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a b s t r a c t

We present a frequency-domain technique for identifying multivariable feedback and feedforward
subsystems that are interconnected with a known subsystem. This subsystem identification algorithm
uses closed-loop input–output data, but no other system signals are assumed to be measured. In
particular, neither the feedback signal nor the outputs of the unknown subsystems are assumed to be
measured. We use a candidate-pool approach to identify the feedback and feedforward transfer function
matrices, while guaranteeing asymptotic stability of the identified closed-loop transfer function matrix.
The main analytic result shows that if the data noise is sufficiently small and the candidate pool is
sufficiently dense, then the parameters of the identified feedback and feedforward transfer function
matrices are arbitrarily close to the true parameters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Subsystem identification (SSID) is the process of building em-
pirical models of unknown dynamic subsystems, which are inter-
connected with known dynamic subsystems. These connections
can be series, parallel, or feedback. SSID relies on measured data
to identify the unknown subsystems. However, not all input and
output signals to the unknown subsystems are necessarily acces-
sible, that is, available for measurement.

This paper is concerned with closed-loop SSID of unknown
feedback and feedforward subsystems interconnected with a
known subsystem as shown in Fig. 1. The exogenous input r and
closed-loop output y are measured, whereas internal signals u and
v are not assumed to be accessible. We note that closed-loop SSID
is distinct from the well-studied problem of system identification
in closed loop (Forssell & Ljung, 1999; Isermann&Münchhof, 2011;
Van den Hof, 1998; Van den Hof & Schrama, 1995). Specifically,
in SSID, the unknown subsystems have inputs or outputs that are
inaccessible.

SSID has applications in biology and physics as well as human-
in-the-loop systems. For example, many biological systems are
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modeled by the interconnection of subsystems, which may
be unknown and have inaccessible inputs and outputs (Roth,
Sponberg, & Cowan, 2014). Similarly, physical systems are often
modeled by a composition of subsystems, which are based on
either physical laws or empirical information. For example, in
D’Amato, Ridley, and Bernstein (2011), a large-scale physics-based
model of the global ionosphere–thermosphere is improved by
using measured data to estimate thermal conductivity, which
can be regarded as an unknown feedback subsystem. In this
application, the output of the unknown subsystem is inaccessible.

SSID also has application to modeling human behavior. For ex-
ample, there is interest in modeling human-in-the-loop behavior
for applications such as aircraft (Itoh & Suzuki, 2005; Nieuwen-
huizen, Beykirch, Mulder, & Bülthoff, 2007; Nieuwenhuizen &
Bülthoff, 2013; Olivari, Nieuwenhuizen, Venrooij, Bülthoff, &
Pollini, 2012) and automobiles (Hellstrom & Jankovic, 2015;
Macadam, 2003; Steen, Damveld, Happee, van Paassen, & Mulder,
2011). In addition, SSID methods can be used to model human be-
havior in motor control experiments, which study human learn-
ing (Drop, Pool, Damveld, van Paassen, & Mulder, 2013; Kiemel,
Zhang, & Jeka, 2011; Laurense, Pool, Damveld, van Paassen, & Mul-
der, 2015; Zhang & Hoagg, 2016).

Closed-loop SSID of feedback and feedforward models is
considered in D’Amato et al. (2011), Gillijns and De Moor (2006),
Morozov et al. (2011) and Palanthandalam-Madapusi, Gillijns, De
Moor, and Bernstein (2006). However, the identified feedback
and feedforward models obtained from the methods in D’Amato
et al. (2011), Gillijns and De Moor (2006), Morozov et al. (2011)
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Fig. 1. The unknown feedback and feedforward subsystems are to be identified
using the measured data r and y. The internal signals u and v are inaccessible.

and Palanthandalam-Madapusi et al. (2006) can result in unstable
closed-loop dynamics. To address closed-loop stability, Zhang
and Hoagg (2016) present an SSID technique that guarantees
asymptotic stability of the identified closed-loop transfer function.
The approach in Zhang and Hoagg (2016) applies to single-input
single-output (SISO) subsystems and requires that the measured
closed-loop output y is the same as the feedback v.

The new contribution of this paper is a closed-loop SSIDmethod
that: (i) identifies multi-input multi-output (MIMO) feedback and
feedforward subsystems; (ii) allows for a measured output y that
is not necessarily the same as the feedback v; and (iii) guarantees
asymptotic stability of the identified closed-loop transfer function
matrix. This paper adopts techniques from Zhang and Hoagg
(2016) but goes beyond the previous work by addressing MIMO
subsystems and allowing for the measured output y to differ from
the feedback v. Furthermore, the discrete-time SSID approach in
this paper can improve computational efficiency relative to the
continuous-time approaches in Zhang and Hoagg (2016). In this
paper, the feedforward subsystem model is parameterized as a
finite impulse response (FIR) transfer function matrix, which can
improve computational efficiency as discussed in Section 7. To
accomplish (i)–(iii), we use a candidate-pool approach. Our main
analytic result shows that if the data noise is sufficiently small and
the candidate pool is sufficiently dense, then the parameters of the
identified feedback and feedforward transfer functionmatrices are
arbitrarily close to the true parameters.

2. Notation

Let F be either R or C. Then, x(i) denotes the ith component of
x ∈ Fn, and A(i,j) denotes the (i, j) entry of A ∈ Fm×n. Let ∥ · ∥ be
a norm on Fm×n, and let ∥ · ∥2 be the two-norm on Fn. Next, let A∗

denote the complex conjugate transpose of A ∈ Fm×n, and define
∥A∥F ,

√
tr A∗A, which is the Frobenius norm of A ∈ Fm×n. Let AA

denote the adjugate of A ∈ Fm×n.
Let vec A be the vector in Fmn formed by stacking the columns

of A ∈ Fm×n. Let vec −1 be the inverse vec operator, that is,
vec −1(vec A) = A. Let A ⊗ B denote the Kronecker product of
A ∈ Fm×n and B ∈ Fk×l.

Let R[z] denote the set of polynomials with coefficients in R,
and let Rm×n

[z] denote the set of m × n polynomial matrices, that
is, the set of matrix functions P : C → Cm×n whose entries are
elements inR[z]. The degree of the polynomial p ∈ R[z] is denoted
by deg p, and the degree of the polynomial matrix P ∈ Rm×n

[z] is
denoted by deg P , maxi=1,...,m;j=1,...,n deg P(i,j).

Define the open ball of radius ϵ > 0 centered at c ∈ Fm×n by
Bϵ(c) , {x ∈ Fm×n

: ∥x−c∥ < ϵ}. Let Z+ denote the set of positive
integers.

Definition 1. Let ∆ ⊆ Fm×n be bounded and contain no isolated
points. For all j ∈ Z+, let ∆j ⊆ ∆ be a finite set. Then, {∆j}

∞

j=1
converges to ∆ if for each x ∈ ∆, there exists a sequence {xj : xj ∈

∆j}
∞

j=1 such that for all ϵ > 0, there exists L ∈ Z+ such that for all
j > L, xj ∈ Bϵ(x).

3. Problem formulation

Let Gy : C → Cn×m and Gv : C → Cl×m be real rational transfer
function matrices, and consider the linear time-invariant system

Fig. 2. The input r and output y aremeasured, but all internal signals and the noises
are unmeasured.

y(z) = Gy(z)[u(z) + γu(z)] + γy(z), (1)
v(z) = Gv(z)[u(z) + γu(z)], (2)

where y(z) ∈ Cn, γy(z) ∈ Cn, u(z) ∈ Cm, γu(z) ∈ Cm, and v(z) ∈

Cl are the z-transforms of the output, output noise, control, control
noise, and feedback, respectively. The control u is generated by
feedback and feedforward as shown in Fig. 2. Let Gff,Gfb : C →

Cm×l be real rational transfer function matrices, and consider the
control

u(z) = Gff(z)[r(z) + γr(z)] + Gfb(z)[e(z) + γe(z)], (3)

where r(z) ∈ Cl is the exogenous input, γr(z) ∈ Cl is the feed-
forward noise, e(z) , r(z) − v(z) is the error, and γe(z) ∈ Cl is
the error noise. We assume that Gff is asymptotically stable, that is,
the poles of Gff are contained in the open unit disk. The closed-loop
system obtained from (1)–(3) is

y(z) = G̃(z)r(z) + γ (z),

where

G̃ , Gy(Im + GfbGv)
−1(Gfb + Gff) (4)

is assumed to be asymptotically stable, and the noise is

γ , Gy(Im + GfbGv)
−1(Gffγr + Gfbγe − GfbGvγu)

+ Gyγu + γy.

Let N ∈ Z+ be the number of frequency response data, and
define N , {1, 2, . . . ,N}. For all k ∈ N, let θk ∈ [0, π], where
θ1 < · · · < θN . Define the closed-loop frequency response data

H(θk) , G̃(eȷθk) + Γ (eȷθk) ∈ Cn×l, (5)

where Γ : C → Cn×l is such that, for all i ∈ {1, 2, . . . , n} and all
j ∈ {1, 2, . . . , l}, Γ(i,j) , γ(i)/r(j). Define the noise matrix

η∗ , [Γ (σ1) · · · Γ (σN)] ∈ Cn×lN .

This paper presents an SSID method to identify Gff and Gfb un-
der the assumption that Gy, Gv , and {H(θk)}

N
k=1 are known. For

each k ∈ N, H(θk) can be calculated from y and r as H(i,j)(θk) =

y(i)(eȷθk)/r(j)(eȷθk). Thus, {H(θk)}
N
k=1 can be obtained from the acces-

sible signals r and y, and does not depend on the internal signals
(e.g., u and v) or the noise signals γr , γe, γu, and γy, which are not
assumed to be measured.

We assume that Gff is FIR. Thus, we can express the feedfor-
ward transfer function matrix as Gff(z) = z−nffNff(z), where Nff ∈

Rm×l
[z] and nff , degNff. Since Gff is asymptotically stable, it fol-

lows that for sufficiently large order nff, Gff can approximate an in-
finite impulse response (IIR) transfer function matrix to arbitrary
accuracy evaluated along the unit circle. Thus, the assumption that
Gff is FIR does not significantly restrict the class of feedforward be-
havior. The SSID approach in this paper can also be usedwith an IIR
feedforward model, but using an FIR feedforward model improves
computational efficiency as discussed in Section 7.

Let Gy and Gv have the right-matrix-fraction descriptions Gy =

NyD−1 and Gv = NvD−1, and let Gfb have the left-matrix-fraction
description Gfb = D−1

fb Nfb, where Ny ∈ Rn×m
[z], Nv ∈ Rl×m

[z],
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Nfb ∈ Rm×l
[z], and D,Dfb ∈ Rm×m

[z]. Without loss of generality,
we assume that D and Dfb are monic. Thus, (4) can be expressed as

G̃(z) = Ny(z)D̃−1(z)[Nfb(z) + z−nffDfb(z)Nff(z)],
where
D̃ , DfbD + NfbNv ∈ Rm×m

[z].
Define d , degD, dfb , degDfb, ny , degNy, nv , degNv , and
nfb , degNfb. We make the following assumptions:
(A1) d + dfb > nv + nfb.
(A2) N > ny + (m − 1)(d + dfb) + dfb + nff.
(A3) If λ ∈ C and det D̃(λ) = 0, then |λ| < 1.

Assumption (A1) states thatGfbGv is strictly proper. Assumption
(A2) requires that the number N of frequency response data
points is sufficiently large. Assumption (A3) implies that G̃ is
asymptotically stable. We also assume that nff, dfb, and nfb are
known.

To formulate the SSID problem, define a , l(nfb +1)+mdfb and
b , m(nff + 1), and consider the functions Nff : C × Rb×l

→ Cm×l,
Nfb : C × Ra×m

→ Cm×l, Dfb : C × Ra×m
→ Cm×m given by

Nff(z, β) , ([znff · · · z 1] ⊗ Im)β,

Nfb(z, φ) , φT

Il ⊗ [znfb · · · z 1]T

0mdfb×l


,

Dfb(z, φ) , zdfb Im + φT


0l(nfb+1)×m

Im ⊗ [zdfb−1
· · · z 1]T


,

where β ∈ Rb×l contains the unknown parameters of Nff, and φ ∈

Ra×m contains the unknown parameters of Nfb and Dfb. Consider
Gff : C × Rb×l

→ Cm×l and Gfb : C × Ra×m
→ Cm×l given by

Gff(z, β) , z−nffNff(z, β),

Gfb(z, φ) , D
−1
fb (z, φ)Nfb(z, φ),

which, for each β ∈ Rb×l and φ ∈ Ra×m, are real rational transfer
function matrices.

Let β∗ ∈ Rb×l and φ∗ ∈ Ra×m be such that,

Nff(z) ≡ Nff(z, β∗),

Nfb(z) ≡ Nfb(z, φ∗),

Dfb(z) ≡ Dfb(z, φ∗).

Thus, Gff(z, β∗) ≡ Gff(z) and Gfb(z, φ∗) ≡ Gfb(z). Consider G̃ : C ×

Rb×l
× Ra×m

→ Cn×l given by

G̃(z, β, φ) , Ny(z)D̃−1(z, φ)[Nfb(z, φ)

+ z−nffDfb(z, φ)Nff(z, β)], (6)

where
D̃(z, φ) , Dfb(z, φ)D(z) + Nfb(z, φ)Nv(z). (7)
Note that G̃(z, β, φ) is the closed-loop transfer function obtained
from β and φ. Thus, G̃(z, β∗, φ∗) ≡ G̃(z).

Our objective is to determine β and φ such that Gff and Gfb
approximate Gff and Gfb, respectively. To achieve this objective, we
seek to minimize

J(β, φ) =

N
k=1

G̃(eȷθk , β, φ) − H(θk)
2
F , (8)

subject to the constraint that D̃(z, φ) is asymptotically stable, that
is, φ ∈ S, where

S , {φ ∈ Ra×m
: if λ ∈ C and det D̃(λ, φ) = 0, then |λ| < 1}.

The cost (8) measures the difference between the data {H(θk)}
N
k=1

and the closed-loop transfer functionmatrix obtained from the es-
timates Gff and Gfb. The cost (8) and constraint φ ∈ S are nonlinear
and nonconvex in (β, φ). If Γ (eȷθk) ≡ 0, then J(β∗, φ∗) = 0.

4. Subsystem identification algorithm

We now develop an SSID algorithm to estimate Gff and Gfb. For
each k ∈ N, define σk , eȷθk , and define

Ak(φ) , σ
−nff
k Ny(σk)D̃

−1(σk, φ)Dfb(σk, φ)ν(σk), (9)

Bk(φ) , Ny(σk)D̃
−1(σk, φ)Nfb(σk, φ) − H(θk), (10)

where ν(z) , [znff znff−1
· · · z 1] ⊗ Im. Since vec (AB) =

(I ⊗ A)vec B, it follows from (6)–(10) that

J(β, φ) =

N
k=1

∥Ak(φ)β + Bk(φ)∥2
F

=

N
k=1

∥[Il ⊗ Ak(φ)]vec β + vec Bk(φ)∥2
2

= [vec β]
TΩ2(φ)vec β + ΩT

1 (φ)vec β + Ω0(φ), (11)

where

Ω0(φ) ,

N
k=1

∥Bk(φ)∥2
F ∈ R, (12)

Ω1(φ) , 2Re
N

k=1

vec (A∗

k(φ)Bk(φ)) ∈ Rlb, (13)

Ω2(φ) , Il ⊗ Re
N

k=1

A
∗

k(φ)Ak(φ) ∈ Rlb×lb. (14)

For the remaining of this paper, we assume that for all φ ∈ S,
Ω2(φ) is positive definite. The following result provides a sufficient
condition such that Ω2(φ) is positive definite. The proof is in
Appendix A.

Proposition 1. Consider Ω2 given by (14), where (A1) and (A2) are
satisfied. Assume that maxz∈C rank Ny(z) = m ≤ n. Then, for all
φ ∈ S, Ω2(φ) is positive definite.

Proposition 1 implies that ifGy is SISO (i.e.,m = n = 1), then for
all φ ∈ S, Ω2(φ) is positive definite. Proposition 1 also implies that
if the number m of measurements does not exceed the number n
of controls and Gy has full normal rank, then for all φ ∈ S, Ω2(φ) is
positive definite.

The next result shows that for each φ ∈ S, J(β, φ) has a unique
global minimizer (Sundaram, 1996, Chap. 1).

Proposition 2. Consider J given by (11), where (A1) and (A2) are
satisfied. Let φ ∈ S and define

βmin , −
1
2
vec −1

[Ω−1
2 (φ)Ω1(φ)] ∈ Rb×l.

Let β ∈ Rb×l
\{βmin}. Then, J (βmin, φ) < J(β, φ).

Let Φ ⊆ S be a set with M elements. We call Φ the candidate
pool. We now create a candidate sequence using the M elements
in Φ . For all i, j ∈ M , {1, 2, . . . ,M}, let φi, φj ∈ Φ be such that
if i ≠ j, then φi ≠ φj. Now, for all i ∈ M, define the quadratic cost
function

Ji(β) , J(β, φi).

Since φ1, . . . , φM ∈ Φ ⊆ S, it follows that Ω2(φ1), . . . , Ω2(φM)
are positive definite. Then, for each i ∈ M, define

βi , −
1
2
vec −1

[Ω−1
2 (φi)Ω1(φi)] ∈ Rb×l,

and it follows from Proposition 2 that βi is the unique global
minimizer of Ji. Next, let ℓ ∈ M be the smallest integer such that
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Jℓ(βℓ) = mini∈M Ji(βi). Thus, the identified parameters are β+ ,
βℓ and φ+ , φℓ, and the identified transfer function matrices are

G+

ff (z) , Gff(z, β+) = z−nffNff(z, β+),

G+

fb(z) , Gfb(z, φ+) = D
−1
fb (z, φ+)Nfb(z, φ+).

Note that argmini∈M Ji(βi) is not necessarily unique. In this case,
ℓ ∈ M is the smallest integer such that Jℓ(βℓ) = mini∈M Ji(βi). In
practice, argmini∈M Ji(βi) is generally unique. We now summarize
this SSID method.

Algorithm 1. Consider the closed-loop transfer function matrix
(4), whereGy,Gv , and {H(θk)}

N
k=1 are known, and (A1)–(A3) are sat-

isfied. Then, the subsystem identification algorithm is as follows:

Step 1. Generate the candidate pool Φ ⊆ S and candidate se-
quence {φi}

M
i=1.

Step 2. For each i ∈ M, find the global minimizer of Ji, which is
βi = −

1
2vec

−1
[Ω−1

2 (φi)Ω1(φi)] ∈ Rb×l.
Step 3. Find the smallest integer ℓ ∈ M such that Jℓ(βℓ) =

mini∈M Ji(βi).
Step 4. The identified parameters are β+

= βℓ and φ+
= φℓ,

and the identified transfer function matrices are G+

ff (z) =

Gff(z, β+), and G+

fb(z) = Gfb(z, φ+).

5. Analysis of Algorithm 1

We assume Nfb and Dfb are left coprime, and impose the
following assumption, which is stronger than (A2):

(A4) N > ny + (2m − 1)(d + dfb) + nff + max{dfb, nfb}.

Assumption (A4) requires that the number N of frequency
response data points is sufficiently large. This assumption is used
in the next result to obtain sufficient conditions on β ∈ Rb×l and
φ ∈ Ra×m such that G̃(z, β, φ) ≡ G̃(z). The proof is in Appendix A.

Proposition 3. Let β ∈ Rb×l and φ ∈ Ra×m, and assume (A4) is
satisfied. Then,

N
k=1 ∥G̃(σk, β, φ) − G̃(σk)∥F = 0 if and only if

G̃(z, β, φ) ≡ G̃(z).

The conditions in Proposition 3 are not sufficient to conclude
that β = β∗ and φ = φ∗. The following example demonstrates
this scenario.

Example 1. Let

Gy(z) = Gv(z) =
1

z − 0.7
, (15)

Gff(z) = −0.4, Gfb(z) =
1.2z + 0.2

z − 1
, (16)

and note that β∗ = −0.4 and φ∗ = [1.2 0.2 −1]T. The closed-
loop transfer function (4) is G̃(z) = (0.8z +0.6)/(z2 −0.5z +0.9).
Let β = 0.3 ≠ β∗ and φ = [0.5 0.69 −0.3]T ≠ φ∗, and it
follows that G̃(z, β, φ) ≡ G̃(z). △

In Example 1, the SSID problem is not well posed, because
(β∗, φ∗) cannot be uniquely determined from the noiseless
frequency response data. See Isermann and Münchhof (2011,
Chap. 13) for more details in the case with feedback only. We now
impose an additional assumption to ensure that G̃(z, β, φ) ≡ G̃(z)
if and only if β = β∗ and φ = φ∗.

Let Ψ ⊆ Ra×m be a compact set with no isolated points such
that φ∗ ∈ Ψ . In practice, Ψ is used to generate the candidate pool.
We assume Ψ is known, and

(A5) If β ∈ Rb×l, φ ∈ Ψ ∩ S, and G̃(z, β, φ) ≡ G̃(z), then β = β∗

and φ = φ∗.

Example 2. Consider Gy, Gv , Gff, and Gfb given by (15) and (16),
and note that β∗ = −0.4 and φ∗ = [1.2 0.2 −1]T. Example 1
shows that (β, φ) = (β∗, φ∗) is not the only point in R × S such
that G̃(z, β, φ) ≡ G̃(z). We now define Ψ , [0, 2] × [0, 2] ×

[−1.5, −0.5], and note that φ∗ ∈ Ψ . Furthermore, it can be
confirmed that (β, φ) = (β∗, φ∗) is the only point in R × (S ∩ Ψ )

such that G̃(z, β, φ) ≡ G̃(z). Therefore, (A5) is satisfied. △

The following result addresses the case where φ∗ is in the
candidate poolΦ . This result demonstrates that a sufficiently small
noise ∥η∗∥ yields identified parameters β+ and φ+ such that φ+

=

φ∗ and β+ is arbitrarily close to β∗. The proof is in Appendix B.

Theorem 1. Assume (A1)–(A5) are satisfied. Let Φ ⊆ (Ψ ∩ S), and
assume φ∗ ∈ Φ . Let β+ and φ+ denote the identified parameters
obtained from Algorithm 1 with the candidate pool Φ . Then, the
following statements hold:

(i) There exists δ0 > 0 such that if ∥η∗∥ < δ0, then φ+
= φ∗.

Moreover, for all ϵ > 0, there exists δ ∈ (0, δ0) such that if
∥η∗∥ < δ, then β+

∈ Bϵ(β∗).
(ii) If η∗ = 0, then β+

= β∗ and φ+
= φ∗.

We now extend the analysis to address the case where φ∗ is not
necessarily in the candidate pool Φ . Let ρ ∈ (0, 1) be such that if
λ ∈ C and det D̃(λ, φ∗) = 0, then |λ| < ρ, and define

Sρ , {φ ∈ Ra×m
: if λ ∈ C and det D̃(λ, φ) = 0, then |λ| < ρ}.

Note that as ρ approaches 1, S\Sρ approaches the empty set. In
practice, Sρ is used to generate the candidate pool, and ρ can be
selected sufficiently closed to 1 to ensure that φ∗ ∈ Sρ .

In the following result, we consider Algorithm 1 with a se-
quence of candidate pools that converge to Ψ ∩ Sρ , which
is bounded and contains no isolated points (Zhang & Hoagg,
2016, Prop. 7). This result demonstrates that a sufficiently dense
candidate pool and sufficiently small noise ∥η∗∥ yield identified
parameters β+ and φ+ that are arbitrarily close to β∗ and φ∗. The
proof is in Appendix B.

Theorem 2. Assume (A1)–(A5) are satisfied. For all j ∈ Z+, let Λj ⊆

(Ψ ∩ Sρ) be a finite set such that {Λj}
∞

j=1 converges to Ψ ∩ Sρ . For
each j ∈ Z+, let β+

j andφ+

j denote the identified parameters obtained
from Algorithm 1with the candidate poolΦ = Λj. Then, for all ϵ > 0,
there exist δ > 0 and L ∈ Z+ such that if ∥η∗∥ < δ and j > L, then
β+

j ∈ Bϵ(β∗) and φ+

j ∈ Bϵ(φ∗).

6. Numerical examples

We present examples, where m = l = n = 2. For all examples,
let

D(z) = diag (z + 0.1, z − 0.2), Dfb(z) = I2
Ny(z) = Nv(z) = diag (1, −1),

and

Nfb(z) =


0.3 1
0.2 0.4


, Nff(z) =


z − 0.3 z + 0.4
0.5z 1


.

Note that

β∗ =


1 0.5 −0.3 0
1 0 0.4 1

T

, φ∗ =


0.3 1
0.2 0.4

T

.

Let N = 20, and for k ∈ N, let θk = 0.02πk. This example satisfies
(A1)–(A4), and for any compact set Ψ ⊆ Ra×m containing φ∗, (A5)
is satisfied.
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Fig. 3. Noisy data and φ∗ ∈ Φ . For i = 1, . . . , 15, Algorithm 1 is used with the
candidate pool Λ0 and data {Hi(θk)}

N
k=1 to obtain β+

i and φ+

i . For i ≥ 7, φ+

i = φ∗ ,
and for sufficiently large i, ∥β+

i − β∗∥F is arbitrarily small.

Example 3. Consider the case with φ∗ ∈ Φ and noiseless data. De-
fine the candidate pool Λ0 , {φ ∈ R2×2

: for i, j ∈ {1, 2}, φ(i,j) ∈

{−0.5 + 0.1k}20k=0} ∩ S, and note that φ∗ ∈ Λ0. Algorithm 1 is used
with the candidate pool Φ = Λ0 to obtain β+

= β∗ and φ+
= φ∗,

which agrees with (ii) of Theorem 1. △

Example 4. Consider the case with φ∗ ∈ Φ and noisy data. For i =

1, . . . , 15, let Γi(z) ∈ C2×2 be the noise, and define the noise-to-
signal ratio Ri , 1

N

N
k=1 ∥Γi(σk)∥F/∥G̃(σk)∥F. For i = 1, . . . , 15,

the frequency response data is Hi(θk) , G̃(σk) + Γi(σk). In this
example,Γ1, . . . , Γ15 are randomly generated such that R1 > R2 >
· · · > R15. Specifically, R1 = 2.39, R2 = 1.29, R4 = 0.28, R7 =

3.76×10−2, and R15 = 1.42×10−4. For i = 1, . . . , 15, Algorithm1
is used with the candidate pool Φ = Λ0 and data {Hi(θk)}

N
k=1 to

obtain the identified parameters β+

i and φ+

i . Fig. 3 shows that for
i ≥ 7,φ+

i = φ∗, and for sufficiently large i, ∥β+

i −β∗∥F is arbitrarily
small, which agrees with (i) of Theorem 1. △

Example 5. Consider the case with φ∗ ∉ Φ and noisy data. For j =

1, . . . , 18, define the candidate pool Λj , {φ ∈ R2×2
: for i, h ∈

{1, 2}, φ(i,h) ∈ {−0.5 + 2k/(1 + j)}1+j
k=0} ∩ Sρ , where ρ = 0.99,

and note that for j = 1, . . . , 18, φ∗ ∉ Λj. For i = 1, . . . , 15 and
j = 1, . . . , 18, Algorithm 1 is usedwith the candidate poolΦ = Λj

and data {Hi(θk)}
N
k=1 to obtain the identified parameters β+

j,i and
φ+

j,i . Fig. 4 shows that for sufficient large j and i, ∥β+

j,i − β∗∥F and
∥φ+

j,i−φ∗∥F are arbitrarily small, which agreeswith Theorem2. △

7. Computational complexity

The computational complexity of Algorithm 1 is dominated
by Step 2, where a quadratic minimization problem is solved
by M times. We use the modified Gram Schmidt method (Ford,
2014, Chap. 14) to perform this quadratic minimization. It follows
from Ford (2014, Chap. 14) that the computational complexity of
Algorithm 1 is C , M[4Nnm2l3(nff + 1)2 + 2Nnml2(nff + 1)] flops.

We compare the computational complexity of Algorithm 1with
the SSID algorithm in Zhang and Hoagg (2016). The SSID method
in Zhang and Hoagg (2016) also uses a candidate pool approach;
however, Gff is parameterized as an IIR transfer function, and the
method only applies to subsystems that are SISO (i.e., v = y
and l = m = n = 1). For SISO subsystems, the computational
complexity of Algorithm 1 is C = M[4N(nff + 1)2 + 2N(nff + 1)]
flops.

Next, consider (Zhang & Hoagg, 2016, Alg. 1), where N̂ denotes
the number of frequency response data points, Mfb denotes the

Fig. 4. Noisy data and φ∗ ∉ Φ . For i = 2, 4, 15, and j = 1, . . . , 18, Algorithm 1
is used with the candidate pool Λj and data {Hi(θk)}

N
k=1 to obtain β+

j,i and φ+

j,i . For
sufficient large j and i, ∥β+

j,i − β∗∥F and ∥φ+

j,i − φ∗∥F are arbitrarily small.

number of elements in the feedback candidate pool, and Mff de-
notes the number of elements in the feedforward candidate pool.
Let n̂ff denote the degree of numerator of Gff. The computational
complexity of (Zhang &Hoagg, 2016, Alg. 1) is Ĉ = MffMfb[4N̂(n̂ff+

1)2 + 2N̂(n̂ff + 1)] flops.
To compare the computational complexities of these algo-

rithms, we assume these algorithms use the same frequency re-
sponse data and feedback candidate pool, which implies that N =

N̂ andM = Mfb. Thus, the computational complexity ratio is

R ,
C

Ĉ
=

2(nff + 1)2 + (nff + 1)
Mff[2(n̂ff + 1)2 + (n̂ff + 1)]

.

In general, n̂ff ≤ nff and Mff ≫ 1, which result R < 1.

Example 6. Let

Gy(z) = Gv(z) =
0.4

z − 0.9
,

Gff(z) =
0.2(z − 0.77)

(z − 0.83)(z − 0.89)
, Gfb(z) =

0.32
z − 0.81

.

Let N = 31, and for k ∈ N, let θk = 0.008π(k − 1). Consider the
candidate pool Λ0 , {φ ∈ R2

: φ(1) ∈ {−2 + 0.05k}40k=0 , φ(2) ∈

{−2 + 0.05k}80k=0} ∩ S, which contains 297 elements.
First, we use Algorithm 1 with the candidate pool Λ0. For nff =

1, 2, . . . , 17, we identify feedforward and feedback controllers,
where Gff is FIR even though Gff is IIR.

Next, consider (Zhang & Hoagg, 2016, Alg. 1), where Gff is pa-
rameterized as IIR with n̂ff = 1. Consider feedforward candidate
pool F = {[x1 + x2 x1x2]T ∈ R2

: x1, x2 ∈ {−0.05k}19k=0}, which
contains Mff = 210 elements. We use (Zhang & Hoagg, 2016, Alg.
1) with the candidate pool F × Λ0 to identify feedback and feed-
forward controllers.

Fig. 5 shows the identification errors

Efb ,

 θN

θ1

G+

fb(e
ȷθ ) − Gfb(eȷθ )

 dθ,

Eff ,

 θN

θ1

G+

ff (e
ȷθ ) − Gff(eȷθ )

 dθ,

for each algorithm. In this example, for nff = 14, . . . , 17, Algo-
rithm 1 yields errors Efb and Eff that are comparable to those ob-
tained from (Zhang & Hoagg, 2016, Alg. 1). Fig. 5 also shows that
for nff = 1, 2, . . . , 17, R < 0.32. △



136 X. Zhang, J.B. Hoagg / Automatica 72 (2016) 131–137

Fig. 5. Computation complexity. For nff = 14, . . . , 17, Algorithm 1 yields errors
Efb and Eff that are comparable to those obtained from (Zhang & Hoagg, 2016, Alg.
1). For nff = 1, 2, . . . , 17, R < 0.32.

8. Conclusion

We presented a discrete-time SSID algorithm for identifying
MIMO feedback and feedforward subsystems. This SSID algorithm
uses closed-loop input–output data but does not rely on the
measurement of any internal signals. The method ensures
asymptotic stability of the identified closed-loop transfer function
matrix. The analytic results are Theorems 1 and 2, which provide
properties of the SSID algorithm. In particular, Theorem 2 shows
that the parameters of the identified feedback and feedforward
transfer function matrices are arbitrarily close to the true
parameters if the candidate pool is sufficiently dense and the data
noise is sufficiently small.

Appendix A. Proofs of Propositions 1 and 3

Proof of Proposition 1. Let φ ∈ S. Then, for all k ∈ N, D̃(σk, φ)
is nonsingular, and thus, it follows from (9) and (14) that Ω2(φ) is
well defined and positive semidefinite. Assume for contradiction
that there exists x ∈ Rb

\{0} such that xT[Re
N

k=1 A∗

k(φ)Ak(φ)]x =

0. Let k ∈ N, and it follows that Ak(φ)x = 0. Define Ξ(z) ,
Ny(z)D̃A(z, φ)Dfb(z, φ)ν(z)x ∈ Rn

[z]. Thus, (9) implies that 0 =

Ξ(σk)/[σ
nff
k det D̃(σk, φ)], which implies that Ξ(σk) = 0. Since

deg D̃ = d+dfb, it follows that deg D̃A
≤ (m−1)(d+dfb). Since, in

addition, deg ν(z)x ≤ nff, it follows from (A2) that degΞ ≤ ny +

(m−1)(d+ dfb)+ dfb +nff < N . Since Ξ(σ1) = · · · = Ξ(σN) = 0
and degΞ < N , it follows that Ξ = 0.

Define T , {z ∈ C : min{rank Ny(z), rank D̃A(z, φ),
rank Dfb(z, φ)} < m}. Since, for all z ∈ C\T, rank Ny(z) =

m ≤ n, it follows that Ny has full column rank, which implies that
for all z ∈ C\T, Ny(z) is left invertible. Thus, for all z ∈ C\T,
D̃A(z, φ)Dfb(z, φ)ν(z)x = 0. Since for all z ∈ C\T, D̃A(z, φ) and
Dfb(z, φ) are nonsingular, it follows that for all z ∈ C\T, ν(z)x = 0.
Finally, the structure of ν implies that x = 0, which is a contradic-
tion. Thus, Re

N
k=1 A∗

k(φ)Ak(φ) is positive definite. Therefore, it
follows from (14) that Ω2(φ) is positive definite. �

Proof of Proposition 3. Let β ∈ Rb×l and φ ∈ Rm×a, and de-
fine O : C → Cn×l by O(z) , G̃(z, β, φ) − G̃(z). Next, define
P(z) , Ny(z)D̃A(z, φ)[znffNfb(z, φ)+Dfb(z, φ)Nff(z, β)] ∈ Rn×l

[z],
Q(z) , Ny(z)D̃A(z, φ∗) × [znffNfb(z, φ∗) + Dfb(z, φ∗)Nff(z, β∗)] ∈

Rn×l
[z], and H(z) , P(z)diag D̃(z, φ∗) − Q(z)diag D̃(z, φ) ∈

Rn×l
[z]. Note that O(z) = H(z)/[znff det D̃(z, φ) det D̃(z, φ∗)].

Since
N

k=1 ∥O(σk)∥F = 0, it follows that for all k ∈ N, O(σk)

= 0, which implies that H(σk) = 0. Since deg det D̃(z, φ) =

deg det D̃(z, φ∗) = m(d+ dfb) and deg P, deg Q ≤ nff + ny + (m−

1)(d + dfb) + max{dfb, nfb}, it follows that degH ≤ ny + (2m −

1)(d+dfb)+nff +max{dfb, nfb}. Since for all k ∈ N, H(σk) = 0, and
(A4) implies that degH < N , it follows that H = 0, which implies
that O = 0. Thus, G̃(z, β, φ) ≡ G̃(z). �

Appendix B. Proofs of Theorems 1 and 2

The following notation is needed in the proofs of Theorems 1
and 2. Define Ω̂1 : S × Cn×lN

→ Rlb by Ω̂1(φ, η) , Ω1(φ) +

2Re
N

k=1 vecA∗

k(φ)[H(θk)−G̃(σk)−ηk], where η1, . . . , ηN ∈ Cn×l

and η , [η1 · · · ηN ] ∈ Cn×lN . Note that Ω̂1(φ, η∗) = Ω1(φ).
Thus, Ω̂1 is a function not only of φ but also the noise η. Define
Ĵ : Rb×l

× S × Cn×lN
→ [0, ∞), θ̂ : S × Cn×lN

→ Rb×l, and
Q̂ : S × Cn×lN

→ [0, ∞) by

Ĵ(β, φ, η) ,

N
k=1

G̃(σk, β, φ) − G̃(σk) − ηk
2
F ∈ R, (17)

θ̂ (φ, η) , −
1
2
vec −1


Ω−1

2 (φ)Ω̂1(φ, η)


∈ Rb×l, (18)

Q̂ (φ, η) , Ĵ(θ̂(φ, η), φ, η) ∈ R. (19)

Note that Ĵ(β, φ, η∗) = J(β, φ).
It follows from (6), (9), (10), and (17)–(19) that

θ̂ (φ∗, 0) = −
1
2
vec −1


Ω−1

2 (φ∗)Ω̂1(φ∗, 0)


= β∗, (20)

Q̂ (φ∗, 0) = Ĵ(β∗, φ∗, 0) = 0. (21)

Proof of Theorem 1. To prove (i), let φ ∈ Φ\{φ∗}, it follows
from (19), Proposition 3 and (A5) that Q̂ (φ, 0) > 0. Define U ,

minx∈Φ\{φ∗} Q̂ (x, 0) > 0. It can be shown that Q̂ is continuous on
S × Cn×lN . Thus, for each j ∈ M, Q̂ (φj, ·) is continuous on Cn×lN ,
which implies that, for each j ∈ M, there exists δj > 0 such that for
all η ∈ Bδj(0), |Q̂ (φj, η) − Q̂ (φj, 0)| < U/2. Define δ0 , minj∈M δj,
and assume that ∥η∗∥ < δ0. Since φ∗ ∈ Φ , it follows that there ex-
ists i ∈ M such that φi = φ∗. Since Q̂ (φi, 0) = Q̂ (φ∗, 0) = 0, it fol-
lows that Q̂ (φi, η∗) = |Q̂ (φi, η∗)− Q̂ (φi, 0)| < U/2. Let j ∈ M\{i},
and it follows that −U/2 < Q̂ (φj, η∗) − Q̂ (φj, 0), which implies
that Q̂ (φj, η∗) > Q̂ (φj, 0)−U/2. Since, in addition, Q̂ (φj, 0) ≥ U , it
follows that Q̂ (φj, η∗) > U/2. Thus, Q̂ (φi, η∗) < Q̂ (φj, η∗), which
implies that Ji(βi) < Jj(βj) using (8) and (17)–(19). Therefore, it
follows from Algorithm 1 that φ+

= φi = φ∗ and β+
= βi =

θ̂ (φ∗, η∗).
Let ϵ > 0. It can be shown that θ̂ is continuous on S × Cn×lN .

Thus, θ̂ (φ∗, ·) is continuous on Cn×lN . Therefore, there exists δ ∈

(0, δ0) such that for all η ∈ Bδ(0), θ̂ (φ∗, η) ∈ Bϵ(θ̂(φ∗, 0)). Finally,
assume ∥η∗∥ < δ. Since β+

= θ̂ (φ∗, η∗), it follows from (20) that
β+

∈ Bϵ(β∗), which confirms (i).
To prove (ii), assume η∗ = 0. Thus, ∥η∗∥ = 0 < δ0 and part

(i) implies that φ+
= φ∗. Since η∗ = 0, it follows from (20) that

β+
= θ̂ (φ∗, 0) = β∗. �

Proof of Theorem 2. Let ϵ > 0. It can be shown that θ̂ is contin-
uous on S × Cn×lN . Since, in addition, φ∗ ∈ S, it follows that there
exists δ0 > 0 such that for all φ ∈ Bδ0(φ∗) and all η ∈ Bδ0(0),

θ̂ (φ, η) ∈ Bϵ(θ̂(φ∗, 0)). (22)
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Define ϵ1 , min{ϵ, δ0} and Λc , Ψ ∩ Sρ . Using the process in
Zhang and Hoagg (2016, Prop. 8), it can be shown that Λc ⊆ S is
compact. Since Λc is compact, and {x ∈ Ra×m

: ∥x − φ∗∥ ≥ ϵ1} is
closed, it follows that Λϵ1 , Λc\Bϵ1(φ∗) = Λc ∩ {x ∈ Ra×m

: ∥x −

φ∗∥ ≥ ϵ1} is compact.
Let c > δ0, define C , {x ∈ Cn×lN

: ∥x∥ ≤ c}, and note that
Q̂ is continuous on Λϵ1 × C . Next, define Θ : C → [0, ∞) by
Θ(η) , minφ∈Λϵ1

Q̂ (φ, η), which exists because Λϵ1 is compact

and Q̂ is continuous on Λϵ1 × C (Beals, 2004, Thm. 7.7). It follows
from Proposition 3 and (A5) that Θ(0) > 0. Since Q̂ is continuous
on Λϵ1 × C , and Λϵ1 and C are compact, it follows from Sundaram
(1996, Thm. 9.14) that Θ is continuous on C . Furthermore, since Q̂
is continuous on S×Cn×lN , it follows that Q̂ (φ∗, ·) is continuous on
C . Thus,W : C → R defined byW (η) , Θ(η)−Q̂ (φ∗, η) is contin-
uous on C . Note that (21) implies thatW (0) = Θ(0)− Q̂ (φ∗, 0) =

Θ(0) > 0. Therefore, it follows that there exists δ1 ∈ (0, c) such
that for all η ∈ Bδ1(0), W (η) > 0. Define δ , min{δ0, δ1} > 0 and
assume ∥η∗∥ < δ. Then,W (η∗) > 0.

Since W (η∗) > 0 and Q̂ (·, η∗) is continuous on Λc, it follows
from the continuity of Q̂ (·, η∗) that there exists δ2 > 0 such that
for all φ ∈ (Λc ∩ Bδ2(φ∗)), |Q̂ (φ, η∗) − Q̂ (φ∗, η∗)| < W (η∗). Thus,
for all φ ∈ (Λc ∩ Bδ2(φ∗)), Q̂ (φ, η∗) − Q̂ (φ∗, η∗) ≤ |Q̂ (φ, η∗) −

Q̂ (φ∗, η∗)| < W (η∗) = Θ(η∗) − Q̂ (φ∗, η∗), which implies that

Q̂ (φ, η∗) < Θ(η∗). (23)

Since {Λj}
∞

j=1 converges to (Ψ ∩ Sρ) ⊆ Λc, it follows from Def-
inition 1 that there exists a sequence {φj : φj ∈ Λj}

∞

j=1 and L ∈ Z+

such that for all j > L, φj ∈ Bmin{ϵ1,δ2}(φ∗). Thus, it follows from
(23) that for all j > L, Q̂ (φj, η∗) < Θ(η∗).

Let j ∈ Z+ be such that j > L. It follows from Algorithm 1,
(17)–(19), and (23) that Q̂ (φ+

j , η∗) ≤ Q̂ (φj, η∗) < Θ(η∗). Assume
for contradiction that φ+

j ∉ Bϵ1(φ∗), which implies that φ+

j ∈ Λϵ1 .
Thus, Θ(η∗) = minφ∈Λϵ1

Q̂ (φ, η∗) ≤ Q̂ (φ+

j , η∗) < Θ(η∗), which
is a contradiction. Therefore, φ+

j ∈ Bϵ1(φ∗) ⊆ Bϵ(φ∗). Since
φ+

j ∈ Bϵ1(φ∗) ⊆ Bδ0(φ∗), it follows from (20) and (22) that
β+

j = θ̂ (φ+

j , η∗) ∈ Bϵ(θ̂(φ∗, 0)) = Bϵ(β∗). �
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