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We investigate network entropy of dynamic banking systems, where interbank networks analyzed include random networks, small-
world networks, and scale-free networks. We find that network entropy is positively correlated with the effect of systemic risk in
the three kinds of interbank networks and that network entropy in the small-world network is the largest, followed by those in the
random network and the scale-free network.

1. Introduction

There exist financial connections in the interbank market,
which make it possible for the interbank market to be
represented as a network. It is important to study the financial
connections in the interbank market from the network per-
spective. The reason for this is that the financial connections
can become a channel for propagation and amplification
of shocks, which is directly linked to the stability of eco-
nomic/financial systems [1]. In fact, many empirical studies
have shown that interbank lending relationships reflect some
typical network structures (e.g., [2–6]), such as random
structures, small-world structures, and scale-free structures.
And there is a rapidly growing literature on bank network
models and systemic risk (e.g., [7–19]).

According to the above literature, we can know that
banking systems can be modeled as the complex networks,
which are useful to investigate systemic risk. In the realm
of complex networks, the entropy has been adopted as a
measure to characterize properties of the network topology
[20–22]. However, there is limited research to adopt entropy
to investigate interbank networks and systemic risk. And this
paper aims to add to the current literature on understanding
systemic risk in banking systems from the perspective of
network entropy.The rare instance is thework of Lee [23]who

applies themeasure of network entropy to BIS global financial
network database in order to study highly connected global
banking networks. The study of Lee [23] mainly investigates
how network structure of global banking networks among
core countries has evolved during the global financial crisis
of 2007–2009 in terms of diversification and probes into
financial linkages between core countries and periphery
countries. Besides, some studies show that the notion of
entropy can be used to build an early warning indicator for
systemic risk [24, 25].

Based on the above analysis, it can be seen that entropy
measures have been rarely adopted to analyze interbank
networks and banking systemic risk. And the single study
only adopts network entropy to measure diversity of highly
connected global banking networks. Besides, there are a lot
of researches on adopting the entropy to investigate complex
networks (e.g., [20–22, 26]). This paper aims to contribute to
investigating characteristics of network entropy of dynamic
banking systems and study whether network entropy can be
used as ameasure of robustness for banking systems from the
perspective of systemic risk.

Therefore, in this paper, we apply the measure of network
entropy to the dynamic banking systems, where interbank
networks analyzed include random, small-world, and scale-
free networks. In the context of the analysis of interbank
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networks, we transform adjacency matrices into stochastic
matrices and then apply the concept of entropy. In this paper,
we find that network entropy is positively correlated with the
effect of systemic risk in the three kinds of interbanknetworks
and that network entropy in the small-world network is the
largest, followed by those in the random network and the
scale-free network.

The rest of the paper is organized as follows. Section 2
describes the methodology. Section 3 presents the results
of numerical simulations. And the conclusion is drawn in
Section 4.

2. Methodology

2.1. Modeling of Dynamic Banking Systems. The modeling of
dynamic banking systems in this paper is based on the study
of Lux [27]. However, we are different in the formation of
interbank lending relationships and liquidity shocks. Besides,
we take bank defaults into consideration, while Lux does not.
To develop a dynamic model of a banking system with 𝑁
banks, we start from the description of its stylized balance
sheets. We assume that the assets of bank 𝑘 at time 𝑡 include
investments, interbank loans, and liquid assets, denoted by
𝐼𝑘(𝑡), 𝐿𝑘(𝑡), and𝑀𝑘(𝑡), respectively, and that its liabilities are
composed of deposits, interbank borrowing, and net worth,
denoted by𝐷𝑘(𝑡), 𝐵𝑘(𝑡), and𝑊𝑘(𝑡), respectively. At the initial
time, we assume that the interbank market does not yet exist
and set the structure of the balance sheet of bank 𝑘 at time
𝑡 = 0 as 𝐼𝑘(0) = 𝛼𝑇𝐴𝑘(0), 𝑀𝑘(0) = (1 − 𝛼)𝑇𝐴𝑘(0), 𝑊𝑘(0) =
𝛽𝑇𝐼𝑘(0), and𝐷𝑘(0) = (1−𝛽)𝑇𝐼𝑘(0), where𝑇𝐴𝑘(0) and𝑇𝐼𝑘(0)
denote the total assets and the total liabilities of bank 𝑘 at
the initial time, respectively. In the simulation, we adopt the
following algorithm to determine how the banking system
evolves from one state to another.

The first phase is the update of liquid assets and net worth.
At the beginning of time 𝑡, liquid assets and net worth of bank
𝑘 are updated as follows:

𝑀𝑘 (𝑡) = 𝑀𝑘 (𝑡 − 1) + [𝐷𝑘 (𝑡) − 𝐷𝑘 (𝑡 − 1)]

− ∑
𝑖∈Ψ𝑘(𝑡−1)

𝐵𝑘𝑖 (𝑡 − 1) [1 + 𝑟𝑘𝑖 (𝑡 − 1)]

+ ∑
𝑗∈Φ𝑘(𝑡−1)

𝑏𝑗𝑘 (𝑡 − 1) [1 + 𝑟𝑗𝑘 (𝑡 − 1)] ,

𝑊𝑘 (𝑡) = 𝑊𝑘 (𝑡 − 1) − ∑
𝑖∈Ψ𝑘(𝑡−1)

𝑏𝑘𝑖 (𝑡 − 1) 𝑟𝑘𝑖 (𝑡 − 1)

+ ∑
𝑗∈Φ𝑘(𝑡−1)

𝑏𝑗𝑘 (𝑡 − 1) 𝑟𝑗𝑘 (𝑡 − 1) ,

(1)

whereΦ𝑘(𝑡) andΨ𝑘(𝑡) denote the set of debtors and the set of
creditors of bank 𝑘 at time 𝑡, respectively. 𝐵𝑖𝑗(𝑡) is the actual
amount borrowed by bank 𝑖 from bank 𝑗, and its interest rate
is 𝑟𝑖𝑗(𝑡). In this paper, we assume that the duration of all debts
is one and that banks’ investments remain constant over time
and disregard the return from them for simplicity. Following

the study of Gatti et al. [28], we assume that the lender 𝑗 sets
the interest rate 𝑟𝑖𝑗(𝑡) on loans to the borrower 𝑖.

𝑟𝑖𝑗 (𝑡) = 𝜂 (𝑊𝑗 (𝑡))
−𝜂

+ 𝜂 (𝛿𝑖 (𝑡))
𝜂 , (2)

where 𝜂 > 0 and 𝛿𝑖(𝑡) = 𝐵𝑖(𝑡)/𝑊𝑖(𝑡). According to the
study of Georg [29], we introduce the following shocks to
deposits, which is the source of the formation of interbank
credit lending relationships:

𝐷𝑘 (𝑡) = (1 − 𝛾𝑘 + 2𝛾𝑘𝑋)𝐷𝑘 (𝑡 − 1) , (3)

where 𝛾𝑘 is a scaling parameter for the level of deposit
fluctuations and𝑋 is a random variable (𝑋 ∈ [0, 1]).

The second phase is default settlement. After the first
phase, bank 𝑘 defaults due to insolvency if 𝑊𝑘(𝑡) ≤ 0. If
bank 𝑘 defaults, it will result in the loss of its creditors. We
assume that the loss caused by the default of bank 𝑘 is shared
proportionally by its creditor banks with their respective
lending sizes. After the adjustment of liquid assets and net
worth by subtracting the loss, a creditor bank of bank 𝑘 also
defaults if its net worth is less than or equal to zero, which
is caused by the default contagion. This procedure keeps
circulating until no bank defaults.

The third phase is the credit lending. We assume that
there is a threshold (𝑀𝑘(𝑡)) of liquid assets for bank 𝑘 at
time t, which guarantees the continuance of regular business
operations, and 𝑀𝑘(𝑡) = 𝜃𝑇𝐴𝑘(𝑡). For a bank with positive
net worth, it is a potential borrower if its liquid assets are
less than the threshold; otherwise it is a potential lender. The
demand or supply of liquidity for a bank is equal to |𝑀𝑘(𝑡) −
𝑀𝑘(𝑡)|. From time 𝑡 = 1, in every period, we assume that
there exists a potential interbank network; namely, potential
borrowers can only borrow money from potential lenders
who have links with them. If the potential borrower does
not obtain enough liquidity from the first randomly selected
potential lender, it contacts other potential banks for the
remaining funds until its total demand for liquidity is satisfied
or there is no more liquidity to be allocated. For the potential
lender, if the total amount of demand for liquidity received
from potential borrowers is less than its loanable liquidity,
all its potential borrowers’ demands for liquidity can be
satisfied. Otherwise, the potential lender satisfies its potential
borrowers in a sequence according to the rank of their net
worth from high to low until all its loanable liquidity is
completely allocated.

In this paper, we assume that the funds do not transfer
from lenders to borrowers until borrowers’ demand for
liquidity is satisfied. Banks’ balance sheets will be updated
according to the actual borrowing or lending. If potential
borrowers’ demand for liquidity is not satisfied, they default.
For the sake of simplicity, the total number of banks in the
banking system is constant over time.Therefore, in this paper,
we assume a simple mechanism of entry-exit: a default bank
is replaced by a new one. The balance sheet structure of the
new bank is the same as the initial balance sheet structure of
the default bank. This can be interpreted as the entry of new
banks into the interbank market. In fact, this mechanism is
present in the existing literature, such as the study of Gatti et
al. [30].
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Table 1: Benchmark parameters of the model.

Parameter Description Benchmark value Range of variation
𝑁 Number of banks 100 Positive integer
[𝐴min, 𝐴max] Range of values of initial assets [5, 200] 0 < 𝐴min < 𝐴max

𝜏 Pareto distribution parameter 1.2 Positive number
𝛼 Initial proportion of investments 0.9 (0, 1)
𝛽 Initial proportion of net worth 0.08 (0, 1)
𝜃 Proportion of𝑀𝑘(𝑡) to 𝑇𝐴𝑘(𝑡) 0.08 (0, 1)
𝜂 Interest rate parameter 0.01 Positive number
𝛾 Scaling parameter for the level of deposit fluctuations 0.1 Positive number
𝑃1 Probability of connection between any two nodes in random networks 0.3 [0, 1]
𝐾 Number of nearest neighbors of a node in small-world networks 30 Positive integer
𝑃2 Probability of randomly rewiring each edge of the lattice for small-world networks 0.01 [0, 1]
𝜉 Initial number of nodes in scale-free networks 25 Positive integer
𝜁 Number of edges of a new node in scale-free networks 15 Positive integer

2.2. Network Entropy. According to the above modeling of
dynamic banking systems, we can obtain dynamic interbank
networks, which can be represented by adjacency matrix
𝐴(𝑡) = (𝑎𝑖𝑗(𝑡))1≤𝑖,𝑗≤𝑁. 𝑎𝑖𝑗(𝑡) denotes the liability of bank
𝑗 towards bank 𝑖 at time 𝑡. In order to apply the concept
of entropy, we need to transform adjacency matrices into
stochastic matrices. Demetrius and Manke [31] propose the
analysis of the stochastic matrix in the context of network
robustness. In this paper, we adopt their method to define
network entropy for dynamic banking systems. According to
the adjacency matrix 𝐴(𝑡), we can obtain a stochastic matrix
(𝑝𝑖𝑗(𝑡)) from the following formula [23]:

𝑝𝑖𝑗 (𝑡) =
𝑎𝑖𝑗 (𝑡)

∑𝑁𝑗=1 𝑎𝑖𝑗 (𝑡)
. (4)

Given a stochastic matrix (𝑝𝑖𝑗(𝑡)), we apply the Shannon
entropy formula [32] to the transition probability distribution
which corresponds to the 𝑖th row of the stochasticmatrix, and
we can obtain Shannon entropy (𝐸𝑖(𝑡)) of node 𝑖 at time 𝑡,
which is given as follows:

𝐸𝑖 (𝑡) = −
𝑁

∑
𝑗=1

𝑝𝑖𝑗 (𝑡) log𝑝𝑖𝑗 (𝑡) . (5)

Moreover, we can obtain Shannon entropy (𝐸(𝑡)) of the
interbank network at time 𝑡, which is defined as the weighted
sum of entropies of nodes and is given as

𝐸 (𝑡) =
𝑁

∑
𝑖=1

𝜋𝑖 (𝑡) 𝐸𝑖 (𝑡) , (6)

where 𝜋𝑖(𝑡) is the 𝑖th component of the unique invariant
distribution of the corresponding stochastic matrix (𝑝𝑖𝑗(𝑡)).

3. Simulation Results

According to the studies [2–4], we analyze network entropies
in three kinds of potential interbank networks, namely,

random networks, small-world networks, and scale-free net-
works. According to the algorithms provided by Erdös and
Rényi [33], Watts and Strogatz [34], and Barabási and Albert
[35], we construct the three kinds of potential interbank
networks. Following the study of Lux [27], we assume that
the initial total assets of all banks are drawn from a truncated
Pareto distribution over the range [𝐴min, 𝐴max] with the
power-law parameter 𝜏. Referring to the studies [27–29], we
set the parameter values in Table 1. If not stated otherwise, our
numerical simulations are performed with the parameters
given in Table 1. For each set of parameters, we repeat every
simulation 100 times to average out stochastic effects.

3.1. Network Entropy and Systemic Risk. Demetrius and
Manke [31] study the process of network disintegration under
random node removal for the three types of networks with
different topological entropies and find that network entropy
is positively correlated with robustness, where networks
analyzed include scale-free networks, random networks, and
regular networks. In the study of Demetrius and Manke
[31], robustness pertains to the insensitivity of measurable
parameters of the system to changes in its internal organi-
zation and includes dynamical robustness and topological
robustness. Nowwe investigate whether network entropy can
be used as a measure of robustness for banking systems from
the perspective of systemic risk. In this paper, we adopt the
number of default banks (𝑆) to measure the effect of systemic
risk. Figure 1 shows the results of network entropies and the
effects of systemic risk, where (a), (b), and (c) correspond,
respectively, to the results of random, small-world, and scale-
free networks. From Figure 1, it can be seen that the change
trend of network entropies is similar to that of systemic risk.

Moreover, we adopt Pearson’s correlation to investigate
the correlation between network entropies and the effects
of systemic risk. Table 2 shows Pearson’s correlation coeffi-
cients between network entropies and the effects of systemic
risk under different parameter values. We can observe that
network entropy is positively correlated with the effect of
systemic risk in the three kinds of interbank networks.
Therefore, we provide computational and analytical support
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Figure 1: Network entropies and effects of systemic risk. (a), (b), and (c) correspond, respectively, to the results of random, small-world, and
scale-free networks.

Table 2: Pearson’s correlation coefficients between network entropies and systemic risk.

Parameter Random network Small-world network Scale-free network
𝛾𝑘 = 0.1 0.3077 0.2729 0.5523
𝛾𝑘 = 0.2 0.3108 0.3236 0.5508
𝛾𝑘 = 0.3 0.1992 0.2845 0.5119
𝑀𝑘 = 0.06 0.2556 0.2934 0.4834
𝑀𝑘 = 0.08 0.3077 0.2729 0.5523
𝑀𝑘 = 0.1 0.2922 0.3176 0.5516
𝜏 = 1.2 0.3077 0.2729 0.5523
𝜏 = 2 0.3098 0.2106 0.4747
𝜏 = 3 0.2644 0.1734 0.4688

for that network entropy which can reflect the robustness
of banking systems against systemic risk to a certain extent.
Moreover, the network entropy can predict the direction of
changes of systemic risk and characterize the stable states of
dynamic banking systems.

3.2. Network Entropy and Network Structure. We now inves-
tigate the difference of network entropies in the three kinds of
interbank networks. Figure 2 shows the network entropies in
the randomnetwork, the small-world network, and the scale-
free network. We can see that the values of network entropies
present a trend of decrease after the increase, and they tend to
be stable with time evolution. In fact, from Figure 1, we know
that the effect of systemic risk has the same change trend as
network entropies.Moreover, bank defaults change interbank
network structures and then result in the above evolution
characteristics of network entropies. Besides, we can observe
that the value of network entropy in the small-world network
is the largest among the three kinds of interbank networks,
followed by those in random and scale-free networks.
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Figure 2: Network entropies in the three kinds of interbank
networks.
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Figure 3: Network entropies in the three kinds of interbank networks under different parameter values. (a)–(f) are the results when 𝛾𝑘 = 0.2,
𝛾𝑘 = 0.3,𝑀𝑘 = 0.06,𝑀𝑘 = 0.1, 𝜏 = 2, and 𝜏 = 3, respectively.

According to the abovemodel, we can see that 𝛾𝑘,𝑀𝑘, and
𝜏 are the key parameters in the establishment of interbank
networks.Therefore, we investigate the effect of these param-
eters on the above results, which is shown in Figure 3.We can
observe that the above results do not change, despite the fact
that the values of the parameters are different. From Figure 3,
it can be seen that the network entropy trajectories are very
similar among completely different network structures, and
this similarity holds if we change some parameters. The
probable reason for this result is that the effects of systemic
risk are similar among different network structures.

4. Conclusions

In this paper, we first construct artificial banking systems
and then investigate network entropy of dynamic banking
systems, where the three kinds of potential interbank net-
works are analyzed, namely, random networks, small-world
networks, and scale-free networks. First, simulation analysis
shows that the change trend of network entropies is similar
to that of systemic risk and that network entropy is positively
correlated with the effect of systemic risk in the three kinds
of interbank networks. Besides, we find that the value of
network entropy in the small-world network is the largest
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among the three kinds of interbank networks, followed by
those in random and scale-free networks.

In this paper, we analyze the network entropy in known
network topologies. However, several works in the systemic
risk and banking literatures show that financial networks
are organized in a core-periphery structure. Therefore, we
believe thatmore research needs to be done in order to under-
stand how network entropy behaves in financial networks.
For example, how does network entropy behave in core-
periphery structures? Moreover, is the entropy dependent on
the network core size? Or does it show the same pattern
regardless of the periphery and core sizes? Similar to most
of the literature in this field, we define systemic risk as the
number of defaulting banks. In the future, we would consider
the total loss of capitalization of the banking system as a
robustness indicator.
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