
the SC network)
LS
 Total lost sales

LSC
 Total lost sales costs

W
 Total profit

A
 Total amount of sales

B
 SC risk value

Binary variables

DCk
 ‘‘1” if DC i is open; otherwise, ‘‘0”

DCSkz
 ‘‘1” if DC k serves customer zone z; otherwise, ‘‘0”

Om
 ‘‘1” if only m number of DC(s) is / are open; otherwise,

‘‘0”
Objective 1: Maximization of total profit

W ¼
X
i

Pi �
X
kz

ðXikzÞ
 !

� LSC

" #
�

X
i

X
kz

ðXikzÞ � Ui

 !" #

�
X
ijk

ðYijkÞ � ðTIijkÞ
" #

�
X
ikz

ðXikzÞ � ðTOikzÞ
" #

�
X
k

ðFkÞ � ðDCkÞ
" #

� ½TIC� ð2Þ
Objective 2: Maximization of total amount of sales

A ¼
X
ikz

ðXikzÞ � LS ð3Þ

Objective 3: Maximization of SC risk value

B ¼
X
m

ð1� lmÞ � ð1� dmÞ � ð1�umÞ � Om ð4Þ

Subject to:

Diz ¼ D0iz þa � ðPi � P0iÞ �D0iz

P0i

� �
þ b �

X
k

DCSkz �DCKkz �D0iz 8i;z

ð5ÞX
j

Yijk6
X
z

Xikz 8i; k ð6Þ

X
k

Xikz � DCSkz 6 Diz 8i; z ð7Þ

X
k

Yijk ¼
X
kz

Xikz � SRij 8i; j ð8Þ

X
ij

Yijk 6 DCk � Ck 8k ð9Þ

X
k

DCSkz ¼ 1 8z ð10Þ

Xikz 6 DCSkz � 100000000 8i; k; z ð11Þ
X
k

DCk ¼
X
m

Om �m ð12Þ

X
m

Om ¼ 1 ð13Þ

X
i

X
kz

Xikz � ICmi

 !
� TIC 6 1000000000 � ð1� OmÞ 8m ð14Þ

X
i

Si
X
kz

Xikz

 !
� ð1� lmÞ � ð1� dmÞ � ð1�umÞ

" #
� LSC

6 1000000000 � ð1� OmÞ 8m ð15Þ

X
ikz

Xikz � ð1� lmÞ � ð1� dmÞ � ð1�umÞ
" #

� LS

6 1000000000 � ð1� OmÞ 8m ð16Þ
X
k

DCnk � DCk 6 1 8n ð17Þ

Xikz;Yijk;Diz P 0 8i; j; k; z ð18Þ

DCk;DCSkz;Om ¼ 0 or 1 8k; z;m ð19Þ
The first objective function (W) (Eq. (2)) maximizes total profit

and is divided into five components: (1) Total revenue excluding
lost sales, (2) Total purchasing costs, (3) Total inbound transporta-
tion costs from suppliers to DCs, (4) Total outbound transportation
costs from DCs to customer zones, (4) Fixed costs associated with
DC operations, and (5) Total inventory costs.

The second objective function (A) (Eq. (3)) maximizes total
amount of sales excluding total lost sales due to disruptions. The
third objective function (B) (Eq. (4)) maximizes SC risk value, which
is a function of disruption probabilities at SC nodes and links.
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Eqs. (5)(19) of the model represent the following:

Eq. (5) specifies the demand for each customer zone for each
product.
Eq. (6) ensures that any product transferred to a customer zone
goes through a DC.
Eq. (7) ensures that the total amount of products sold at each
customer zone is equal to or less than the demand at the zone
for a specific product.
Eq. (8) matches products sold at customer zones to supplied
products.
Eq. (9) ensures that the total amount of products handled at
each DC is within DC capacity.
Eq. (10) and (11) ensures that each customer zone is served by
only one DC.
Eq. (12) and (13) specify the number of DCs utilized within the
model.
Eq. (14) calculates ‘‘Total inventory costs” based on the number
of DCs utilized within the model. In the calculation, the required
Customer Service Level is assumed to be 99%.
Eq. (15) calculates ‘‘Lost sales costs” based on disruption prob-
abilities and the number of DCs utilized within the model.
Eq. (16) calculates ‘‘Lost sales” based on disruption probabilities
and the number of DCs utilized within the model.
Eq. (17) ensures that a maximum of one DC is serving to each
customer zone.
Eq. (18) ensures non-negativity for all variables.
Eq. (19) restricts the binary variables.

4. Problem definition for a real–world scenario

XYZ Group Company is one of the leading ready-to-wear cloth-
ing companies primarily based in Turkey. The company has
approximately 150 retail stores throughout Turkey, including 3
multi-storey mega stores and over 500 sales points. The firm is
one of Turkey’s first 500 Big Industrial Organizations in terms of
sales volume, number of employees, and other factors.

The company currently has only one DC in Istanbul. That DC
supports all sales points throughout Turkey. However, the number
of sales points and the company’s total amount of sales increased
sharply in recent years. It is considered that the firm needs to
reconfigure its SC network and to decide whether to open addi-
tional DC(s) in alternative locations, such as _Izmir or Ankara. In
the case of opening a new DC, the firm also needs to decide on
the capacity of the new DC.
Suppliers

DC (Ankar

DC (İzmi

DC (İstanbPlant Inbound Transporta�on

Fig. 2. Current SC Netwo
The company’s current SC structure is composed of three eche-
lons. Fig. 2 depicts the current SC network of the company:

Customer zones are spread throughout Turkey. The company
has 209 retail outlets. The demand for the retail outlets is aggre-
gated to 39 city locations. The company has an enormous number
of SKU to provide to the customer zones. To simplify the model,
SKUs are aggregated to represent the company’s entire product
composition. In the current SC network, only some of the stores
are delivered the right product in one day. If the distance between
the DC and the retail outlet is less than 600 km the right product is
assumed to be delivered from the DC in one day.

5. Applications and results

5.1. Results of the model

The proposed model is defined and solved on GAMS (General
Algebraic Modelling System) Modeller. GAMS is a standard opti-
mization package used for solving different types of complex and
large scale optimization problems in many research fields. In
GAMS, Cplex solver is utilized to solve both single objective and
multi objective models. The basic statistics for single objective
profit maximization problem is provided below;

MODEL STATISTICS
a)

r)

ul)

rk
BLOCKS OF
EQUATIONS
Outbound Transporta�on

of XYZ Company.
35
Customers
SINGLE EQUATIONS
 4761
BLOCKS OF VARIABLES
 24
 SINGLE VARIABLES
 6446

NON ZERO ELEMENTS
 30,283
 DISCRETE

VARIABLES

282
First, single objective profit maximization, sales maximization, and

risk minimization models are run and analysed individually to see
the results separately. The models are run on Intel Core i5-5200
CPU Computer with the 2.2 GHz Processor and 6 GB RAM. The mod-
els showed no performance problem since running time for differ-
ent approaches were around several seconds. The computational
times and the required number of iterations on each single objec-
tive model are listed in Table 1.

Then, a multi-objective optimization model is constructed and
solved to compare results of single objective models and multi
objective model. The models are run on the same system. The multi
objective models showed no performance problem as well. The
performance notes on each multi objective model scenario are
listed in Table 2.



Table 1
Running times and required number of iterations for Single objective Models.

Model definition Running time (s) Number of iteration

Single Objective – Profit Maximization 1.09 137
Single Objective – Sales Maximization 2.50 59
Single Objective – Risk Minimization with Profit maximization as secondary objective Between 0.97 and 1.88 Between 120 and 166
Single Objective – Risk Minimization with Sales maximization as secondary objective Between 0.94 and 2.22 Between 19 and 61

Table 2
Running times and required number of iterations for Multi Objective Models.

Model definition Running time (s) Number of iteration

Scenarios with 1 DC Between 0.93 and 1.81 Between 26 and 42
Scenarios with 2 DCs Between 1.58 and 4.58 Between 155 and 211

0 

10,00,000

20,00,000

30,00,000

40,00,000

50,00,000

60,00,000

70,00,000
Total Profit ($) Total Amount of Sales

Fig. 3. Total profit and total amount of sales changes in profit maximization
problem.
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5.1.1. Single objective models
First, the problem is solved as a single objective profit maximiza-

tion problem. Because the firm operates in the ready-made retail
clothing industry, the price elasticity coefficient is assumed to be
as high as 2.5. All of the coefficients utilized in the model are sum-
marized in Table 3.

Fig. 3 shows how the total profit and total amount of sales
change according to changes in the price level. The figure shows
that when the price increases, the profit also starts to increase
mainly due to increasing profit margin. When the price increases,
total costs decrease more than revenue decreases. Therefore, the
total profit increases by up to 11%.

In the optimal solution, only one DC (the current DC) is opened.
In the profit maximization problem, in any case, the model chooses
not to open any additional DCs because the fixed cost of opening a
DC is more than the additional profit generated by opening a sec-
ond DC even though total amount of sales increases. Moreover,
even though profit is maximized, total amount of sales decreases
by 26%. Because of competition within the market, a 26% sales
decrease is not acceptable by any firm, as firms aim to maintain
their market share in order to keep their long term profitability
sustainable. In addition to sales decreases, a SC risk value of
0.965 is also high in an optimal solution. Therefore, it may be con-
cluded that modelling the problem as profit maximization does not
generate the required results.

In the second phase of this step, the problem is solved as a sales
maximization problem with the same coefficients. As a last phase,
the risk value maximization problem is analysed. Within the model,
the SC risk value is influenced only by the number of DCs opened.
Therefore, there are only three alternative values for SC risk value.
To optimize the model, a secondary objective—either profit
maximization or sales maximization—is utilized.

An optimal solution summary for separate single objective
problems is summarized in Fig. 4. As summarized in the figure,
in the single objective model, the model generates different solu-
tions depending on the chosen objective. For example, when profit
is maximized, total amount of sales decreases by 25.8%. However,
when total amount of sales is maximized at the lowest price level
(a 15% price decrease), the total profit decreases to – TL 492,823,
which is not acceptable because it is non-profitable. Nevertheless,
when ‘‘risk value” is increased by opening new DCs, total profit
decreases and the total amount of sales slightly increases.
Table 3
Model base scenario parameters.

a: (Price Elasticity) b: (Coverage Elasticity) m: (Inbound Transportati
Disruption Probability)

�2.5 0.10 0.50%
The figure also shows that ‘‘total amount of sales” and ‘‘total
profit” change adversely; that is, when total amount of sales
increases, total profit decreases. The balance between those two
objectives is wholly dependent on the difference between marginal
revenue generated by increasing sales and additional costs (espe-
cially the cost of opening an additional DC).

Table 4 depicts how the model objectives are influenced by the
decision variables utilized within the model. According to the
table, only two major decision variables have major impacts on
the value of model objectives regardless of the chosen objective.
On the below table, the change is called major when the change
is substantial enough to have a potential to change the configura-
tion of the SC network. On the other hand, the change is called
minor when it has a potential to change only the value of the
objective function.

Ultimately, as discussed after the literature review section, it can
be concluded that a SC network configuration decision only based
on a single objective does not provide efficient results. A method
that incorporates all three objectives—profit maximization, sales
maximization, and risk minimization—needs to be applied to find
the most suitable SC network configuration.

5.1.2. Multi-objective model
In the literature, several different approaches are used to handle

multi-objective SC network optimization models. Multi-objective
solution approaches such as weighted objectives or goal program-
ming are generally criticized for being dependent on the subjective
importance of each objective. In some cases, instead of providing
one single mathematically optimal solution, the modellers try to
shorten the list of alternative Pareto - optimal solutions using sce-
nario analysis in which the alternative number of scenarios is lim-
ited (Chaabane, Ramudhin, & Paquet, 2012; Costantino, Dotoli,
Falagario, Fanti, & Mangini, 2012; Zamarripa et al., 2012).
on d: (DC Disruption Probability) U: (Outbound Transportation
Disruption Probability)

1.00% 2.00%



-1000000
0 

1000000
2000000
3000000
4000000
5000000
6000000
7000000

Profit 
Maximiza�on

Sales 
Maximiza�on

Risk 
Minimiza�on 
(Sales max.)

Risk 
Minimiza�on 
(Profit max.)

Base Price 
Sales Max.

Base Price 
Profit Max.

Total 
Profit 
($)

Total 
Amount 
of Sales

Fig. 4. Optimal solution summary for various single objective models.

Table 4
Impacts of Decision Variables on Model Objectives.

Decision variables Model objectives

Total profit Total amount
of sales

SC risk
value

Number and location of DCs Major Major Major
Sales price Major Major �
Capacity of DCs Minor � �
Network traffic Minor � �
DC-customer zone allocation Minor � �
Demand fill rate Minor Minor �
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In the proposed model, the performance measures are substan-
tially influenced by only strategic level SC decisions, such as the
number and location of the DCs and the price change level. In addi-
tion to strategic level decisions, tactical level decisions, that is, SC
network traffic decisions and demand fill rate decisions, have no
influence on SC risk value and only a minor influence on SC profit
and total amount of sales.

The model is optimized for each alternative scenario (price
change and number of DCs combination) and provides solutions
to decision makers for alternative scenarios. To convert profit max-
imization and sales maximization objectives into one single objec-
tive for each scenario, goal programming methodology is utilized.
As the multi-objective approach utilized in this study combines
scenario analysis and the goal programming method, it may be
called a hybrid methodology.

In the goal programming method, the goals are defined as a 10%
increase from the current level of the objectives (in the base sce-
nario), and then the objectives are rescaled. Next, distance func-
tions from each objective (d1 and d2) are defined. The goal
function is set to minimize the total distance from both goals.
The goals are as follows:
Target Profit:
 TL 5.550.000

Target Amount of Sales:
 2.530.000 items
Distance Functions:
Profit Distance (d1):
 Total Profit – Target Profit

Sales Distance (d2):
 Total Amount of Sales – Target

Amount of Sales
Objective Function:

Maximization of Total Distance ¼ d1 þ 2 � d2

As the distance functions are defined as the targeted profit and
targeted sales subtracted from the values of total profit and total
sales, the results are negative values. Therefore, maximization of
the value of distance function indeed means the minimization of
the total distance from the targeted values. In the Distance Func-
tion Formula, total amount of sales is multiplied by two in order
to rescale objectives to be at the same level, as the profits are
approximately two times higher than the total amount of sales in
the base scenario. In addition to rescaling, the relative weights of
the two separate objectives are assumed to be the same.

The results show that the multi-objective model results differ
from the single objective model results. In the multi-objective
model, the distance function is maximized when the price is
increased by 4% and two DCs (the current DC and a new DC in
Ankara) are utilized concurrently (Table 5). The model proposes
that the Ankara DC be opened with the least possible capacity.
Compared to the current situation with one DC, opening a second
DC in Ankara helps the SC network increase its sales by approxi-
mately 5% mainly due to the one-day replenishment coverage
effect. However, the profit is decreased by approximately 3.1%. In
the optimal point, only 7 of 39 customer locations are replenished
by the new DC.

Compared to the optimal point of profit maximization problem
(1 DC, 11% price increase), the profit is decreased by only approx-
imately 8.5%, however; the total amount of sales is increased by
approximately 28%. Nevertheless, unlike the optimal point of sales
maximization problem, the profit is increased by 6 Million TL;
however, the total amount of sales is decreased by 33.8%.

In contrast to the single objective models, when the multi-
objective model tries to only maximize the distance function
regardless of the price and number of DC scenarios, the result gen-
erated by the model seems quite balanced in terms of total amount
of sales, total profit and SC risk value. In the optimal point, even
though the distance function is maximized, the company’s total
amount of sales decreases due to the increasing sales price.

Comparison among the single objective and multi objective
comparison results illustrated that single objective models may
not generate acceptable results and may be biased in terms of per-
formance objectives. Therefore, it may be concluded that, due to
the multi - objective nature of SCs, SC network optimization mod-
els need to be defined as multi-objective.

In most cases, the firms (DMs) may need to see the results of all
alternative scenarios and review how the SC performance metrics
change within these scenarios before reaching a final decision.
Therefore, it has been decided to provide all optimum solutions
for various scenarios to DMs.

As mentioned above, instead of building a model to generate a
mathematically optimal solution that is subjectively weighted by a
decision maker, the optimal solution for each alternative scenario
(price – number of DCs combinations) is provided in Figs. 5–7.
These figures depict how total profit, total amount of sales, and dis-
tance function change according to different price and the number
of DC combinations. By analysing the results and the figure, con-
clusions may be drawn to both narrow the alternative solutions
and comprehensively understand them.



Table 5
Results for Multi-objective model (Maximizing Distance Function).

Price change (%) # of DC (s) SC risk
value

Total revenue
(000 TL)

Total costs
(000 TL)

Total profit
(000 TL)

Total amount
of sales (000)

Distance
function (000)

�11 1 0.965 38,477 36,300 2177 2892 �2648
�11 2 0.999 39,110 37,055 2054 3009 �2537
�10 1 0.965 38,189 35,669 2520 2838 �2414
�10 2 0.999 38,826 36,434 2392 2954 �2309
�9 1 0.965 37,884 35,038 2846 2784 �2195
�9 2 0.999 38,556 35,848 2708 2902 �2099
�8 1 0.965 37,563 34,407 3156 2730 �1993
�8 2 0.999 38,233 35,215 3018 2846 �1900
�7 1 0.965 37,226 33,777 3450 2676 �1807
�7 2 0.999 37,890 34,581 3310 2790 �1720
�6 1 0.965 36,873 33,146 3727 2623 �1638
�6 2 0.999 37,539 33,957 3582 2735 �1558
�5 1 0.965 36,503 32,515 3988 2569 �1485
�5 2 0.999 37,175 33,330 3845 2679 �1407
�4 1 0.965 36,117 31,884 4233 2515 �1348
�4 2 0.999 36,789 32,701 4088 2624 �1274
�3 1 0.965 35,714 31,253 4461 2461 �1227
�3 2 0.999 36,382 32,067 4314 2568 �1159
�2 1 0.965 35,296 30,622 4673 2407 �1123
�2 2 0.999 35,958 31,435 4523 2513 �1062
�1 1 0.965 34,861 29,992 4869 2353 �1035
�1 2 0.999 35,518 30,802 4715 2457 �981
Base 1 0.965 34,409 29,361 5048 2299 �964
Base 2 0.999 35,087 30,195 4892 2403 �913
1 1 0.965 33,942 28,730 5212 2245 �908
1 2 0.999 34,615 29,563 5052 2347 �864
2 1 0.965 33,458 28,099 5358 2191 �869
2 2 0.999 34,143 28,946 5198 2292 �828
3 1 0.965 32,957 27,468 5489 2137 �847
3 2 0.999 33,647 28,318 5329 2237 �807
4 1 0.965 32,441 26,838 5603 2083 �840
4 2 0.999 33,136 27,694 5442 2182 �805
5 1 0.965 31,908 26,207 5701 2029 �850
5 2 0.999 32,605 27,065 5540 2126 �817
6 1 0.965 31,359 25,576 5783 1975 �877
6 2 0.999 32,064 26,442 5622 2070 �848
7 1 0.965 30,793 24,945 5848 1921 �919
7 2 0.999 31,505 25,818 5687 2015 �892
8 1 0.965 30,211 24,314 5897 1867 �978
8 2 0.999 30,931 25,196 5736 1961 �952
9 1 0.965 29,613 23,683 5930 1814 �1053
9 2 0.999 30,340 24,571 5770 1906 �1028
10 1 0.965 28,999 23,053 5946 1760 �1145
10 2 0.999 29,736 23,949 5788 1851 �1121
11 1 0.965 28,368 22,422 5946 1706 �1252
11 2 0.999 29,114 23,325 5788 1796 �1229
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Number of DCs: One of the most important conclusions that
may be drawn from the results provided in this section concerns
the number of DCs. At any price level, when the number of DCs
is increased from 2 to 3, very little impact occurs regarding SC risk
value (from 0.999 to 1) and total amount of sales (increased by
approximately 1%). However, total profit and, eventually, total dis-
tance value substantially decrease. Therefore, it may be concluded
that alternatives with 3 DCs may be dropped from the alternative



-45,00,000

-40,00,000

-35,00,000

-30,00,000

-25,00,000

-20,00,000

-15,00,000

-10,00,000

-5,00,000

0 

Distance 
Func�on 
(3 DCs)

Distance 
Func�on 
(2 DCs)

Distance 
Func�on 
(1 DC 
- Curren
t Sit.)

Fig. 7. Multi-objective solution results within scenarios (Distance Function).

144 C. Bilir et al. / Computers & Industrial Engineering 108 (2017) 136–148
solutions, as these scenarios have a substantial negative effect on
total profit and the total distance function.

However, when the model proposes to open an additional DC
(from one DC to two DCs), the model generally generates less profit
due to increasing fixed DC costs, slightly increasing inventory hold-
ing costs, and slightly increasing transportation costs. Neverthe-
less, in the solutions with two DCs, the model generates
approximately 5% more sales amount due to the one-day replen-
ishment coverage effect and decreasing lost sales. The increased
sales amount also generates more revenue; however, the revenue
increase is not sufficient to cover cost increases. Therefore, in profit
maximization problems, the current situation with one DC options
are chosen. In the model capturing both sales amount and profit,
alternatives with two DCs are proposed to be opened, as the sales
amount increase is more than the profit decrease.

Price Decreases: Price decreases have a substantial positive
impact on total amount of sales due to price elasticity level. How-
ever, beyond an 11% price decrease, price decreases have a nega-
tive effect on profit. The negative effect on profit increases as the
price continues to decrease. After a 12% price decrease, the model
may generate even negative profits, depending on the objective.
After that point, the model may choose not to fill the demand at
some locations because of the shrinking profit margin. Therefore,
we may conclude that a price decrease level beyond a certain point,
for example, 11% may not be reasonable and may be dropped from
our final result table, including all solutions for price and number
of DCs combinations.

The results also helped us to understand the conflicting nature
of the objectives: total profit and total sales. Fig. 8 provides the Par-
eto - optimal solutions set for those objectives through different
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Fig. 8. Pareto – optimal solution set.
scenarios with 2 DCs. Similar Pareto optimal set may be generated
for options for the scenarios with 1 DC and 3 DCs.

In conclusion, the proposed model is able to specify how the
total amount of sales and total profit of the model company change
as the strategic level network configuration decisions change. The
model is also capable of capturing how the SC network traffic
needs to be modelled to maximize profit or sales amount or both
SC objectives, depending on the chosen model objectives.

The model is also utilized to model SC disruption risks. How-
ever, due to the multi-objective nature of the SC network, the
model firm wants to maximize its profit, sales amount and SC risk
value. To support decision making, the model is solved as a goal
programming function. The distance maximization function of
the model provides suggestions regarding the best solution for
the firm’s problem. However, the objectives in the distance func-
tion are rescaled and weighted by subjective weights. We provide
a list of optimal solutions for each scenario that will help DMs
(Table 5).

After providing the optimal solution list for separate scenarios,
we analyse the sensitivity of the model to test whether the model
generates similar results when some of the assumptions and coef-
ficients within the model are changed.

5.2. Sensitivity analysis

After solving the problem, a sensitivity analysis is conducted to
test the applicability of the model with respect to different param-
eter coefficients. These coefficients are:

- Price elasticity
- One–day replenishment coverage impact
- Risk factors (disruption probabilities)
- Relative weights of the objectives.

In addition to the changes in those coefficients, the sensitivity of
the model outputs to the changes of the scale of the model is also
analysed.

5.2.1. Price elasticity coefficient (a)
In the model, the price elasticity coefficient is assumed to be

2.5, as the firm operates in the ready-made retail clothing industry.
However, the value of the coefficient does not depend on a detailed
market analysis or a historical sales analysis. Therefore, it would be
required to analyse how the model reacts according to the changes
in the value of the price elasticity coefficient. Table 6 shows the
sensitivity of the distance function with respect to the price elastic-
ity coefficients.

The table shows that regardless of the price change and the
price elasticity coefficient, the best and highest distance value is
acquired when two DCs are opened concurrently. Opening an addi-
tional DC has a positive impact on sales volume even though it has
a negative impact on profitability. As the impact on sales volume is
more than the influence on profitability, the distance function
increases when two DCs are opened concurrently.

The results also show that the developed model is capable of
representing the changes in the SC performance objectives (SC risk
value, profitability, and total amount of sales) as the price elasticity
coefficient changes. In addition, strategic level SC network deci-
sions, such as the number and location of DCs, are not influenced
by the value of the coefficient even though the optimum price level
needs to be deliberately analysed on the market to determine the
distance value maximizing point.

Another important managerial implication of the model is that
the firm may apply brand loyalty programs to decrease price elas-
ticity coefficients in order to maximize its profits without substan-
tially harming its total amount of sales.



Table 6
Distance function results with respect to the price elasticity coefficient.

Price elasticity coefficient �1 �2 �2.5 �3 �4
Price increase to maximize distance function Above +11% 9% 4% 2% 5%
# of DCs to maximize distance function 2 DCs 2 DCs 2 DCs 2 DCs 2 DCs

Table 7
Summary of optimum results for different values of coverage area effect coefficient
(b).

Scenario Number of DCs Optimum price (%) Distance function value

b: 0.05 1 +3 �1.268.410
b: 0.1 2 +3 �807.211
b: 0.2 2 +6 226.873
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5.2.2. One–day replenishment coverage area effect coefficient (b)
In the model, it is assumed that a distance between the DC and

the retail outlet of less than 600 km will have a positive impact on
the demand with a predefined coefficient (b). That coefficient is
assumed to be 0.1. However, that predetermined coefficient value
only depends on estimates of company experts. Therefore, it would
be required to analyse the sensitivity of the model results with
respect to different values of the one-day replenishment coverage
area effect coefficient.

The best results for each objective and for different values of
one-day replenishment coverage area effect coefficient are sum-
marized in Table 7.

The results show that performance metrics such as profitability
and total amount of sales are quite sensitive to the values of the
coverage effect coefficient. However, the developed model is cap-
able of representing the changes in performance objectives as the
coverage coefficient value changes. The results also show the
potential of a program that aims to increase the value of coefficient
(b) for the chain’s profitability and the company’s sales volume.
Therefore, the firm may try to increase the value of the coefficient
through awareness programs, promotions, advertisements, or
other methods.

It may also be concluded that with higher coefficient values,
opening an additional DC becomes more profitable for the com-
pany. In our base scenario, opening an additional DC has a negative
impact on profitability; however, an additional DC has a positive
influence on total amount of sales. With a 0.2 value of the (b) coef-
ficient, profitability is not negatively influenced by opening a sec-
ond DC. These results support the idea that adding a utility
function to the demand model may change the optimal solution
the model generates and, eventually, strategic level SC network
decisions.
Table 8
Risk factor probabilities – sensitivity analysis scenarios.

Scenario m (%) d (%) U (%)

Base Scenario 0.5 1 2
Scenario I 0.25 0.5 1
Scenario II 1 2 3

Table 9
Summary of optimum results for different values of disruption probabilities.

Scenario Number of DCs Optimum price (%) SC risk value

Scenario I 1 +4 0.983
Base 2 +4 0.999
Scenario II 2 +4 0.999
5.2.3. Risk factors (m, d, /)
In the base scenario, disruption probabilities are utilized as

follows:

m (disruption probability at transporting goods from suppliers
to DC): 0.5%.
d (disruption probability at handling goods at any DC): 1%.
/ (disruption probability at transporting goods from DC to cus-
tomer zones): 2%.

Two additional scenarios are created to analyse the sensitivity
of the model objectives. Table 8 presents those two new scenarios.

Table 9 summarizes the optimal solution for each scenario and
depicts how SC risk value, total profit, total amount of sales and
distance function value change through different scenarios.

Both the total amount of sales and profitability of the SC are
influenced by disruption probabilities due to lost sales volume
and the costs of lost sales. Although both profitability and total
amount of sales values are influenced by the disruption probabili-
ties, the results essentially follow the same pattern through the
various scenarios defined in Table 9.

The results also show that when the probabilities are higher, as
in Scenario II, opening an additional DC becomes more profitable.
Unlike Scenario II, the profit difference between the current situa-
tion and two DC options is so high that the distance function
results are also lower in the two DC option in Scenario I.

In conclusion, the proposed model reflects the changes in the
objectives through different disruption probability scenarios. As
the results change, the decisions do not necessarily change, as
the results follow the same patterns through different scenarios.
The results also show that controlling and lowering disruption
probabilities as much as possible through the network is crucial
for the success of the SC, as they have a substantial negative impact
on all of the objectives. To serve customers without interruption,
lowering the disruption probabilities is also highly important.

5.2.4. Relative weights of the objectives (d1, d2)
In addition to the base scenario, two other scenarios are created

to analyse how the value of distance function changes with respect
to the changes in the relative importance of the objectives. Table 10
defines those scenarios (see Table 11).

Optimal solutions for each scenario are depicted in the table
below. The table also shows how optimal price level, total profit,
Total profit (TL) Total amount of sales Distance function value

5.762.828 2.120.418 �606.333
5.441.562 2.181.503 �805.430
5.432.656 2.179.833 �817.677

Table 10
Relative weights of the objectives.

Scenario d1 (Multiplied by) d2 (Multiplied by)

Base scenario 2 1
Scenario I 1 1
Scenario II 4 1



Table 13
Summary of optimum results for various scale of the models.

Scenario Running
time (s)

Required #
of iterations

Number
of DCs

Optimum
price

SC risk value Total profit (TL) Total amount
of sales

Distance
function value

Small Scale 0.82 21 1 No Change 0.965 �1.539.350 316.086 �977.180
Medium Scale 1.58 155 2 +4% 0.999 5.441.562 2.181.503 �805.430
Large Scale 7.57 100 2 +4% 0.999 6.189.995 2.486.895 11.043.784

Table 11
Summary of optimum results for different relative weights of objectives.

Scenario Number of DCs Optimum price (%) SC risk value Total profit (TL) Total amount of sales Distance function value

Scenario I 1 +7 0.965 5.848.034 1.921.423 �310.541
Base 2 +4 0.999 5.441.562 2.181.503 �805.430
Scenario II 2 � 3 0.999 4.312.729 2.568.492 �1.083.300

Table 12
Different scales of the model.

Scenario # of products # of alternate DCs (with different Capacity Options) # of customer locations

Small Scale 5 2 DCs with (4 with capacity options) 20
Medium Scale (Real Life Scenario) 10 3 DCs (with 7 capacity options) 39
Large Scale 15 5 DCs (with 10 capacity options) 50

Table 14
Summary of optimum results for different values of coverage area effect coefficient
(b) for Large Scale Model.

Scenario Number of DCs Optimum price (%) Distance function value

b: 0.05 2 +3 10.511.793
b: 0.1 2 +4 11.043.784
b: 0.2 2 +6 12.206.614
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total amount of sales, and distance function value change through
each scenario.

The model results show that the distance values in scenarios I
and II change due to changing distance function formulation; how-
ever, the total amount of sales and total profit do not substantially
change. Even for the current situation with one DC option, the
model finds the exact same solution. For the two DC option, the
model sometimes finds the same solution or very close solutions.
Therefore, it may be concluded that the model finds almost the
same solution with different values of relative weights of the
objectives.

Even though the best solution for each price change and num-
ber of DC options does not change substantially, the price that
maximizes the distance value changes according to the relative
weights of the objectives. When the relative weight of the total
amount of sales increases, the mathematically optimal price level
is decreased.

In conclusion, the analysis of the three different scenarios with
different relative weights of the objectives showed that the pro-
posed model reflects the changes in the objectives through differ-
ent scenarios. As the results change, SC-based decisions—such as
the number, location, and capacity of the DCs, demand fill rate,
and network traffic—do not necessarily change, as the results fol-
low the same patterns through various scenarios.

5.2.5. Different scales of the model
As mentioned before, the problem solved by the model is a real

life problem. However, how the model responds to the changes in
the size of the model is also observed to understand if the model
generates similar or different results with the different scale of
the models. Table 12 defines basic features of different scales of
the models (see Table 13).

Optimal solutions for each scenario are depicted in the table
below. Along with run time values, the table also shows how opti-
mal price level, total profit, total amount of sales, and distance
function value change through scenarios.

The model results show that the distance values in small and
medium scale of models change due to changes in the distance
function formulation, in the number of products and amount of
sales through scenarios. However, the solutions found in medium
scale and large scale problem are identical. The value of distance
function follows pretty much the same pattern in different scales
of the problems. Compared to the medium and small scale prob-
lems, the running time seems to be much longer, however, the
model did not face any problem to find the optimal solution.
Another major observation gathered in this analysis is that, in large
scale problem, the model chose the DC location which provides the
highest sales increase due to defined utility function.

In order to evaluate the impact of adding utility function to SC
network optimization model to the large scale problem, the latter
is solved with different values of the one-day replenishment cover-
age area effect coefficient. The best results for each objective and
for different values of one-day replenishment coverage area effect
coefficient are summarized in Table 14.

The results show that the model follows the same patterns
through different values of the one-day replenishment coverage
area effect as the scale of the model gets larger. However, detailed
analysis of the results with the larger scale model also led us to
believe that impact of adding a utility function to the demand
model becomes more important as the scale of the model gets lar-
ger. That is, with the larger scale of the model, adding utility func-
tion to the model has higher chances to change the optimal
solution and, eventually, strategic level SC network decisions.

6. Conclusions and further research suggestions

This study aims to analyse and explore how strategic level SC
network decisions, such as number, location, and capacity of SC
nodes affect sales volume and, ultimately, strategic level SC net-
work decisions. The developed model is the first SC network opti-
mization model to incorporate the changes in demand, which is
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defined as being subject to both the price change and distance from
the end-customers and which is substantially influenced by strate-
gic level SC network optimization model decisions. The results
prove that including a utility function (based on the number and
the location of DCs) in demand substantially changes the value of
all three performance objectives of the model. Impact of including
utility function on the SC network optimization decisions becomes
even more important when the scale of the network gets larger.
When the model proposes opening an additional DC, it generates
approximately 5% more sales volume due to the defined utility
function. However, the model generates less profit due to the fixed
DC costs, slightly increased inventory holding costs, and slightly
increased transportation costs.

The model also proves that single objective models may not
generate acceptable results and that SC network optimization
models need to be defined as multi-objective, as SCs are multi-
objective in nature.

The model results also show that the model’s performance
objectives are substantially influenced by strategic level SC net-
work decisions such as the number and location of DCs, price
change level, and other factors, which have a substantial influence
on all performance objectives. However, decisions such as SC net-
work traffic decisions, DC – customer zone allocation, and demand
fill rate have either minor or no influence on performance of the SC.

The model is also utilized to model SC disruption risks. The risk
factor sensitivity analysis shows that controlling and lowering dis-
ruption probabilities as much as possible through SC nodes and
links is crucial for the company’s success, as lower disruption prob-
abilities may lead to lower risks, higher sales volume, and higher
profitability, all of which are very important to serving customers
without interruption.

To enhance the developed model, other utility (attraction) func-
tions that are also influenced by SC network configuration deci-
sions—such as customer service level, availability of the stores at
the demand point, distance between the store and the cus-
tomers—may be defined to explore how demand and, ultimately,
network configurations are influenced by those decisions.

A major limitation of the study concerns the lack of research on
several major parameters of the model, such as the price elasticity
coefficient and the DC – customer zone one-day replenishment
coverage effect coefficient. After a more deliberate study of price
elasticity in the market and after implementing the one-day
replenishment program, the study may be rerun with the real data
gathered from the market on those coefficients.

Another limitation of the developed model concerns the time
period analysed in the model. The model is defined as a single term
model. Therefore, the model may be enhanced by including more
than one term data in the analysis or by including possible future
projections of the model company.

To explore the usefulness of the model, it may also be applied to
real-world scenarios from other highly competitive sectors such as
food products, electronic products. The SC network of the model
firm only consisted of three echelons. Defining a more complex
SC network with more than three echelons and possibly including
recycling centres, globalization issues, and other factors may also
enhance the usefulness of the model.

In the proposed model, a simple, linear demand model that
includes price elasticity and utility function is defined for the sake
of simplicity. A more complex demand model may be defined to
analyse how SC network optimization decisions and model objec-
tives change. Again, to simplify the model, only supply side path-
based risk formulation is utilized. The model may be defined with
a more comprehensive SC risk modelling. To avoid non-linearity
in revenue function, different price change values are defined as
alternative scenarios, and each scenario is solved separately instead
of defining sales price as a decision variable. In a future study, a
non-linear model that defines sales price as a decision variable
may be defined and solved by non-linear solution algorithms.
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