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a b s t r a c t

This paper presents a new frequency domain identification technique to estimate multivariate Linear
Parameter-Varying (LPV) continuous-time state space models, where a periodic variation of the
parameters is assumed or imposed. The main goal is to obtain an LPV state space model suitable for
control, from a single parameter-varying experiment. Although most LPV controller synthesis tools
require continuous time state space models, the identification of such models is new. The proposed
identification method designs a periodic input signal, taking the periodicity of the parameter variation
into account. We show that when an integer number of periods is observed for both the input and the
scheduling, the state spacemodel representation has a specific, sparse structure in the frequency domain,
which is exploited to speed up the estimation procedure. A weighted non-linear least squares algorithm
then minimizes the output error. Two initialization methods are explored to generate starting values.
The first approach uses a Linear Time-Invariant (LTI) approximation. The second estimates a Linear Time-
Variant (LTV) input–output differential equation, from which a corresponding state space realization is
computed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Although the Linear Time-Invariant framework (Pintelon &
Schoukens, 2012) has given rise to powerful forms of control,
the need to operate processes at even higher levels of precision
requires more advanced model structures, like non-linear block
structured models (Bai & Giri, 2010), time-varying differential
equations (Lataire & Pintelon, 2011; Louarroudi, Lataire, Pintelon,
Janssens, & Swevers, 2014), and Linear Parameter-Varying models
(Rugh & Shamma, 2000; Tóth, 2010). Indeed, most physical
systems behave non-linearly, or have a varying dynamic behavior
that changes with an external parameter, like the temperature or
pressure. Such systems are usually linearized at a chosen operating
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point. However, in practice it is quite common to utilize the
same plant at several set points, each with their own linearized
dynamics. A local LPV approach estimates LTI models at a set of
operating points, after which a macro-model interpolates the local
approximations (Bruzelius & Breitholtz, 2001; De Caigny, Camino,
& Swevers, 2011; Ferranti, Knockaert, & Dhaene, 2011). These
methods do not incorporate knowledge about the rate of variation
of the scheduling parameter and, therefore, the resulting models
are only valid in case of slow parameter variations. Contrary to the
local approach, we opt for a global identification experiment (Rugh
& Shamma, 2000), where the system dynamics are persistently
changed by external signals p(t), called the scheduling parameters.
The goal is to identify the system from a single parameter-varying
input–output experiment.

Modeling of arbitrary time-varying systems is challenging. In
the identification phase, we will therefore focus on periodically
parameter-varying systems. For example, the steady state opera-
tion of a rotating mechanical bearing (Allen, 2009) falls into this
class. In other cases, where one has full control over the experi-
mental setup, including the scheduling parameter p(t), the period-
icity can be imposed. In process applications, only a perturbation of
the associated variables is allowed, due to limitations of actuation
and process loss. In many cases, white noise, binary noise, PRBS
or step inputs are used to perturb the system. It is also possible
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to use a random phase multisine excitation, resulting in a periodic
experiment.

K
k=K

Ak cos(2πkf0t + ψk). (1)

Here, Ak are user-defined, andψk is uniformly distributed between
[0, 2π ]. Alternatively, the amplitudes and phases can be chosen,
so that the system trajectory domain is explored optimally. In
practice, a random phase multisine signal (1) cannot be discerned
from a periodic white noise sequence in the time domain.

1.1. Target application

Most LPV controllers are designed in continuous time, using
state space models (Apkarian & Gahinet, 1995; Scherer, 1996; Wu
& Dong, 2006), which are given by

ẋ(t) = A

p(t)


x(t)+ B


p(t)


u(t) (2)

y0(t) = C

p(t)


x(t)+ D


p(t)


u(t) . (3)

We define Nx as the size of the state vector x(t) and denote
the number of inputs u(t), outputs y(t) and scheduling signals
p(t) by Nu, Ny and Np, respectively. For control design, ideally
the coefficients depend only on the instantaneous value of the
scheduling, i.e. linear combinations of known/chosen static basis
functions in p(t)

A

p(t)


=

Np
i=1

Ai φi

p(t)


(4)

where the matrices Ai are constant. A common choice for φi are
the (multivariate) polynomials p(t)i. Similar definitions hold for
B

p(t)


, C


p(t)


and D


p(t)


. The educated guess in the choice of

basis function φi usually follows from the physics of the problem.
In practice, the true coefficients will have to be approximated with
the proposed basis in φi


p(t)


. In Laurain, Tóth, Zheng, and Gilson

(2012), Least Squares Support Vector Machines (LSSVM) are used,
while in De Caigny et al. (2011) a polynomial basis is selected. From
hereon, we call the collective set of (unknown) observed functions
of the scheduling signals p(t).

1.2. Existing work

Since we are essentially solving a non-linear optimization
problem, the initial values for the parameters have a big impact on
the results. In a first draft of the proposed identification approach
(Goos, Lataire, & Pintelon, 2014), an LTI approximation was used,
as illustrated in Fig. 1. The results were satisfactory, but when
the parameter variation becomes larger or faster, the risk to end
up in a local minimum increases. A simple time-invariant model
can only approximate a slowly time-varying system. Therefore, in
this paper we also examine another initialization routine, which
is based on time-varying differential equations. Nowadays, a lot
of research is dedicated to the identification of time- (Lataire &
Pintelon, 2011; Louarroudi et al., 2014) and parameter-varying
(Laurain, Tóth, Gilson, & Garnier, 2010; Tóth, Laurain, Gilson, &
Garnier, 2012) differential equations.

Na
i=1

ai(t) y(i)(t) =

Nb
i=1

bi(t) u(i)(t) (5)

Na
i=1

ai(p(t))y(i)(t) =

Nb
i=1

bi(p(t))u(i)(t) . (6)

Fig. 1. Originally, the LPV identification was initialized with an LTI approximation.
All coefficients related to the parameter variations are set to zero. The optimization
searches for a good model, by minimizing the prediction error.

Fig. 2. First a general time-varying input–output model is identified. The
corresponding minimal state space model is realized, with a dynamic dependence
on the coefficients. Next, we try to establish a link between the known parameter
variation p(t) and the time-varying coefficients. Finally, the prediction error is
minimized.

From Tóth (2010), we know that it is possible to transform
a static parameter-varying differential equation into a minimal
state space form, but the resulting models will have a dynamic
dependence on the scheduling. From a control perspective, we
want a simple, static model, in which the model only depends
on the current value of p(t). Therefore, direct application of Tóth
(2010) does not yield the desired result.

Recently, we have derived exact computational formulas in
the SISO case, to transform arbitrary (but smooth) time-varying
differential equations like (5) into their minimal controllability
canonical state space from Goos and Pintelon (2016). The formulas
are given explicitly in Section 4, rather than implicitly, like in Tóth
(2010), and can also be applied to LPV differential equations like
(6). As in Tóth (2010),we find that, in general, aminimal realization
introduces dynamic dependence on the scheduling variable p(t).
Although it is not guaranteed that a static minimal state space
model exists, we can start the optimization routine (Goos et al.,
2014) from the obtained model. Proceeding in this way, a simple,
static model approximation can be fitted.

Specifically, in a first step we will use the Linear Periodic Time-
Varying (LPTV) IO identification method described in Section 3.4,
and realize a corresponding LTV SS model in Section 4. Next,
Section 5 establishes a link between this time-varying state space
model and basis functions of the scheduling parameter f


p(t)


. In

a final step, we optimize the model fit using simple basis functions
that are suitable for control design. The complete workflow is
depicted in Fig. 2. Section 6 illustrates the proposed approach on
a simulation example, and discusses the properties of all modeling
steps.
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1.3. Goal and contributions

The main goal of this research is to identify a continuous-time
parameter-varying state space model from a single experiment,
using a periodic scheduling and a periodic input. Summarized, the
contributions of this paper are the following:

• the computationally efficient frequency domain calculation of
the LPV state space equations.

• the construction of a frequency domain weighted non-linear
least squares estimator for continuous time LPV state space
equations.

• the generation of improved starting values.
• the reduction of the CT LPV SS equations to a control relevant

form.

We want to stress that, once we have identified a model in the
periodic setting, it is also valid for non-periodic inputs and schedul-
ing trajectories. However, it is very ill-advised to use the model
outside of the identified region, both for input and scheduling sig-
nals. As in the LTI identification framework, the experiment should
match the operational conditions as close as possible.

2. An LPV SS model for control

This section details the LPVmodel construction in the frequency
domain. We start by describing the assumptions on the measured
signals and the measurement setup. Next, the state space
equations are transformed into the frequency domain, where
we show the sparse structure. These theoretical properties are
used extensively in Section 3.2. Depending on the experimental
conditions, not all assumptions are needed.

Assumption 1. The input u(t) and the scheduling parameter p(t)
are synchronized periodic signals: u(t + Tu) = u(t), p


t + Tp


=

p(t), and Tu/Tp ∈ Q+.

Assumption 2. The periodic steady-state response of the LPV
system is observed.

Fact 3. Under Assumptions 1 and 2, the response of an LPV system is
periodic with a period Ty that is the least common multiple of Tu and
Tp: Ty = lcm(Tu, Tp).

Assumptions 1 and 2 allow the use of well-established
frequency domain identification techniques, for time-varying
differential equations (Louarroudi et al., 2014) and parameter-
varying state spacemodels (Goos et al., 2014), without leakage and
transient problems. Once identified, the LPVmodel is valid for non-
periodic parameter variations and non-periodic inputs as well.

Assumption 4. The input u(t) and the scheduling parameter p(t)
are known exactly, and noisy observations y(t) of the output are
available: y(t) = y0(t)+ ey(t)with y0(t) the true unknown value
and ey(t) filtered (band-limited) white noise with finitemth order
moments. The noise source ey(t) is assumed to be additive, and
independent of the input u(t).

Fact 3 is generally true only if p(t) does not depend on the states
x(t). In the latter case, the underlying system is in fact nonlinear.
It is possible to embed nonlinear systems in an LPV framework,
but doing so requires additional assumptions, e.g. the steady state
response to a periodic input is periodic with the same period as
the input, also known as the Periodic Input, Same Periodic Output
(PISPO) Assumption. Additionally, Assumption 4 requires p(t) to be
known exactly. This would mean that the states defining p(t) have
to be measured precisely.

In practice, the signals are synchronized if the generator and
data acquisition clocks originate from the same mother clock. This
is the case if the same device incorporates the generator and
acquisition channels. If the generator and themeasurement device
are separated, the clock sync of the generator can be used as an
input for the data acquisition clock. Additionally, to synchronize
the periods, the input period Tu has to be chosen as a function of
the scheduling period Tp, whether it is fixed or can be controlled.

Synchronized signals can be transformed to the frequency
domainwithout introducing leakage errors (Pintelon & Schoukens,
2012), by means of the N-point Discrete Fourier Transform (DFT),
with N the number of data samples. We call f0 = fs/N the base
frequency of themeasurements, and fk = kfs/N the DFT frequencies,
where k = −

N
2 + 1, . . . , N

2 denotes the DFT bin number. Finally,
we define the discrete Fourier transformed signals of u(t), p(t) and
y(t) as U(k), P(k) and Y (k).

X(k) = DFT {x(nTs)} =

N−1
n=0

x(nTs) e
−2π jkn

N . (7)

Assumption 5. The measurement setup is band-limited: the
signals are lowpass filtered before sampling, and the input u(t) and
the scheduling parameter p(t) are band-limited: |U(k) | = 0 and
|P(k) | = 0 for kf0 ≥ fs/2.

Assumption 6. The output error ey(t) is normally distributed, and
uncorrelated with the true output signal.

Assumption 7. M > Ny+2 consecutive periods of the steady state
response are measured.

2.1. The structured LPV identification problem

The additive structure from (4) can also be transformed into the
frequency domain. The coefficientmatrices Ai are constant, and the
Fourier transform is a linear operator. Therefore, themultiplication
Ai pi(t) in the time domain remains as a multiplication in the
frequency domain. We denote the spectrum of the ith scheduling
function by Pi(k) = DFT


φi


p(t)


. In the frequency domain, (4)

then becomes

A

P(k)


=

Np
i=1

Ai Pi(k) . (8)

Note that simulating a dynamic system requires different compu-
tation methods in the time domain for the discrete and the con-
tinuous case. In the frequency domain, we only need to change
the transformation variable, corresponding to the Z-transform z =

ejωTs or the Laplace transform s = jω, as in Chapter 7 of Pintelon
and Schoukens (2012). Here, Ts = 1/fs is the sampling time. The
drawback is that for the frequency domain approach, in both cases
the measurements should be performed in steady state. In future
research, we aim to relax this condition.

2.2. State space in the frequency domain

Similar to Goos et al. (2014), the continuous-time state space
equations (2)–(3) can be converted to the frequency domain. Under
Assumptions 1, 2 and 5, we find

jωkX(k) = A

P(k)


∗ X(k)+ B


P(k)


∗ U(k) (9)

Y (k) = C

P(k)


∗ X(k)+ D


P(k)


∗ U(k) . (10)

X(k), U(k), P(k), Y (k) are the DFT transforms (7) of the state
x(t), the input u(t), scheduling p(t) and output y(t) signals,
respectively, and ∗ equals the circular convolution product of the
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spectra. In the LTI case, the A(t), B(t), C(t) and D(t) matrices are
constant, and the convolution reduces to a regular multiplication.

Following Assumptions 2 and 5, the derivatives ẋ(t) in (2) can
be computed exactly in the frequency domain, as opposed to a
discretized approximation, like in Laurain et al. (2010) and Tóth
et al. (2012).

2.3. Band structure and sparsity

We can now impose the parametrization (4) on the state space
equations (9)–(10). Recall that N data points are used, observed
at a sample frequency fs. We call NPp = fp/f0 the base bin of the
time variation, meaning NPp periods of the time variation were
measured. First, the circular convolution of two signals is written
as a product of a Toeplitz matrix1 and a vector:

Pi ∗ Xi = Toeplitz

Pi, PH

i


× Xi (11)

Pi =


Pi(0) · · · Pi


N
2


Pi


−

N
2

+ 1


· · · Pi(−1)
T

Xi =


Xi(0) · · · Xi


N
2


Xi


−

N
2

+ 1


· · · Xi(−1)
T

X =

XT
1 XT

2 · · · XT
Nx

T
.

Because the signals are real in the time domain, the Fourier
coefficients at the negative frequencies are the complex conjugate
of their positive counterparts: P(−i) = PH(i).

Now, each scheduling spectrum should be convolved with
each state and input spectrum. To this end, block matrices are
constructed. Collecting Eqs. (9)–(10) for all DFT frequencies jωk =

2π jkfs/N yields

EX = α Px X + β Pu U (12)
Y (θ) = γ Px X + δ Pu U (13)

where U ∈ CNuN×1, X ∈ CNxN×1 and Y ∈ CNyN×1 are vertically
stacked vectors containing the (DFT) spectra of the input, state and
output, and

E = INx ⊗ jdiag

ω0, ω1, . . . , ω N

2
, ω

−
N
2 +1, . . . , ω−1


(14)

α =


A1 ⊗ IN A2 ⊗ IN . . . ANp ⊗ IN


(15)

β =


B1 ⊗ IN B2 ⊗ IN . . . BNp ⊗ IN


(16)

γ =


C1 ⊗ IN C2 ⊗ IN . . . CNp ⊗ IN


(17)

δ =


D1 ⊗ IN D2 ⊗ IN . . . DNp ⊗ IN


(18)

Px =


Toeplitz


P1, PH

1


⊗ INx

...

Toeplitz

PNp , P

H
Np


⊗ INx

 (19)

Pu =


Toeplitz


P1, PH

1


⊗ INu

...

Toeplitz

PNp , P

H
Np


⊗ INu

 (20)

α, β , γ and δ comprise the dynamics of the system, in which Ai,
Bi, Ci and Di are the original real time-domain matrices in Eq. (4).
IN is an (N × N) identity matrix and ⊗ is the Kronecker product.
From this compact notation, we can clearly see that the matrices
are actually only defined by a limited number of parameters. These

1 www.mathworks.com/help/matlab/ref/toeplitz.html.

unknownmatrix coefficients are collected in the model parameter
vector θ ∈ R(Nx+Ny)Np(Nx+Nu)×1

θi =

vec(Ai)

T , vec(Bi)
T , vec(Ci)

T , vec(Di)
T T (21)

θ =


θ T1 , θ

T
2 , . . . , θ

T
Np

T
(22)

which is to be identified. Note that θ is a constant, real vector. The
parameter variation enters the frequency domain model (12)–(13)
via the spectra Pi of the basis functions φi


p(t)


. Contrary to the

LTI case, all equations are coupled, and must therefore be solved
together. Nonetheless, the inherent Toeplitz structure can be used
to speed up the calculations.

Assumption 8. The scheduling signals are varying slowly, mean-
ing the frequency content of P(k) is only non-zero in a limited
range with respect to the frequency band of interest. Recall from
(1) that the highest excited input frequency is Kf0. Therefore,
∥P(k) ∥0 ≠ 0 kf0 ≪ Kf0
∥P(k) ∥0 = 0 else.

If the parameter variation is slowly varying with respect to
the excited frequency band, the frequency domain state space
representation (12)–(13) becomes sparse. The block Toeplitz
matrices Px and Pu then become sparse block band matrices. For
example, if the matrix coefficients vary with a single sine around a
mean value, only P2(−1), P1(0) and P2(1) are non-zero. Similarly,
if multiple (NTp ) periods of the scheduling are observed, only the
NTp th off-diagonals are non-zero.

Eqs. (12)–(13) still hold for scheduling signals with a larger
bandwidth, e.g. similar to that of the input signal, but then the
sparsity is lost, and the computations become less computationally
efficient. Worse, Section 3.3 will show that a time-invariant
initialization scheme, shown in Fig. 1, will suffer from scheduling
signals that are varying too fast. For the initializationwith the time-
varying model, depicted in Fig. 2, a slightly different assumption is
formulated:

Assumption 9. The scheduling signals have a limited number of
frequency components. The parameter variation does not need to
be slow, but it should be band-limited, as stated in Assumption 5.
k

∥P(k) ∥0 ≪ N.

The sum over the zero-norm of the scheduling spectrum should
be small with respect to the number of data points, for reasons of
identifiability. Suffice to say that Assumption 9 is a bitmore general
than Assumption 8.

Note that, if the convolution Pi ∗ U or Pi ∗ X creates spectral
content outside the measurable frequency band kf0 > fs/2, it is
eliminated by the anti-alias filters in the band-limited setup of
Assumption 5. This information is lost, and cannot be used for
identification. Caution is advised in the lower frequency range as
well. There, energy can end up in the negative frequencies, which
is not filtered. By considering the circular convolution, as stated
in Section 2.2, these aliasing effects can be modeled. Nevertheless,
Eqs. (12)–(13) simplify when the spectrum of the output Y has a
margin with respect to DC and the Nyquist frequency.

3. Non-linear optimization routine: minimizing the weighted
output error

In order to identify the matrix coefficients that define the
dynamics, the weighted output error is chosen as the optimization
criterion, and the Gaussian Maximum Likelihood Estimator is

http://www.mathworks.com/help/matlab/ref/toeplitz.html
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Fig. 3. Output spectrum Y (k) of a periodic parameter-varying system for a single
sine excitation. Energy appears only at the harmonic frequencies. Ifmultiple periods
are measured, a non-parametric noise model ( ) can be estimated.

formulated in the frequency domain. For a given model with
parameters θ , the output error is defined as the difference between
the DFT spectra of the modeled Y (θ) and the measured output Y :

ε(θ) = Y (θ)− Y . (23)

Under Assumptions 1, 2 and 4–6, the Gaussian MLE θ̂ML minimizes
the following cost function, given the data Z:

VML(θ, Z) = ε(θ)H C−1
e ε(θ) (24)

θ̂ML = argmin
θ

VML(θ, Z) (25)

with Ce the error covariance matrix. The latter can be estimated
non-parametrically in the frequency domain, by simply observing
multiple periods of the output signal (Mahata, Pintelon, &
Schoukens, 2006; Pintelon, Vandersteen, Schoukens, & Rolain,
2011), as illustrated by Fig. 3. As stated in Assumption 4, only
stationary output noise is considered here. Hence, the noise is
uncorrelated over the frequency, and Ce becomes a (non-constant)
block diagonal matrix (the noise can still be correlated over the Ny
outputs).

If a controller is needed to ensure the periodic motion of
the system, due to losses and disturbances, the (controlled)
input becomes noisy as well. Appendix discusses how the error
covariance matrix can be computed in the case of input noise.
The proposed identification method then effectively becomes an
Errors-In-Variables scheme, like (Tóth et al., 2012).

If only a limited frequency band is of interest, the ML cost
function can easily be adapted. Suppose that a high sample
frequency fs is used, but the dynamics are dominant at lower
frequencies. Then, wewant to fit the output spectrum, by selecting
the entries of ε lying in the low frequency region only. Note,
however, that the computation of Y (θ) requires all frequencies.

3.1. The minimization algorithm

To solve the non-linear optimization problem of the MLE
cost function, an iterative Gauss–Newton method is employed.
It has the advantage that only the Jacobian of the output errors
is calculated, which greatly benefits from the computationally
efficient model response calculation discussed in Section 2.3. For
details, we refer to Chapter 9.4 in Pintelon and Schoukens (2012).

We know from the literature (Goos & Pintelon, 2016) that a
state space representation is only determined up to a similarity
transformation. The Jacobian will therefore be singular: its rank is
equal to the effective number of parameters. Nevertheless, because
we know the rank on beforehand, the pseudo-inverse can be used
to find an update for the model parameters in a numerically stable
way (Wills & Ninness, 2008).

Assumption 10. Persistency of excitation and scheduling condi-
tion: the rank of the Jacobian matrix should be (Nx + Nu)Np(Nx +

Nx)− N2
x , which is the number of effective parameters.

The proposed basis functions φi

p(t)


indirectly impose a

spectral richness condition on the scheduling P(k). If the number
of scheduling functionsNp increases, the original scheduling signal
has to excite more frequencies.

Example 11. A single sine is applied as a scheduling p(t) =

sin(ωt), but we need to identify the coefficient of p̈(t) =

−ω2 sin(ωt). It is impossible to discern p and p̈ by using a single
frequency ω.

3.2. Statistical properties of the minimization problem

The maximum likelihood estimator has great statistical prop-
erties, because of the ‘‘optimal’’ weighting of the output error.
Measurements with a lot of variance are uncertain, and should
therefore not be fitted so strictly. The following theorems study the
weighted non-linear least squares (WNLS) estimator (25)when the
number of excited input frequencies F = O(N) tends to infinity.

Assumption 12. The true model is in the model class (12)–(13),
covering the dynamical order Nx of the system, and the proposed
basis functions φi


p(t)


.

Theorem 13. Under Assumptions 1, 2 and 4 (m = 4), 5, 10 and
12, the WNLS estimator (25) is consistent. If in addition Assump-
tion 4 (m = ∞) holds, then (25) is asymptotically normally dis-
tributed. If Assumption 6 is also fulfilled, then (25) is the Gaussian
MLE and it is asymptotically efficient.

The consistency proof is based on the key property that the
expected value of (24) is minimal in the true model parameters
θ0. The rest of the proof follows the same lines of Theorem 9.21
in Pintelon and Schoukens (2012). Theorem 13 can be used if the
error covariance matrix is known beforehand. Otherwise, Ce has to
be estimated from the data. In this case, we also need ey(t) to be
normally distributed (Assumption 6) to prove consistency.

Theorem 14. If Ce is estimated from M consecutive periods
(Assumption 7), then under Assumptions 1, 2 and 4–6

θ̂SML = argmin
θ

ε(θ)H Ĉ−1
e ε(θ) (26)

is consistent and asymptotically normally distributed with asymptotic
covariance

Cov(θ̂SML) =
M − Ny − 1
M − Ny − 2

Cov(θ̂ML). (27)

The proof follows the same lines of Mahata et al. (2006).

3.3. Generating simple starting values: the best linear approximation

In the first draft of the proposed optimization scheme (Goos
et al., 2014), the Best Linear Time-Invariant or BLTI approximation
(Lataire, Louarroudi, & Pintelon, 2012; Pintelon, Louarroudi, &
Lataire, 2012) was used. Basically, an LTI model tries to fit
only the output frequencies fu that were excited by a random
phase multisine (1) at the input. The slower and the smaller the
parameter variation, the better the BLTI model will approximate
the underlying system.

Now, for slowly varying systems, it is possible to obtain
estimates for all the Bi and Di, instead of only the time-invariant
parts B1 and D1. Following the same lines of Lee and Poolla (1999),
the input u(t) can be virtually expanded with parameter-varying
φi


p(t)


u(t), because the scheduling is assumed to be known.

The resulting MISO or MIMO system can be modeled by any LTI
identification method. The optimization routine then tries to fill in
the blanks. The resulting two-step procedure is illustrated by the
flowchart in Fig. 1.
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3.4. Initialization via time-varying differential equations in the
frequency domain

Alternative to Section 3.3, we propose an indirect initialization
method, using the Linear Time-Varying (LTV) framework in the
frequency domain (see Fig. 2). The time-varying coefficients ai(t)
and bi(t) in (5) can be seen as a realization for a particular
scheduling signal p(t). Indeed, each trajectory of p(t) corresponds
with its own LTV model. However, a reverse link exists as well.
By first identifying an LTV model with more degrees of freedom,
it is possible to extract some preliminary knowledge about the
underlying system. The link with LPV modeling will be discussed
in more detail in the sequel. Due to space limitations, we will
not discuss the details of the identification technique for LTV
differential equationswith a periodic time variation. The interested
reader is referred to Louarroudi et al. (2014). We will simply state
that the input–output equation is structured and sparse in the
frequency domain. Furthermore, the LTV IO estimator (Louarroudi
et al., 2014) is consistent, and can easily be initialized with a Linear
least Squares (LS) estimator.

4. Canonical LTV state space realization

The second step in the indirect initialization method of
Fig. 2 entails the state space realization of the identified time-
varying differential equation. To this end, we introduce a closed
form SS expression, for which the proof is given in Goos and
Pintelon (2016). For a general proper input–output model, the
corresponding companion observability canonical form, or phase-
variable observability form or just simply ‘‘observable’’ canonical
form, is given by

ẋ =



0 · · · 0
α0

an
1 · · · 0

α1

an
...

. . .
...

...

0 · · · 1
αn−1

an


x +



β0

an
β1

an
...

βn−1

an


u (28)

y =


0 0 · · ·

1
an


x +


bn
an


u (29)

where

αr =

n
i=r

(−1)i−(r+1)C r
i a
(i−r)
i (30)

βr = bn
n

i=r

(−1)i−(r+1)C r
i a
(i−r)
i

− an
n

i=r

(−1)i−(r+1)C r
i b
(i−r)
i . (31)

The time dependence of the coefficients was omitted to avoid
cluttering the equations. We denote a(i) as the ith derivative of a.
The order of themodel isn = Nx = NyNa, andwehave the binomial
coefficients

Ck
i =

i!
(i − k)!k!

=


i
k


. (32)

As in the LTI case, the expression simplifies when the system is
proper Na > Nb, because then bn = 0.

Remark 15. The proposed time-varying state space realization is
minimal in the single output case, but requires derivatives of the

coefficient functions ai(t) and bi(t) of the differential equation (5).
When applied to an LPV differential equation, this corresponds
with a dynamic dependence on the scheduling variable p(t).
Although the transformation holds for arbitrary time-varying
systems, the higher order derivatives a(i)i up to order i must exist.

Remark 16. Note that in the periodic band-limited setup of
Assumptions 1 and 5, the derivatives can be computed exactly in
the frequency domain. The state space realization step is therefore
also exact.

Assumption 17. For the observability canonical form, the highest
order term an(t) should not become zero ∀t .

An alternative state space realization approach (33)–(34) is
given in Wiberg (1971) on pages 25–26, assuming an(t) = 1.
It has the interesting property that the A matrix has been made
time-invariant, at the cost of increasing the complexity of the
B matrix. Both representations are equivalent, and by means of
the possibly time-varying similarity transformations an infinite
number of alternatives are possible. In the sequel, we will discuss
the possible advantages of both realization schemes.

ẋ =


0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1

−a0 −a1 · · · −an−1

 x +


γn−1
...
γ1
γ0

 u (33)

y =

1 0 · · · 0


x +


γn


u (34)

where

γn = bn (35)

γn−i = bn−i −

i−1
k=0

i−k
j=0

C j
n−i+jan−i+j+k(t)

djγn−k(t)
dt j

.

Eq. (35) shows that the second LPV realization requires combina-
tions of powers and derivatives of the coefficient functions ai and
bj, which introduces more basis functions for the exact SS form.
From this point of view, the first canonical form (28)–(29) performs
better. However, in some cases (33)–(34) immediately allows for a
static minimal state space representation.

Assumption 18. The right hand side coefficients in (5) are
constant bi(t) = bi ∀i > 0.

Assumption 19. Given a threshold index Nvar < Na, the right
hand side coefficients are zero bi(t) = 0 ∀i > Nvar. Additionally,
the corresponding left hand side coefficients are constant ai(t) =

ai ∀i > Nvar.

Theorem 20. Under Assumptions 18 and 19 the state space realiza-
tion (33)–(34) does not require any derivatives of the coefficient func-
tions ai(t) and bi(t).

The transformation from a time-varying differential equation,
with no derivatives of the input bi>0(t) = 0, to a state space form
is perhaps more generally known (Levine, 2011). However, the
proposed realization schemes (28)–(29) and (33)–(34) are more
general. In practice, the actuator might affect acceleration as well
as the jerk. Then, derivatives of the input force u(t) come into play,
and the realization becomes more involved.
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5. The link between the time-varying and parameter-varying
model

The final step in the flowchart of Fig. 2 establishes the link
between the identified time-varying input–output coefficients and
the (known) scheduling signal, so we end up with a parameter-
varying model. In Fig. 2, the time-varying differential equation
(5) is first transformed into an LTV state space form, and then
fitted with an LPV model. Alternatively, let us explore the
transformation of a parameter-varying input–output equation (6),
with polynomial coefficient functions of p(t). We apply the chain
rule of derivation, and find that

d
dt ai(p(t)) =

d
dpai(p(t))

dp
dt (36)

d2

dt2
ai(p(t)) =

d2

dp2
ai(p(t)) (

dp
dt )

2
+

d
dpai(p(t))

d2p
dt2
. (37)

The required basis functions for the state space realization are
a mix of derivatives of the coefficients ai(p(t)) and bi(p(t))
with respect to p(t), and the time derivatives of the scheduling
parameter itself. If either of these components becomes small,
the complete term becomes negligible with respect to the
contributions of the static components. Therefore, the slower the
parameter variation, the less impact the dynamic dependency has
on the model. Now, from a control synthesis point of view, any
dynamic dependence on the scheduling parameter is undesired.
The following example illustrates why:

Example 21. Consider the case of (28)–(29) where a1(t) = 1 +

p1(t)2. The scheduling parameter is a single signal: p(t) = p1(t),
and its time derivative equals ȧ1(t) = 2p1(t) ṗ1(t). Once the
trajectory p1(t) is fixed, so is ȧ1(t). However, the latter depends
dynamically on the scheduling, which cannot be taken into
account by a static controller. Therefore, an additional ‘‘virtual’’
scheduling parameter p2(t) = p1ṗ1(t) would have to be defined,
meaning the scheduling vector now has two components p(t) =

[p1(t) , p2(t)]T . Even though the coefficient functions lie on a
specific curve, the controller would have to cover the worst-case
scenario, andmake sure that all possible combinations of 1+p1(t)2

and p2(t) = p1(t) ṗ1(t) are stabilized, introducing unnecessary
design constraints and conservativeness.

Although recent LPV controller synthesis tools based on
Lyapunov theory can handle affine (Apkarian, Gahinet, & Becker,
1995), polynomial (Chesi, Garulli, Tesi, & Vicino, 2007) and
even rational (Apkarian & Adams, 1998) parameter-dependent
Lyapunovmatrices, dynamic dependence is not considered. Simply
put, a controller with a less complex parameter dependency is
easier to synthesize, and simpler to implement. Therefore, we aim
for a static LPV state space model, with polynomial basis functions
φi


p(t)


= p(t)i. Generally, any static, smooth functions a(p(t))

and b(p(t)) can be approximated arbitrarily well over the finite
interval [p−, p+] by a polynomial basis in p, so this assumption
does not pose a problem.

5.1. Exact static state space realization

Given a periodic time-varying differential equation (5), it is
possible to plot the coefficient functions with respect to the
scheduling vector. Proceeding in this way, we can get an idea of
which basis functions to use. If the resulting graph does not look
like a static function, a dynamic dependence on the scheduling is
needed. Note that this intuitive, graphic approach is limited in the
case ofmultiple scheduling variables, because the relation between
the scheduling vector p(t) and the coefficients θ(t) becomes a
multiple-input single-output function, that generally will be non-
linear and dynamic, which is hard to visualize. However, once a set

Fig. 4. Local LTI characteristics of the antiresonance system (38). Both the
resonance and the antiresonance frequency shift considerably. Even more, the
damping coefficients adapts as well.

of basis functions φi

p(t)


is chosen, a (regularized) least squares

approximation can be readily computed (for example using lasso),
whether there are multiple scheduling variables or just a single
one.

Let us briefly assume that the coefficient functions a(p(t))
and b(p(t)) of the LTV differential equation (5) can be fitted
with polynomials φi


p(t)


= p(t)i of an appropriate order.

If Assumptions 18 and 19 hold, a minimal, static state space
realization can be obtained via the transformation (33)–(34). Since
the identification method (Louarroudi et al., 2014) is consistent,
and the realization step is exact, no additional optimization is
required.

5.2. Static state space approximation

It is possible that Assumptions 18 and 19 do not hold, or worse,
that the fitting of the time-varying input–output equation already
requires a dynamic mapping. In this case, we want to find a good
static approximation of the true (dynamic) state space model, by
fitting the realized time-varying state spacemodelwith static basis
functions, using (regularized) least squares, or some kind of matrix
norm.

If the time-varying differential equation does not meet
Assumptions 18 and 19, neither one of the transformations
(28)–(29) or (33)–(34) will result in a state space model that has a
dynamic dependence on the scheduling. It is hard to predict which
one will be ‘‘closer’’ to a static model.

6. Simulation example: the static state space approximation of
a third order LPV system

To illustrate the properties of the proposed indirect identifi-
cation method, we study a third order LPV system, with shifting
resonance and antiresonance frequencies, as well as a parameter-
varying damping. In this case study, the scheduling parameter
ranges between −1 and 1. We take N = 3000 samples at a sam-
pling rate of fs = 4.7747 Hz, meaning the frequency resolution is
f0 = fs/N = 0.0016 Hz. Fig. 4 shows some ‘‘frozen’’ LTI transfer
functions, where the scheduling signal is kept constant p(t) = p.
From Fig. 4, it can be seen that the eigenfrequencies vary signifi-
cantlywith respect to the Nyquist frequency fs/2, and the resonance
and antiresonance even cross one another.

The following third order differential equation is obtained by
interpolating a set of 21 frozen LTI input–output models, with a
third order polynomial in p(t):

(1 + p2)y(3)

+ (0.3289 + 0.5875p + 0.7903p2 + 0.4260p3)y(2)

+ (10.2539 + 10.2694p + 2.5970p2 + 0.0213p3)y(1)

+ (0.5120 + 0.5120p + 0.1280p2)y

= (0.0050 + 0.0400p2)u(2) + (0.0024 − 0.0016p)u(1)

+ (0.2880 − 0.3840p + 0.1280p2)u. (38)

This system is excited with a rich random phase multisine (see
Fig. 5) and the scheduling is a random phase multisine (1) with
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Fig. 5. Spectra (•) (in dB) for the LPV IO model (38), over the entire measurement
record. (left) The input is a random phase multisine (1), which has a flat amplitude
spectrum. (right) Corresponding output spectrum, for a scheduling signal∈ [−1, 1]
with 20 harmonic frequencies.

Fig. 6. Normalized time-varying coefficients ai(t) and bi(t), with respect to the
scheduling signal p(t). From these plots, we can deduce the polynomial order Np ,
and verify that the differential equation can be modeled with static coefficients.

20 harmonic components (K = 1, K = 20) where the amplitudes
Ak are chosen such that max |p(t) | = 1. The periodic steady state
response is measured with white output noise of 30 dB SNR. Fig. 5
shows the noisy output spectrum (•).

The LTV identification method (Louarroudi et al., 2014) is
consistent, andwe obtain a very good estimate of the time-varying
differential equation (38), given the trajectory p(t). The plots in
Fig. 6 correspondwith the true differential equation (38). Since the
scheduling signal is one-dimensional, the identified time-varying
coefficients can be plotted as a function of p(t). This allows us to
verify that the differential equation is static with respect to the
scheduling, and it can bemodeled with a polynomial basis of order
3 and 2 for ai(t) and bi(t), respectively.

As indicated in Louarroudi et al. (2014), the limitation of the
LTV approach lies in the number of estimated parameters. Each
additional frequency of p(t) that has to be estimated, is combined
with the others via the polynomial nonlinearities. This results in
(Na + 1)Np + (Nb + 1)Np additional complex model parameters.
Note that it is possible to estimate a fast (but periodic) time-
varying model. Given the scheduling frequencies and the chosen
basis functions, only the required harmonics can be selected
in the identification procedure, reducing the number of model
parameters. Experiment design is therefore important.

Since the time-varying model does not meet Assumptions 18
and19,we cannot find a static state spacemodel using Theorem20.
Therefore, it is not necessary to relate the scheduling parameter
and the time-varying coefficients yet. Instead, either one of the
canonical forms (28)–(29) or (33)–(34) can be used on the LTV
input–outputmodel, to obtain an exact LTV state spacemodel. Both
methods will result in an LPV model with a dynamic dependence
on p(t).

Fig. 7 shows the nonlinear dynamic relation between the re-
alized time-varying state space coefficients, using the transfor-
mation (33)–(34). The A[i,j](p(t)) functions are static, because the
identified differential equation (38) is polynomial in p(t). However,
the B[i,j](p(t)) coefficients becomemore complex, and even require
a dynamic mapping in the case of B[2,1](p(t)). Clearly, a static ap-
proximationwith polynomial basis functions φi


p(t)


= p(t)i can-

not be exact. Nevertheless, the obtained LTV SSmodel is fitted by a

Fig. 7. Realized time-varying state space coefficients ( ) A[i,j](t) and B[i,j](t),
plotted against the scheduling signal p(t). The static parameter-varying coefficients,
obtained via least squares regression with a polynomial basis functions φi


p(t)


=

p(t)i are shown on top ( ).

simple least squares regression, to serve as initial estimate for the
optimization routine of Section 3.

Fig. 8 shows the output spectrum (•) and the model error
( ), for the initial static approximation. Although the error is an
order of magnitude smaller then the output, it is still far above
the noise floor, which lies round −85 dB. After the optimization,
which uses a full (polynomial) parametrization of the state space
matrices, the residual drops down close to the noise level ( ). The
model is not perfect, but it can approximate the parameter-varying
input–output dynamics quite well, for the maximum scheduling
frequency of 0.03183 Hz.

Fig. 9 plots the true output signal and the model error in
the time domain, together with the scheduling trajectory used in
the identification step. For small values of p(t) ≃ −1, a sharp
resonance peak appears at low frequency, which is consistent with
the frozen LTI snapshots in Fig. 4.

The original, direct state space identification method performs
poorly in this example. Because the scheduling parameters is
moving quite fast, the effect of the time variations start to affect
the output spectrum at other excited lines. A simple LTI model
just cannot grasp this complexity, and the initial fit will be poor,
resulting in a large output error ( ), even after the optimization.
Indeed, a good initial estimate is paramount.

Fig. 10 shows the performance of the identified LPV state space
model on a validation set. An independent randomphasemultisine
was applied at the input, and the scheduling trajectory follows a
triangle wave. Since the model is not exact, new data cannot be
predicted exactly. To avoid overfitting, it is a good idea to supply
the optimization routine with multiple datasets, if possible.

In summary, the identified approximate static LPV state space
model explains the differential equation (38), with polynomial
parameter variation, pretty well, even though an exact state
space model would have required a dynamic dependence on the
scheduling signal.
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Fig. 8. (left) True output spectrum (•) of the initial static approximation, given the
time-varying state space realization of (38). The error ( ) lies far above the noise
standard deviation ( ). (right) Optimized polynomial state space model. The error
( ) of the indirect method is comparable with the noise level ( ). The error of the
optimized BLTI model ( ) cannot reach the noise floor.

Fig. 9. True output ( ) and scheduling signals ( ) in the time domain. The
prediction error of the polynomial state space model is shown in red ( ).

Fig. 10. (left) True output spectrum (•) and model error ( ) of the estimated LPV
state space model, for the triangular validation scheduling trajectory (right). The
error increases a little w.r.t. Fig. 8, but the order of magnitude is still similar to the
noise standard deviation ( ).

7. Conclusion

In this paper, we have given an overview of recent work
on frequency domain modeling of parameter-varying state space
models. If the time variation and the input are periodic and
synchronized, we have shown that the resulting equations become
structured and sparse in the frequency domain.

In a first attempt, the optimization routine started from the
best linear time-invariant approximation. This approach works
well when the parameter variation is slow and small with respect
to the dynamics of the system. Alternatively, it is possible to
extract a minimal canonical state space representation, via the
well-established identification of a general periodic time-varying
differential equation. However, the model coefficients then have
a dynamic dependency on the scheduling, which is undesired for
control design. Note that currently there is no proof that a static
state space realization exists, let alone a minimal one. Through
the general time-varying input–output model, we can visually
inspect the relation between the obtained model coefficients and
the scheduling signal. This gives us a qualitative measure for the
influence of the scheduling dynamics.

Because the targeted application is LPV control, the emphasis
was put on the identification of an LPV state spacemodelwhich has
a simple static relation with p(t). By using only a polynomial basis
in p(t), we can already obtain a reasonable static approximation.

Nevertheless, if the parameter variation becomes faster, fitting the
time-varying state space coefficients with only static functions
will result in a crude initialization. However, thanks to the over-
parametrization of a state space model, we have not experienced
convergence problems.

The proposed identification techniques were verified on a
third order simulation example, with no exact static state space
counterpart. In the presence of additive noise on the output,
the proposed identification method is still able to obtain a
decent approximate polynomial LPV SS model, as shown on an
independent validation dataset.

In future research, we aim to relax the periodicity conditions
on the input. The LTV identificationmethod of Lataire and Pintelon
(2011) can already handle non-periodic, noisy inputs and outputs.
Recently, the state space identificationmethod of Goos et al. (2014)
was extended to handle arbitrary inputs as well (Goos, Lataire, &
Pintelon, 2015). Therefore, the main idea of this paper should still
be applicable.

Appendix. The error covariance matrix Ce in the presence of
input noise

The definition of the output error follows from (12)–(13):

e = Y −


(E − α Px)−1β + δ


Pu U . (A.1)

Subsequently, the output error covariance is given by

Ce(θ) =

IN −B

 
CY CYU

CH
YU CU

 
IN

−BH


(A.2)

with IN an(N × N) identity matrix.
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