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Abstract: In this paper, we have employed K-d tree algorith-
mic based multiscale entropy analysis (MSE) to distinguish 
alcoholic subjects from non-alcoholic ones. Traditional 
MSE techniques have been used in many applications to 
quantify the dynamics of physiological time series at mul-
tiple temporal scales. However, this algorithm requires 
O(N2), i.e. exponential time and space complexity which 
is inefficient for long-term correlations and online appli-
cation purposes. In the current study, we have employed 
a recently developed K-d tree approach to compute the 
entropy at multiple temporal scales. The probability func-
tion in the entropy term was converted into an orthogonal 
range. This study aims to quantify the dynamics of the elec-
troencephalogram (EEG) signals to distinguish the alco-
holic subjects from control subjects, by inspecting various 
coarse grained sequences formed at different time scales, 
using traditional MSE and comparing the results with 
fast MSE (fMSE). The performance was also measured in 
terms of specificity, sensitivity, total accuracy and receiver 
operating characteristics (ROC). Our findings show that 
fMSE, with a K-d tree algorithmic approach, improves 
the reliability of the entropy estimation in comparison 
with the traditional MSE. Moreover, this new technique is 

more promising to characterize the physiological changes  
having an affect at multiple time scales.

Keywords: complexity analysis; electroencephalogram 
(EEG); fast multiscale sample entropy (fMSE); multiscale 
sample entropy (MSE).

Introduction
In 1929 Hans Berger developed a non-invasive system to 
record the electroencephalography (EEG) to measure and 
analyse the performance of neural activity which remains 
a challenge in neuroscience. Physicians have used EEG to 
compute the neurological activities of the brain such as 
brain disorder involving epilepsy and many other brain 
disorders [10]. Moreover, the non-linear EEG time series 
analysis and chaotic dynamical systems analysis [5] has 
always remained a great source of attraction for research-
ers. Richman and Moorman used entropy based methods 
for the measurement and estimation of regularity in time 
series signals [2].

In a previous study [3], an imbalance was observed 
in the central nervous system (CNS) between excitation 
inhibition states in the presence of alcoholic and offspring 
subjects resulting in the high risks of biological and other 
related disorders also increasing the β activity. EEG coher-
ence due to alcoholism was observed to be significantly 
increased between the interhemispheric region in high θ 
(6–7 Hz). Porjesz and Rangaswamy [32] reported that alco-
holics manifest significant increases in resting EEG that 
affect particularly posteriorly at the centroparietal and 
parietal-occipital regions. Moreover, alcoholic subjects’ 
activity was observed as being high which is an indication 
of transformed thalamo and cortical functional connec-
tivity. Alcoholic subjects may also suffer from some other 
fundamental psychiatric disorders, e.g. alcohol depend-
ence, impulsivity, oppositional disorder, conduct disor-
der, drug dependence and attention deficit hyperactivity 
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disorder (ADHD) which also cause environmental and 
genetic influences on internalizing and externalizing dis-
orders. The frontal brain region activation is reduced due 
to alcoholism and affect impulsivity.

The neurophysiological signals are very complex and 
require methods from the theory of nonlinear dynamics to 
fully understand its dynamics. The complexity of a system 
or signals can be computed with several nonlinear dynam-
ical measures such as entropy-based computational tech-
niques and fractal dimensions. These techniques have 
been employed to distinguish the healthy and pathologi-
cal subjects to measure the complexity of the physiological 
activities [15, 16]. The most emerging theoretical frame-
work is to examine the complexity of biological systems 
including behavior, physiology associated with aging and 
disease [14, 26, 34, 44]. The complexity concept is linked 
with several concepts in biology and physics such as 
entropy, information theory and randomness [22, 35, 39, 
40]. Multiple factors affect the behavior and physiological 
signals and accordingly the systems’ output. Complexity is 
examined using multiple methods from the theory of non-
linear dynamics [24] together with information theory [35].

Recently, the physiological and behavioral complexi-
ties were examined using correlation dimension [17], 
spectral analysis [20], detrended fluctuation analysis 
[19], recurrence plot analysis [11, 42, 43] and false nearest 
neighbors [25]. The entropy based methods have been 
widely used to analyze the complexity of the non-linear 
signals. In the previous studies, a number of variants were 
used to achieve an efficiency in computation, varying the 
degree of flexibility and relevance to problems. The infor-
mation processing in the brain with respect to the pro-
cessing point of view manifests itself through its global 
activity measured by EEG that is a multidimensional and 
nonlinear time series. Besides, variants of EEG have been 
employed to discriminate healthy aging and pathological 
aging using complexity based techniques [29].

Multiscale entropy (MSE) analysis was used by [7, 8] 
to compute the complexity of a time series having a finite 
length. Using MSE, the complexity is computed at multi-
ple temporal scales. However, the computational meth-
odology is important to quantify the dynamics of a time 
series. MSE requires an order of O(N2) which may be unre-
alistic for long-term data sets and online monitoring. The 
rolling window method was employed by [18] to reduce 
the execution time useful to analyze the local data. The 
data is portioned into different windows and MSE is com-
puted for each window. Here the window size selection is 
very important for signals with long range correlation to 
cover the largest time scale in the signal. In this regard, 
we have employed an efficient way to compute the MSE 

using the K-d tree algorithm approach. In the field of com-
putational geometry, the MSE was computed by consider-
ing the probability function as an orthogonal range search 
problem. A new K-d tree algorithm as developed by [31] 
was used to reduce the execution time of order O(N2).

The aim of this study is to apply the nonlinear com-
plexity methods using sample entropy with a K-d tree 
algorithm approach at multiple time scales and compar-
ing the results with MSE as approximate entropy depends 
on the length of data, but sample entropy is independent 
of data length. From the literature, it was observed that 
complexity decreases for pathological subjects such as 
AD, dementia and epilepsy, etc. Alcoholic subjects may 
also suffer different pathological disorders such as impul-
sivity, conduct disorder, oppositional disorder and drug 
dependence. Thus, the present study will focus on investi-
gating, if there is possibility, that using nonlinear entropy- 
based techniques the complexity of alcoholic subjects can 
be decreased more than in control subjects. The research 
reported in this article is aimed to investigate the dynamics 
of EEG signals in alcoholics and to distinguish them from 
non-alcoholic subjects using a robust entropy measure 
with the K-d tree algorithmic approach. The research also 
reveals which electrode and brain regions are more domi-
nant to distinguish these conditions.

Proposed methods
EEG recordings

The datasets are taken from an online database available at the Uni-
versity of California, Irvine Knowledge Discovery in Databases (UCI 
KDD) Machine Learning Repository archive (http://archive.ics.uci.
edu/ml/datasets/EEG+Database visited on March 11, 2014). For the 
current analysis, we have used 29  subjects for both the alcoholic 
(mean age 35.83, SD 5.33, range 22.3–49.8 years) and control groups 
(mean 25.81, SD 3.38, range 19.4–38.6  years) and were used previ-
ously in alcohol-related studies [38, 45, 46]. The alcoholic depend-
ence or abuse were confirmed by the psychiatrist at the Addictive 
Disease Hospital in Brooklyn where the participants were recruited 
from. Moreover, the alcoholic participants were detoxified fully and 
most of them were also abstained from alcohol for at least 28 day, 
to ensure that there would be no short-term effects of alcohol. The 
alcoholic subjects had been drinking for minimum of 15 years. The 
control subjects participated in the study reported no personal or 
family history relating to drink alcohol or drug abuse. Individuals 
with severe medical problems or drug dependence were excluded 
from the study. Moreover, these participants are right handed with 
normal vision. During the data acquisition the subjects were exposed 
to visual stimuli – pictures of these objects were chosen from the 
Snodgrass and Vanderwart picture set [37]. The data were recorded 
from 61 electrodes placed according to the 10–20 international mon-
tage (impedance of electrode was kept below 5 kΩ, implication gain 
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of 10,000, pre-filtered from 0.02 Hz to 50 Hz and referenced to Cz), 
sampled at a rate of 256 Hz. Moreover, excess of body and eye move-
ments were rejected [45]. Likewise, for event related potentials (ERP), 
the magnitude was recorded below 5 μV. The standard electrode posi-
tions were used as illustrated elsewhere in the literature [1]. The EEG 
signals are extracted from 14 electrodes – occipital (O1, O2), central 
(C3, C4), frontal (F3, F4, F7, F8), frontpolar (Fp1, Fp2), parietal (P3, 
P4) and temporal (T7, T8).

Sample entropy

Richman and Moorman [33] proposed the sample entropy to analyze 
the dynamics of physiological time series. Moreover, sample entropy 
[27] was used to extract information in a time series and measure-
ments of the systematic structure was carried out by testing the 
repeated patterns of varying length. Mathematically, it is computed 
as a negative average natural logarithm of conditional probability.

Consider a time series x(1), x(2), x(3), x(4), …, x(N), where N is 
the data length. Sample entropy can be computed as follow:

(i)	 	 ( ) ( ), ( 1), ( 2), , ( 1)].X i X i X i X i Xi m= + + + −… � (1)
where i = 1, 2, 3, …, N − m + 1.

(ii)	 The distance d[X(i), X(j)] between two series X(i) and X(j) is com-
puted as

	 [ ( ), ( )] max[| ( ) ( ) |], X i X j x i k x j k= + − + � (2)

where k = 0, 1, 2, …, m − 1.
and j = 1, 2, 3, …, N − m + 1; but j ≠ i.

(iii)	 Count d[X(i), X(j)] which are smaller than the given threshold r, 
then compute the ration of this number with total N − m as

	

{ number of   [ ( ), (( ] }) ) ,m
i

d X i X j rC r
N m

<=
− �

(3)

where i = 1, 2, 3, …, N − m + 1.
(iv)	 Compute ( )m

iC r  for all I as
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1
)

)
m

im
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N m

=
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∑
�

(4)

where i = 1, 2, 3, …, N − m.
(v)	 To yield m + 1 dimension, add one to number of dimension of the 

vector. Repeat the steps i to iv until yield Cm+1 (r).
(vi)	 Finally compute the sample entropy as

	

1(Samp ( , , ) ln ln)
( )

.
m

d
m

n

nC rEn m r N
nC r

+ 
= − = 

  �
(5)

Multiscale sample entropy (MSE): The limitations of sample 
entropy restrict it to apply only over a single time scale factor that 
may not be suitable for a complex time series whose characteristics 
are computed at multiple temporal scales. To address this, [7] devel-
oped a multiscale sample entropy that is flexible in terms of its appli-
cations. MSE is computed at various time scales.

Consider an one-dimensional time series

1 2 3{ ,  , ,  }.Nx x x x x= …
The following procedure is used to compute the coarse-grained 

time series y(τ) at scale τ

	
( )

( 1) 1

1  ,  1 ,
j

j i
i j

Ny x j
τ

τ

ττ τ= − +

= ≤ ≤∑ � (6)

where coarse-grained is developed in non-overlapping window of 
length τ and data points are averaged in each window.

K-d tree algorithm approach

Manis [28] proposed a fast K-d tree algorithmic approach based on 
approximate entropy. Silpa-Anan and Hartley [36] proposed an 
improved version of the K-d tree algorithm that can create the mul-
tiple randomized K-d trees. Pan et al. [31] developed a new K-d tree 
algorithm based on sample entropy to compute the dynamics of 
physiological time series from RR intervals and ECG and EEG signals. 
Using the K-d tree algorithm to compute the sample entropy, the dis-
tance vectors (probability) nn and nd are computed for each scale.

The time series x = {x1, x2, x3, … xN} can be transformed into “d” 
dimensional points where d = m + 1 by setting

	 1 2,  ,  .i i i i i ip x q x r x+ += = = � (7)

The terms in equation (5) satisfying the following constraints 
are equivalent to the number of points:

1 1 1; ;i i i i ix x x x x+ + +− < + − < < +ε ε ε ε

	 2 2 2i i ix x x+ + +− < < +ε ε � (8)

Define

1 2,   ;j jp x p x= − = +ε ε

1 1 2 1,  ;j jq x p x+ += − = +ε ε

1 2 2 2,   .j jr x r x+ += − = +ε ε � (9)

From equations (7) and (9), nn corresponds to the number of 
points that satisfy the following constraints:

1 2 ;i j ip p p< <

1 2 ;i j iq q q< <

1 2 .i j ir r r< < � (10)

In other words, for each point

( ,  , )       1 .i i i iX P Q R i N= ≤ ≤

The bounding box number of points can be calculated as:

	 1 2 1 2 1 2: : : .p p q q r r     × ×      � (11)

In computational field geometry, this approach is employed for 
orthogonal range search problems. Where the computation of nd 
to m counting problems and nn are equivalent to m − 1 dimensional 
orthogonal range counting problems. When nn and nd are calculated 
then the sample entropy can be computed directly.

K-d tree algorithm: The K-d tree algorithm is a binary tree algorithm 
which was proposed by Bentley in [4], its each node “v” is associated 
with a rectangle Bv. “v” will be the leaf node, if Bv does not con-
tain any point in its interior. Otherwise, Bv is partitioned into two 
rectangles by drawing a vertical and horizontal line such that each 
rectangle contains at most half of the points. The following steps 
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as proposed by [28, 31, 36] are used to compute the sample entropy 
using the K-d tree algorithm:

(i)	 Compute the coarse scale of discrete time series by using Eq. 
(6) for each scale.

(ii)	 Discrete time series is transformed into discrete space point 
sets by Eq. (7).

(iii)	 Set K = m − 1; build the K-d tree using the space points.
(iv)	 The query box is calculated using Eq. (9) to each space point.
(v)	 Using the K-d tree query algorithm, the number of points inside 

the box ( )m
in  are queried.

(vi)	 nn is computed using Eq. (5).
(vii)	 Set k = m, repeat step (ii) to (vi) to compute nd.

(viii)	 Finally, SE is computed using Eq. (5).

The time complexity of the original MSE algorithm was O(N2) for each 
scale as two loops (i, j) is required and thus total execution time is:

	

2
2 2( ).s

s s

nn O N
s

 
= =  ∑ ∑

�
(12)

To overcome the time and complexity, the following steps are 
employed as used by [31]:
Step 1.	� Original discrete time series was transformed to a special 

point set from x = {x1, x2, x3, … xN}.
Step 2.	� The d-dimensional K-d tree is constructed using N − m points 

for which the total cost is O (N long N) and the memory is O(N).
Step 3.	� Range query; for, d-dimensional K-d tree search the time 

cost is ( )11 
  dN O N  of for N queries and memory cost is O(N).

Fast MSE (fMSE) technique

The sample entropy algorithm used in the Section “Sample entropy” 
require two loops (i, j) for each scale, thus total execution time for all 
the scale require the time complexity of O(N2) which is too slow in 
many applications. For computation of sample entropy (SE), the values 
for m = 2 and r = 0.15 × SD of the original time series were taken. Com-
puting the sample entropy directly from the Section “Sample entropy” 
one needs to count the number of its matched pairs thus it requires 
execution time proportional to the square of length of the input time 
series. Thus, for long time series the K-d tree approach is highly desir-
able. Manis [28] used the bucket assisted technique to reduce the exe-
cution time for approximate entropy that improved it, however, the 
algorithm still requires a O(N2) execution time where N represent the 
length of the time series. To overcome the complexity of MSE, the fMSE 
was used that employs the K-d tree algorithmic approach to accelerate 
the counting of the number of matched pairs of the pattern emplaces 
in a time series. Bentley, in 1975 [4] developed the K-d tree algorithm 
based on the well-utilized nearest neighbor (NN) method. This algo-
rithm works as a binary search tree in which each node is representing 
a partition of K-dimensional space. The entire space is represented by 
the root node, whereas, the subspace is represented by the leaf nodes 
that contain the mutually exclusive small subsets. The computational 
time is accelerated by speeding up the counting of the number of 
matched pairs of the input time series and subsequences derived 
from the input time series are organized in the K-d tree data structure.  

The fMSE algorithm uses ( )12
1mO N

−
+  execution time, where m denotes 

the number of pattern template of the time series. Moreover, space 
complexity is O (N log N). Time complexity is measured in terms of 

total elementary operations including addition/subtraction, division/
multiplication and comparison of two numbers. The space complexity 
is measured in terms of number of the elementary objects required to 
be stored during the execution.

Performance measures based on confusion matrix 
parameters

To distinguish the alcoholic and non-alcoholic subjects, the follow-
ing measures were used to compute the sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value (NPV), false 
discovery rate (FDR), false omission rate (FOR) and total accuracy 
with one concrete example at electrode C3 from 29  alcoholic subjects 
and 29 from that of non-alcoholic subjects:

Confusion matrix:

  Predicted  

Actual   True positive   False positive   PPV = TP/(TP + FP)
  (TP) = 29   (FP) = 0   =29/(29 + 0)
      =100%
  False negative   True negative   NPV = TN/(TN + FN)
  (FN) = 1   (TN) = 28   =28/(28 + 1)
      =96.55%
  Sensitivity =  

TP/(TP + FN)
  Specificity =  

TN/(TN + FP)
 

  =29/(29 + 1)   =28/(28 + 0)  
  =96.67%   =100%  

Sensitivity: The sensitivity measure is used to test the proportion of 
people who test positive for the disease among those who have the 
disease. Mathematically, it is expressed as:

	

TPSensitivity ,
TP FN

=
+ �

(13)

i.e. the probability of positive test given that the patient has the dis-
ease.

Specificity: Specificity measures the proportion of negatives that 
are correctly identified. Mathematically, it is expressed as:

	

TNSpecificity ,
TN FP

=
+ �

(14)

i.e. probability of a negative test given that patient is well.

Positive predictive value (PPV): PPV is mathematically expressed as:

	

TPPPV ,
TP FP

=
+ �

(15)

where TP denote that the test makes a positive prediction and subject 
has a positive result under the gold standard while FP is the event 
where the test makes a positive prediction and subject has a negative 
result.

Negative predictive value (NPV): NPV can be computed as:

	
TNNPV ,

TN FN
=

+ � (16)
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where TN indicates that test makes a negative prediction and the 
subject also has negative result, while FN indicates that test makes a 
negative prediction and the subject has a positive result.

False discovery rate (FDR): It is the compliment of PPV, i.e. 
FDR = 1 − PPV. It can also be mathematically computed as:

	

FPFDR .
TP FP

=
+ �

(17)

False omission rate (FOR): It is the compliment of NPV, i.e. 
FOR = 1 − NPV. It can also be mathematically computed as:

	

FNFOR .
TN FN

=
+ �

(18)

Total accuracy (TA): The total accuracy is computed as:

	

TP TNTA .
TP FP FN TN

+=
+ + + �

(19)

Results
Table 1 shows the results distinguishing the healthy and 
alcoholic subjects, using MSE and fMSE at multiple tem-
poral scales in electrodes O1, O2, C3, C4, F3, F4, F7, F8, 
Fp1, Fp2, T7, T8, P3 and P4 using the rank sum test. The 
mean ranks of control subjects are greater than that of 
alcoholic subjects at each electrode, which shows that 
control subjects exhibit higher complexity than the alco-
holic subjects. The maximum separation was obtained 

at smaller scales, however; few electrodes show highest 
separation at higher scales. The highest separation was 
obtained at central electrodes followed by parietal, 
occipital, temporal and frontal electrodes using both 
MSE and fMSE. Moreover, fMSE exhibits higher sepa-
ration than MSE to distinguish alcoholic and control 
groups in most of selected 14 electrodes except in few 
electrodes such as F3, F8, Fp1 and P4 showed maximum 
separation using MSE.

Cao et al. [6] recently used synchronization analysis 
to investigate synchronization difference between 28 
alcoholics and 28 non-alcoholics during certain cogni-
tive tasks on the scale EEG. The results reveal that the 
alcoholic group exhibits lower synchronization than the 
control group when performing the same cognitive tasks. 
Moreover, synchronization for the control groups shows 
the complexity levels of cognitive tasks whereas the alco-
holic groups shows only erratic changes. Tcheslavski 
and Gonen [41] employed spectrum coherence and phase 
synchrony and observed that alcoholic group have lower 
phase synchrony than the control group because pro-
longed excessive alcohol consumption results in damage 
of individuals and societies both physically and psy-
chologically. de Bruin et  al. [9] used a synchronization 
measure and observed that there is a loss of lateraliza-
tion in α and β synchronization in both male and female 
heavy drinkers. These measures are based on correlation 
and coherence. In the literature, entropy-based complex-
ity measures are most widely used to quantify the dynam-
ics of highly complex and nonlinear signals. Recently, [21] 

Table 1: Comparison of results using MSE and fMSE profiles for time scales (t ≤ 20) to distinguish alcoholic and control subjects for all chan-
nels with m = 2 and r = 0.15 times the standard deviation of the original data sequence.

Electrode Mean ranks MSE fMSE ROC

Control Alcoholic p-Value Scale p-Value Scale MSE fMSE

C3 41.14 18.63 2.01E-10 1 6.51E-11 1 0.976 0.998
C4 40.46 19.27 6.04E-10 1 6.51E-11 1 0.951 0.968
F3 36.43 23.03 1.68E-03 1 4.22E-03 2 0.746 0.720
F4 31.43 27.70 3.05E-03 18 2.45E-02 20 0.718 0.680
F7 45.54 23.87 1.12E-02 14 5.72E-04 2 0.690 0.764
F8 37.86 21.70 5.27E-05 1 1.30E-04 1 0.809 0.798
Fp1 30.89 28.20 2.88E-04 16 1.91E-02 10 0.768 0.695
Fp2 31.36 27.77 3.05E-02 17 8.63E-03 10 0.680 0.692
O1 38.36 21.23 1.46E-02 1 7.08E-05 2 0.690 0.791
O2 34.61 24.73 1.02E-01 1 9.40E-03 1 0.626 0.708
P3 38.86 20.77 4.80E-08 1 1.81E-08 1 0.912 0.930
P4 32.50 26.70 6.03E-06 2 1.15E-03 2 0.842 0.743
T7 39.43 20.23 1.81E-02 1 2.85E-06 2 0.688 0.877
T8 32.13 26.68 3.43E-01 4 7.48E-03 2 0.553 0.702

Significant group differences are calculated using the rank sum nonparametric test.
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employed the symbolic time series analysis to compute 
the dynamics of epileptic seizures and EEG during resting 
states and results are compared with the MSE. Both MSE 
and symbolic entropy give highly significant difference to 
distinguish the control group from epileptic (ictal-seizures 
interval), focal and non-focal (interictal interval-seizure 
free) and EEG signals eye closed from that of eye open 
during the resting state. In the present study, the mean 
ranks for the 14 selected electrodes were computed and 
results revealed that the control group exhibit higher 
ranks than that of the alcoholic group which indicate that 
the control group shows higher complexity than the alco-
holic group consistent with previous studies. However, 
MSE and fMSE at multiple temporal scales give higher 
significant results (p-value) and performance in terms 
of specificity, sensitivity, PPR, NPR, total accuracy and 
AUC then the existing techniques employed. The findings 
reveal that entropy base measures are a very helpful tool to 
quantify the dynamics of highly complex time series data. 
Moreover, MSE with the K-d tree algorithm gives higher 
separation and significance results than MSE in most of 
the electrodes and regions. Moreover, from the existing 
literature, fMSE is also more robust in terms of time and 
space complexity in addition to the performance measure.

The highest separation using fMSE was obtained 
at the central probe such as C3  with p-value (6.51E-11), 
C4 with p-value (6.51E-11) followed by the parietal probe 
P3  with p-value (1.81E-08), temporal probe T7  with 
p-value (2.85E-06), occipital probe O1  with a p-value 
(7.08E-05), and frontal probes F8 with p-value (1.30E-04) 
and F7 with p-value (5.72E-04). The other electrodes such 
as F3, F4, Fp1, Fp2, O2 and T8 also give significant results 
to distinguish these groups. Moreover, the highest sepa-
ration using MSE was obtained at central electrodes such 
as C3 with a p-value (2.01E-10), C4 with p-value (6.04E-10) 
followed by the parietal probe P3 with p-value (4.80E-08), 
P4  with p-value (6.03E-06) and frontal probes F8  with 
p-value (5.27E-05) and Fp1  with p-value (2.88E-04). The 
other electrodes such as F3, F4, Fp1, F7, Fp2 and T7 also 
give significant results to distinguish these groups. Only 
electrodes O2 and T8 did not show the significant results 
to distinguish these groups.

Receiver operator curve (ROC)

The ROC is plotted against sensitivity and specific-
ity values of alcoholic and control subjects. Using MSE, 
the scale values for both subjects are chosen again the 
maximum separation p-values and are classified as 1 for 
alcoholic and 0 for control subjects. The vector is then 

passed to the ROC function developed in Matlab R2013a 
which plots each sample’s values against specificity 
and sensitivity values. An important parameter from the 
ROC plot is area under the curve (AUC). In the past, [13] 
employed ROC to analyze and visualize the behavior 
of the diagnostic system. It is a two-dimensional graph 
in which the sensitivity, i.e. true positive rate (Tpr) is 
plotted on the y-axis while specificity, i.e. false positive 
rate (Fpr) is plotted on the x-axis. The value of the AUC 
shows the portion of the area of a unit square. The value 
of the AUC lies between 0 and 1. AUC values >0.5 indicate 
good separation. In general, a larger the AUC shows the 
higher separation, i.e. the better the diagnostic test. Simi-
larly, the AUC using fMSE was greater than the AUC using 
MSE accordingly as the significant level was obtained. 
Figures 1 and 2 show the highest separation at parietal (P3, 
P4) and central (C3, C4) probes to distinguish the healthy 
and alcoholic subjects. Using fMSE the highest AUC was 
obtained at central electrodes such as C3 (AUC = 0.998), C4 
(0.968) followed by the P3 (AUC = 0.930), T7 (AUC = 0.877), 
F8 (AUC = 0.798), O1 (AUC = 0.971), F7 (AUC = 0.764), P4 
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Figure 1: Receiver operator curve (ROC) at the central probe.
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Figure 2: Performance measure at the central electrodes.
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(AUC = 0.743), F3 (AUC = 0.726), O2 (AUC = 0.708), T8 
(AUC = 0.702), Fp1 (AUC = 0.695), Fp2 (AUC = 0.692) and F4 
(AUC = 0680). Moreover, using MSE the highest AUC was 
obtained at central electrodes such as C3 (AUC = 0.976), C4 
(0.951) followed by the P3 (AUC = 0.912), P4 (AUC = 0.842), 
F8 (AUC = 0.809), Fp1 (AUC = 0768), F3 (AUC = 0.746), 
F4 (AUC = 0.718), F7 (AUC = 0.690), O1 (AUC = 0.690), T7 
(AUC = 0.688), Fp2 (AUC = 0.680), O2 (AUC = 0.626) and T8 
(AUC = 0.533).

Moreover, the performance was measured for MSE 
and fMSE using multilayer perceptron and 10-fold cross 
validation by computing sensitivity, specificity, PPV (posi-
tive predictive value), NPV (negative predictive value) and 
total accuracy. The highest accuracy was obtained in elec-
trode C3 (100%), C4 (98.28%), P3 (86.21%) higher using 
fMSE than MSE. Other electrodes F8 (79.31%), F7 (74.14%), 
O1 (71.41%), T7 (75.86%) also showed good performance in 
terms of total accuracy using fMSE.

The central and parietal electrodes show highest sep-
aration using these performance measure evaluators fol-
lowed by few frontal electrodes.

The highest sensitivity values were obtained at elec-
trode C3 (100%), followed by C4 (96.67%), F7 (88.89%), 
F8 (86.96%), P3 (86.21%). The other electrodes F3, O1, O2, 
T7 and T8 also show good separation. The higher sensitiv-
ity values were obtained at electrodes C3 (100%), followed 
by P3 (86.21%). Likewise, higher PPV was found in elec-
trode C3 and C4 (100%) followed by P3 (86.21%). Higher 
NPV was obtained at electrode C3 (100%) followed by 
C4 (96.55%), F7 (93.10%), F8 (89.66%), and P3 (86.21%). 
The corresponding FDR and FOR values are obtained 
accordingly.

The Figure  3 shows the performance evaluation at 
the frontal, occipital, partial and temporal electrodes to 

discriminate the alcoholic and non-alcoholic subjects. 
The performance was evaluated using specificity, sensitiv-
ity, PPV, NPV, FDR, FOR and total accuracy using features 
calculated using MSE and fMSE. In the above electrodes, 
fMSE gives higher performance such as T7 (75.86%), F7 
(74.14%), O1 (72.41%) than MSE as T7 (55.17%), F7 (67.24%) 
and O1 (53.4%). While P3 (89.66%) gives higher total accu-
racy using MSE than P3 (86.21%) total accuracy using 
fMSE. The sensitivity values obtained using fMSE are F7 
(88.89%), O1 (74.07%), P3 (86.21%) and F7 (81.25%), O1 
(71.43%), P3 (92.59%), T7 (54.84%) using MSE. The speci-
ficity values using fMSE are obtained as F7 (67.50%), O1 
(70.97%), P3 (86.21%), T7 (75.86%) while specificity values 
using MSE are obtained as F7 (61.90), O1 (70.97%), P3 
(87.10%), T7 (55.56%). Whereas PPV and NPV using fMSE 
at these electrodes are found to be higher than MSE as 
reflected in the figures above. The other detailed perfor-
mance measures values in term of specificity, sensitivity, 
PPV, NPV, FDR, FOR and total accuracy using fMSE and 
MSE are depicted in the Tables 2 and 3.

Discussion
The main objective of this study is to distinguish alco-
holic subjects from that of non-alcoholic subjects using 
the entropy based K-d tree algorithmic approach. The 
AUC results and mean ranks are computed for 14 selected 
central, frontal, occipital, parietal and temporal elec-
trodes. The results are compared using MSE and MSE with 
the K-d tree algorithmic approach. The mean ranks at all 
the selected electrodes for non-alcoholic subjects were 
found to be larger than for the alcoholic subjects. This 
implies that the complexity of alcoholic subjects decreases 
due to degrading in the functional and structural compo-
nents. Due to alcoholism, the impaired memory and other 
cognitive functions decrease [30, 47]. Intoxicated alcoholic 
subjects have reduced BOLD responsiveness in visual and 
auditory cortices. The findings suggest that alcohol can 
reduce the functional activation of the cortical regions. 
The larger differences in the mean ranks are observed at 
central, occipital, parietal and temporal regions which 
indicates that these regions may be greatly affected due 
to alcoholism. Using fMSE, the highest separations to 
distinguish alcoholic from non-alcoholic subjects were 
obtained at central electrodes C3 and C4 (p-value 6.5E-11) 
with AUC (0.998) followed by P3 (p-value 1.81E-08) with 
AUC (0.936), T7 (2.85 E-06) with AUC (0.877), F8 (p-value 
1.30E-04) with AUC (0.789) and F7 (p-value 5.72E-04) with 
AUC (0.764). Other electrodes also show only significant 
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Figure 3: Comparison of performance measure at different electrodes.
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results. The higher significance results obtained using 
fMSE at most of electrodes than MSE.

In this study, the dynamics of EEG signals obtained 
from alcoholic and non-alcoholic subjects were quanti-
fied using the K-d tree algorithm at multiple values and 
results were compared with MSE and fMSE. fMSE is a suit-
able method for the analysis of the physiological signals 
that can be applied to comparatively noisy and short 
time series regardless of knowing the origin of the signals 
whether deterministic or stochastic [7]. MSE requires O(N2) 
computational time which may be inefficient for online 
applications and long-term correlations in the data. A new 
approach using an efficient fMSE method as developed by 
[31] was used to give more significant results and reduced 
execution time as well.

Entropy analysis shows that alcoholic subjects 
usually have lower sample entropy values than the control 

subjects at smaller time scales (τ ≤ 5) on most of the elec-
trodes with significant p-values as shown in the Table 1. 
Thus, it may be clearly inferred that the brain activity in 
alcoholic subjects are lesser complex than that of control 
subjects. These results also reveal same resemblance with 
the previous studies that reports the less complexity of 
pathological subjects than the average and healthy sub-
jects [12]. Thus, low complexity in the case of pathological 
subjects may be due to the extensive death of neurons and 
the decrease in connectivity of local neural networks that 
affect overall neuron cell death [23].

The findings indicate that we can discriminate the 
alcoholic subjects from that of control subjects by means 
of complexity analysis, that due to alcoholism the com-
plexity decreases in various conditions as depicted above 
which is consistent with complexity analysis using MSE 
[8]. Based upon the findings and results obtained during 

Table 3: Performance measure using fMSE.

Electrode Sensitivity Specificity PPV FDR NPV FOR Total accuracy

C3 1.000 1 1 0 1 0 1
C4 0.9667 1 1 0 0.9655 0.0345 0.9828
F3 0.7391 0.6571 0.5862 0.4138 0.7931 0.2069 0.6897
F4 0.5161 0.5185 0.5517 0.4483 0.4828 0.5172 0.5172
F7 0.8889 0.675 0.5517 0.4483 0.931 0.069 0.7414
F8 0.8696 0.7429 0.6897 0.3103 0.8966 0.1034 0.7931
Fp1 0.500 0.500 0.4828 0.5172 0.5172 0.4828 0.500
Fp2 0.625 0.5476 0.3448 0.6552 0.7931 0.2069 0.569
O1 0.7407 0.7097 0.6897 0.3103 0.7586 0.2414 0.7241
O2 0.7143 0.6216 0.5172 0.4828 0.7931 0.2069 0.6552
P3 0.8621 0.8621 0.8621 0.1379 0.8621 0.1379 0.8621
P4 0.6471 0.7083 0.7586 0.2414 0.5862 0.4138 0.6724
T7 0.7586 0.7586 0.7586 0.2414 0.7586 0.2414 0.7586
T8 0.7037 0.6774 0.6552 0.3448 0.7241 0.2759 0.6897

Table 2: Performance measure using MSE.

Electrode Sensitivity Specificity PPV FDR NPV FOR Total accuracy

C3 0.9333 0.9643 0.9655 0.0345 0.9310 0.069 0.9483
C4 0.9630 0.9032 0.8966 0.1034 0.9655 0.0345 0.9310
F3 0.8500 0.6842 0.5862 0.4138 0.8966 0.1034 0.7414
F4 0.6538 0.6250 0.5862 0.4138 0.6897 0.3103 0.6379
F7 0.8125 0.6190 0.4483 0.5517 0.8966 0.1034 0.6724
F8 0.9474 0.7179 0.6207 0.3793 0.9655 0.0345 0.7931
Fp1 0.6786 0.6667 0.6552 0.3448 0.6897 0.3103 0.6724
Fp2 0.5667 0.5714 0.5862 0.4138 0.5517 0.4483 0.5690
O1 0.7143 0.7000 0.6897 0.3103 0.7241 0.2759 0.7069
O2 0.5333 0.5357 0.5517 0.4483 0.5172 0.4828 0.5345
P3 0.9259 0.8710 0.8621 0.1379 0.9310 0.069 0.8966
P4 0.7600 0.6970 0.6552 0.3448 0.7931 0.2069 0.7241
T7 0.5484 0.5556 0.5862 0.4138 0.5172 0.4828 0.5517
T8 0.5172 0.5172 0.5172 0.4828 0.5172 0.4828 0.5172
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the current study, it can be inferred that fMSE profiles in 
most time scales (τ ≥ 5) reveal no significant differences 
which indicate that the alcoholic and control groups 
evolve in a similar way in these time scales, however, 
the significant differences are seen in smaller time 
scales (τ ≤ 4) with p-value < 0.05 at electrodes located in 
the central region (C3 and C4) followed by the parietal 
region (P3, P4), posterior brain region (T7, T8, O1, O2) 
and frontal region (F3, F7 and F8). While electrodes F4, 
frontpolar (Fp1 and Fp2) have shown significant differ-
ences at higher time scales. Likewise, the ROC curves are 
shown to measure the ability of the slope to help the clini-
cal classification of alcoholic subjects against control 
subjects. The higher separations were obtained accord-
ingly as the significant results were obtained using both 
MSE and fMSE. The performance was also measured to 
distinguish the alcoholic and non-alcoholic subjects in 
terms of sensitivity, specificity, PPV, NPV, FDR, FOR and 
total accuracy using features from MSE and fMSE. The 
values obtained at most of the electrodes such as central, 
frontal, occipital, parietal and temporal electrodes using 
fMSE give higher performance than MSE as depicted in 
Figures 2, 3 and Tables 2, 3.

Finally, MSE is more robust than other traditionally 
used non-linear techniques such as L1, D2 as it can be 
applied as relatively noisy and small physiological signals 
and independent of the model [8] as applicable in this 
case with time series having smaller data points for both 
alcoholic and control subjects but it has limitations of 
time and space complexity for long-term correlation data 
sets and online monitoring. However, fMSE using the K-d 
tree algorithm approach is more effective and provides 
significant results at all electrodes and higher separations 
using ROC than traditional MSE.

Conclusion
Contemporarily, the complexity based measures have 
been used ubiquitously to examine the behavior of physio-
logical signals. The entropy based methods are effectively 
used to characterize and distinguish the physiological 
signals across diverse pathological and physiological con-
ditions such as HRV abnormality, gait analysis and neural 
disorder. In the present study, MSE with the K-d tree algo-
rithmic approach was used to distinguish the alcoholic 
subjects from that of control subjects and results are com-
pared with traditional MSE developed by [7]. The results 
revealed that the complexity of healthy subjects was 
higher than the complexity of alcoholic subjects and it 

was shown that neurophysiological signals of the human 
body are effected at multiple temporal signals and exhibit 
fluctuations. The central and parietal probes show the 
highest significant results and higher separation followed 
by occipital and frontal probes which show that these 
brain regions can help the neurologist and clinician in 
curing the patients suffering from alcoholism. Moreover, 
it was also observed that performance measures, to dis-
tinguish the alcoholic and non-alcoholic subjects, in most 
of the electrodes using sensitivity, specificity, NPV, PPV, 
FDR, FOR and in terms of total accuracy obtain higher 
rankings using fMSE features than MSE.
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