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A practical spreadsheet-based scheduling method is developed to determine the optimal allocation of

service agents to candidate tour types and start times in an inbound call center. A stationary Markovian

These staffing requirements populate a quadratic programming model for determining the distribution of

agent tours that will maximize the fraction of offered calls beginning service within a target response

time, subject to side constraints on tour type quantities. The optimal distribution is scaled to reflect the

total number of scheduled agents, and a near-optimal integer solution is derived using rounding

thresholds found by successive one-dimensional searches. This novel approach has been successfully

implemented in large service centers at Qwest Communications and could easily be adapted to other

operational environments.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many commercial enterprises and public agencies operate cen-
tralized call centers to provide effective and responsive service for
patrons. Mandelbaum [1] estimates that there are as many as 200,000
separate call centers operating in the United States, employing up to
4% of the national workforce (more than the entire agricultural
sector). About 70% of the operating cost of a typical call center is
attributable to personnel expense, so the economic efficiency of the
operation is determined primarily by the quality of the employee
scheduling process. For inbound call centers, the scheduling problem
is normally characterized by a highly variable demand pattern and a
requirement to assign service agents to ‘‘tours’’ that are constrained
by labor rules. The fundamental problem is to schedule tours such that
resulting time-varying staff quantities maximize the service level, or
achieve a target service level at minimum cost.

Efficient management of a modern call center involves decision
making (and supporting modeling and analysis) on three primary
time horizons: annual planning, monthly (or quarterly) scheduling,
and daily execution. Annual planning deals with strategic concerns
such as forecasting long-term call volume trends and associated
personnel requirements, managing an employee replacement pipe-
line, planning for volume seasonality, and conducting an annual
vacation bid. Daily execution encompasses tactical matters such as
consideration of schedule change requests, monitoring of schedule
compliance and center performance metrics, and responding to
unpredicted fluctuations in call volume by offering discretionary
time-off or overtime to appropriate agents. This article focuses on
ll rights reserved.
monthly scheduling, which involves confirming forecast volume and
total staff quantities, adjusting for nonproductive activity require-
ments (estimating agent ‘‘availability’’), creating a schedule, and then
populating the schedule with particular employees based on seniority
and preferences. We are specifically concerned with the technical task
of creating an optimal schedule, which is derived as an optimal
quantification of tours by type and start time.

The importance of the call center scheduling problem is indicated
by a large and growing body of relevant literature. Gans et al. [2]
present a cogent overview, and Mandelbaum [3] provides a compre-
hensive bibliography. Reported application areas include retail sales
[4], transportation [5], public services [6], and the telecommunica-
tions industry [7,8]. Solution approaches have incorporated diverse
management science methods such as mathematical programming
[9,10], analytical queueing models [11], simulation [12], dynamic
programming [13], genetic algorithms [14], and other heuristic
procedures [15]. Brigandi et al. [16] document deployment of a call
center modeling system that delivered $750 million in increased
annual profits for a diverse set of client enterprises. The system relied
on simulation as the primary modeling tool, but employed queueing
models to calculate staffing requirements and a network flow
approach to determine workforce schedules. In this article, we apply
queueing theory, quadratic programming, and a one-dimensional
search algorithm to derive and evaluate optimal schedules, all within
a practical spreadsheet implementation.
2. Determining staffing requirements

A forecast weekly demand profile for a typical call center can be
accurately constructed from historical data. Fig. 1a displays an
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Fig. 1. Typical parameter profiles. (a) Offered call volume, (b) average handling time and (c) staff availability.
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expected distribution of offered repair calls for a typical week and
product at Qwest Communications. For any future week, the
expected call volume vi for each 30-min operating interval
iA IDf1, . . . ,336g is determined as the product of the associated
profile value f v

i (where
P

iA If
v
i ¼ 1) and a forecast weekly volume V.

For the particular product depicted, the weekly volume varies
seasonally by about 30% from its low value in December to its peak
value in August. The distribution of call volume among intervals
within the week, however, is demonstrably invariant throughout
the year. Variability in realized call volume within an interval can
be treated as random, so the customer arrival process can be
modeled as a nonstationary Poisson process with an expected
number of arrivals vi. A similar approach is pursued to capture
interval-dependent variation in handling time. Fig. 1b displays
handling time profile values f h

i which are aggregated from annual
interval data and scaled such that

P
iA If

v
i f h

i ¼ 1. The profile
indicates the presence of recurring patterns including ‘‘shift
fatigue’’ (longer service time during high volume intervals), which
is commonly discerned [11]. Letting H be a specified average
handling time for a given future week, average handling time for
each interval i can be computed as hi ¼ f h

i H (the scaling of f h
i ensures

that
P

iA If
v
i hi ¼H). Finally, Fig. 1c displays a staff availability

profile, which captures interval-dependent variability in the aver-
age fraction of time a scheduled agent is actually available to
handle calls after accounting for nonproductive activities such as
absences, breaks, meetings, training, and other administrative
functions. The availability factor for interval i is computed as
ai ¼ f a

i A, where the profile values f a
i are similarly derived from

annual interval data and A is the average availability estimate for
the week (A must be a number between 0 and 1=maxiA Iff

a
i g, so that

0rair1,iA I). Since an efficient schedule will correlate interval
staffing levels with corresponding work volumes, the values f a

i are
scaled to ensure that

P
iA If

v
i f h

i f a
i ¼ 1 (so that

P
iA If

v
i f h

i ai ¼ A). By
decoupling H and A from their associated profiles, we can con-
veniently model trends and seasonalities in these factors which do
not appreciably affect their relative magnitudes across intervals.
We note that all three profiles must be periodically and simulta-
neously updated due to interaction between call volume, handling
time, available staff, and implemented schedules.

When the scheduling objective is to minimize total cost
(surrogated by staff size), an optimal schedule must ensure that
sufficient agents are assigned on each interval to satisfy a compo-
site service level requirement for each week of the relevant
scheduling period. Alternatively, when the staff size is specified,
the service level requirement can be iteratively adjusted until the
predetermined number of agents is employed in the optimal
solution. For scheduling purposes, we narrowly define service level
as the probability that a random customer will not wait more than a
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Fig. 2. Transition diagrams for queueing models. (a) Conventional model and (b) improved model (includes customer abandonment).
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specified time for agent contact. The probabilistic nature of the
call arrival and handling process suggests the application of an
analytical queueing model in predicting performance measures.
The standard approach when service times are short and the
service level requirement is high is to assume that each interval
quickly approximates steady-state conditions, and that the
intervals can be analyzed independently (the SIPP, or Stationary
Independent Period-by-Period, assumption). Green et al. [17,18]
describe conditions under which the SIPP assumption is reasonable
and suggest analytical remedies for variant situations. Under
SIPP, an interval with si available agents can be approximately
modeled by assuming an exponential distribution of handling
times with mean of hi seconds, and a Poisson call arrival rate of vi

per interval or li ¼ vi=1800 per second. A transition diagram for the
resulting Markovian birth–death process, commonly referred to as
an ‘‘Erlang C’’ model, is displayed in Fig. 2a. Letting Pi(n) represent
the stationary probability that n customers are in the system, local
balance equations for the process can be written as

Piðnþ1Þ ¼ PiðnÞlihi=ðnþ1Þ, 0rnosi ð1Þ

Piðnþ1Þ ¼ PiðnÞlihi=si, sirno1 ð2Þ

1¼
X1
n ¼ 0

PiðnÞ ¼
Xsi�1

n ¼ 0

PiðnÞþPiðsiÞ
X1
n ¼ 0

ðlihi=siÞ
n

¼
Xsi�1

n ¼ 0

PiðnÞþ
PiðsiÞ

1�lihi=si
ð3Þ

for lihi=sio1. Since
P1

n ¼ si
PiðnÞ can be replaced by a scaled

geometric series, closed-form expressions can be derived for all
standard performance measures (see Cooper [19, pp. 90–102]). For
example, letting Wi represent customer waiting time and t be the
target response time (e.g., 20 s), service level is computed as

PfWirtg ¼ 1�
ðlihiÞ

si expfðli�si=hiÞtg

ðsi�1Þ!ðsi�lihiÞ

� �

�
Xsi�1

n ¼ 0

ðlihiÞ
n

n!
þ

ðlihiÞ
si

ðsi�1Þ!ðsi�lihiÞ

( )�1

: ð4Þ

To determine an interval staffing requirement, we can initialize the
staffing level at si ¼ dlihie and then increment si until PfWirtg

exceeds a specified service level.
In modeling Qwest repair call handling centers, conservatism of
the conventional queueing model has been verified through
simulation-based performance analysis [20]. A significant weak-
ness of this approach is that customers are assumed to possess
infinite patience and, hence, can depart the queue only by entering
service. Consequently, when li4si=hi for any interval, an infinite
queue is predicted. Such intervals prohibit computation of an
average queue length or waiting time for the entire week.
Furthermore, in heavy traffic, even a small fraction of abandoning
customers can dramatically affect system performance. For these
reasons, explicit modeling of customer abandonment offers an
important improvement to the conventional model [2,21].

Analytical methods for incorporating customer abandonment in
queueing systems were first considered by Palm [22], and are
described by several authors including Riordan [23], Garnett et al.
[24], Stolletz [25], Feldman et al. [26], and Whitt [27]. Some of these
contributors consider general probability distributions for hand-
ling time and customer patience, but Brown et al. [21] demonstrate
that corresponding exponential models are often quite robust.
Fig. 2b displays a transition diagram for the revised birth–death
process, which is referred to as an ‘‘Erlang A’’ model in some recent
call center literature [2,18,28]. The model incorporates an expo-
nentially distributed customer patience with mean b, so the
associated balance equations are

Piðnþ1Þ ¼ PiðnÞlihi=ðnþ1Þ, 0rnosi ð5Þ

Piðnþ1Þ ¼ PiðnÞli=fsi=hiþðnþ1�siÞ=bg, sirno1 ð6Þ

1¼
X1
n ¼ 0

PiðnÞ: ð7Þ

The sum of higher order state probabilities for the revised model
cannot be represented by a geometric series, so closed-form
expressions for computing performance measures do not exist.
However, the death rate for the process must eventually exceed the
birth rate as n increases, at which point the state probabilities
decrease faster than geometrically. Therefore, we can truncate the
state space to an upper bound N that limits excluded probability to
a value less than an arbitrary parameter e (e.g., 10�5). Letting
r¼ li=fsi=hiþðN�siÞ=bg, it is clear that

X1
n ¼ Nþ1

PiðnÞoPiðNÞ
X1
n ¼ 1

rn ¼
PiðNÞr
1�r

ð8Þ
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for ro1. Hence, the following algorithm determines a truncation
state N and state probabilities PiðnÞ,nAf0, . . . ,Ng, such thatPN

n ¼ 0 PiðnÞ ¼ 1 and redistributed probability is less than e:
0%

20%

40%

60%

70%

Interval Loading

Improved Model
Service Level
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Fig. 3. Comparison of queueing model results.
PiðsiÞ ¼ 1
C¼1
for n¼ si�1 down to 0

PiðnÞ ¼ ðnþ1ÞPiðnþ1Þ=ðlihi)
C¼C+Pi(n)

next n

N¼si

r¼ lihi=si

do while rPiðNÞ4 ð1�rÞCe
N¼N+1

r¼ li=fðsi=hiÞþðN�siÞ=bg

PiðNÞ ¼ rPiðN�1Þ
C¼C+Pi(N)

loop
for n¼0 to N

PiðnÞ ¼ PiðnÞ=C

next n.
Note that the algorithm initiates pre-normalized probability
computation at a state with relatively high expected probability
(si), since numerical problems can occur when anchoring on a low
probability state such as 0 (see Smith [29]). With state proba-
bilities determined, expected queue length for interval i can be
calculated as

Qi ¼
XN

n ¼ siþ1

ðn�siÞPiðnÞ ð9Þ

and the fraction of abandoning customers can be derived as the
ratio of the average abandonment rate Qi/b over the customer
arrival rate; that is,

Bi ¼ Qi=ðbliÞ: ð10Þ

To compute the interval service level Li, we adapt a compact
recursive implementation of the foundational result derived by
Riordan [23] (see Avramidis et al. [30], p. 487):
D¼ PiðsiÞ

F¼1
G¼1
for n¼ siþ1 to N

G¼ Gfðsib=hiÞþn�si�1gf1�expð�t=bÞgðn�siÞ

F¼F+G

D¼DþFPiðnÞ

next n

Li ¼ f1�Dexpð�sit=hiÞgð1�BiÞ.
The last step of the algorithm enforces an optional rule (employed
at Qwest) that only non-abandoning customers can contribute
positively to service level (that is, service level for any interval i can
be at most 1–Bi). For noninteger staffing levels (a consequence of
applying an availability factor to scheduled staff), values of Qi, Bi,
and Li can be obtained by interpolating between corresponding
results for bsic and dsie. When determining an interval staffing
requirement ri, we can calculate an initial service level based on
si ¼ ½lihi�. We then increment or decrement si as needed until the
target service level is bracketed by the last two results, and
interpolate linearly between them to obtain ri. Since the expected
available staff on an interval need not be integer valued, similar
treatment of required staff is analytically appropriate. Additional
justification for non-integrality of ri follows from computational
reliance on expected values for the contributing parameters, which
will differ from the actual values observed in any particular
implementation.
Fig. 3 compares typical performance results for the Markovian
queueing models with and without customer abandonment. For
this illustration, t¼20 s, hi¼300 s, b¼300 s (where applicable),
si¼100, and li is parameterized to produce a range of loading levels
lihi=si between 70% and 150%. The comparatively high sensitivity
of the conventional model is noteworthy, with service level
dropping from nearly 100% at 80% loading to 0 at 100% loading.
In contrast, the improved model indicates a service level of about
70% at 100% loading with about 4% of customers abandoning. At
150% loading, the service level has decayed to nearly zero and, as
we would expect, one-third of the arriving customers abandon the
queue. Even though abandoning customers cannot themselves be
served, they significantly improve service level performance by
reducing system congestion precisely under those conditions when
the reduction is most beneficial.

All of the staffing computations described in this section can be
easily implemented in a spreadsheet environment, with VBA
modules employed to execute the algorithmic procedures. For
typical input parameters and e¼ 10�5, the truncation state N is less
than twice the magnitude of ri for a representative interval i. Hence,
the computation time required to obtain performance results for all
intervals is typically less than 1 s.
3. Schedule optimization

In any given week, repair service agents at Qwest must be
scheduled in shift groupings called ‘‘tours’’ that span multiple
intervals. Each tour is characterized by its combination of start
time, workday schedule, and shift pattern (standard or split). The
standard shift consists of 8.5 consecutive hours (8 h of work with
30 min for lunch), whereas the split shift consists of 12 consecutive
hours (4 h of work, 4 h off, and another 4 h of work). The split tours
are included in the eligible tour set because standard shifts alone
tend to provide an inefficient set of basis functions for accom-
modating the call volume profile. Not surprisingly, agents generally
prefer standard tours, so our model includes the capability to limit
the portion of agents p who are assigned to split tours. Eligible start
times align with a one-day interval lattice so that specified hours of
operation are maintained. For a call center open between 6 AM
(interval 13) and 11 PM (interval 47), the eligible start times Tj

would include f13,14, . . . ,30g for a standard tour j, and
f13,14, . . . ,23g for a split tour. A coverage parameter cij indicates
which intervals i are covered by tour type j when artificially
assuming a start time of midnight (interval 1). This parameter is
generally binary, though we represent the lunch period in each
standard tour with a 90-min notch ð. . . ,1:00,1:00,0:75,0:50,
0:75,1:00,1,00, . . .Þ rather than a 30-min slot ð. . . ,1:00,1:00,0:00,
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1:00,1,00, . . .Þ to acknowledge the likely tactical staggering of lunch
periods for agents scheduled for the same shift. Lunches could be
staggered explicitly by introducing more tour types, but the
resulting schedules would be far more complex and could create
agent expectations that inhibit tactical flexibility in responding to
unpredicted fluctuations in workload (for example, we may want to
delay some lunches until correction of a major outage that affects
service in a wide geographic area).

Diversity of available tours ensures that each agent works five
days in each week, Saturdays and Sundays are adequately staffed,
and higher volume days employ more agents. In any feasible
schedule, some agents may be assigned to simple Monday through
Friday tours (from the set denoted R5 for standard tours or S5 for
split tours). Other agents will be assigned a Saturday or Sunday tour
(from the set R1 for standard or S1 for split), along with a weekday
tour with a nonscheduled (NS) day (from the set R4 for standard or
S4 for split). Each agent’s weekday start time will not vary within
the week. However, an agent assigned to an NS day tour may have a
completely different tour type and start time on the assigned
Saturday or Sunday.

Our modeling objective is to generate a tour distribution such
that a staffing level of at least ri is achieved on each interval, while
minimizing the sum of squared normalized deviations between
available staff and required staff. This objective recognizes the
‘‘diminishing returns’’ property of performance improvement as
staffing increases, and therefore distributes staff surpluses as
evenly as possible throughout the week. The ancillary restriction
on the frequency of split tours p must also be enforced, along with
permissibility of weekend split tours as controlled by binary
parameter q (1¼yes, 0¼no). To capture these requirements, we
formulate a quadratic program in which the decision variable xjk is
the number of agents assigned to tour j with start time kATj. Letting
auxiliary variable yi be the staffing level for interval i, we write the
formulation

Minimize
X
iA I

yi�ri

ri

� �2

ð11Þ

Subject to yi ¼ ai

X
jAR[S

X
kATj

ci�kþ1,jxjk, iA I ð12Þ

yiZri, iA I ð13Þ

X
jAR4[S4

X
kATj

xjk ¼
X

jAR1[S1

X
kATj

xjk ð14Þ

X
jAS5[S4

X
kATj

xjkrp
X

jAR5[R4[S5[S4

X
kATj

xjk ð15Þ

X
jAS1

X
kATj

xjkrpq
X

jAR1[S1

X
kATj

xjk ð16Þ

xjkZ0, jAR [ S, kATj ð17Þ

where R¼ R5 [ R4 [ R1 and S¼ S5 [ S4 [ S1. By employing standard
optimization software, we can solve the quadratic program in a
fraction of a second on a personal computer. The optimal distribu-
tion of tour types and start times is then given by

zjk ¼ xjk

X
lAR5[R4[S5[S4

X
mATl

xlm

0
@

1
A�1

, jAR [ S,kATj: ð18Þ

To find an optimal schedule for a specified number of agents M, we
must first scale the optimal distribution given by Eq. (18) and then
convert the scaled result to an integer schedule. Enforcing integer
solutions within the formulation is impractical because of the
employment of a nonlinear objective function. Naive rounding is
not appropriate because there is no guarantee thatX
jAR5[R4[S5[S4

X
kATj

½Mzjk� ¼M: ð19Þ

Similarly, equality of NS and weekend tour quantities is not
assured; that is, we cannot be certain thatX
jAR4[S4

X
kATj

½Mzjk� ¼
X

jAR1[S1

X
kATj

½Mzjk�, ð20Þ

which is a requirement for a feasible integer schedule. Fortunately,
we can perform successive one-dimensional searches to find
upward rounding thresholds such that each of these conditions
is satisfied.

Fig. 4 illustrates the rounding process for a typical Qwest
scheduling problem with M¼360 agents. For this realization,
upward rounding of all Mzjk,jAR5 [ R4 [ S5 [ S4,kATj, (thresh-
old¼0.0) would schedule tours for 421 agents, whereas downward
rounding (threshold¼1.0) would schedule tours for 316 agents.
The relationship between the upward rounding threshold and the
resulting number of scheduled tours is obviously monotonic, so a
simple one-dimensional search algorithm such as interval bisec-
tion can be employed to quickly obtain a rounding threshold that
satisfies Eq. (19). Based on this threshold, the number of scheduled
NS day tours is 175. We then apply a similar process to produce a
rounding threshold for Mzjk,jAR1 [ S1,kATj, that schedules 175
weekend tours and therefore satisfies Eq. (20).

Letting xujk,jAR [ S,kATj, be the integer schedule produced by
the rounding process, the resulting staffing level for each interval i

is

yui ¼ ai

X
jAR[S

X
kATj

ci�kþ1,jxujk: ð21Þ

Due to imperfect correlation between interval work volumes and
staffing levels in any implemented schedule, the variability of ai

necessitates slight scaling of yui to ensure that the sum of available
staff across intervals is consistent with A�M. Letting K be the
number of intervals each agent covers during a week (typically 80),
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corrected available staff for each interval i can be computed as

si ¼ AMKyui=
X
jA I

yuj: ð22Þ

Interval performance measures Qi, Bi, and Li are then determined
through the methods described in the previous section. In addition,
available staff utilization is calculated as

Ui ¼ lihið1�BiÞ=si: ð23Þ

Composite performance measures for the entire week can then be
derived as

U ¼
X
iA I

lihið1�BiÞ=ðAMKÞ, ð24Þ

Q ¼
X
iA I

Qi=jIj, ð25Þ

B¼
X
iA I

f v
i Bi, ð26Þ

L¼
X
iA I

f v
i Li: ð27Þ

The efficiency of the schedule is
P

iA Iri=
P

iA Isi ¼
P

iA Iri=ðAMKÞ,
since a notional schedule where si ¼ ri,iA I, will be perfectly
efficient.

It should be emphasized that, when the total number of agents
M is prespecified, the realized composite service level may vary
substantially from the desired target (the model maximizes the
service level given the available resources). While our normal
Fig. 5. Spreadsheet implementat
operational objective is to optimally schedule a fixed number of
agents, we can also employ the model to determine the number of
agents required to achieve a target service level within the strategic
planning context described earlier. Various approaches for addres-
sing this problem have been offered by several authors including
Buffa et al. [7] and Koole and van der Sluis [31], but the parsimony
and high solution speed of our model suggest a very simple
algorithm. We begin by determining the total number of agents
required when scheduling efficiency is artificially assumed to be
100%; that is, let

M¼
X
iA I

ri=ðAKÞ

& ’
: ð28Þ

We then increment M and re-optimize the schedule until L exceeds
the target service level. With this approach, the required number of
agents and associated optimal schedule can be determined within a
few seconds of spreadsheet computation time.

4. Implementation and results

The complete method for determining an optimal schedule and
predicting performance has been implemented in a Microsoft Excel
spreadsheet environment. Fig. 5 displays key components of the
model, including a schedule matrix, global input parameters, a
performance summary, a coverage parameter matrix, and interval
performance results. The offered weekly call volume, which is one
of the global inputs, is generated from a forecasting model that
annualizes the volume (based on a seasonality profile), employs
exponential smoothing on annualized volume, and then reapplies
ion of the scheduling model.
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the seasonality effect. Tours can be entered manually and the
model will check for feasibility, alerting the user to discrepancies
through warning messages. An optimal schedule can be generated
by a single mouse click on the button beneath the global para-
meters. A second button initiates the iterative process for deter-
mining the number of agents required to achieve the input target
service level. Any optimal schedule can be modified manually, and
the effect on predicted performance can be immediately observed.

Error checking (type and range) is performed on all data inputs.
The split tour restriction input is selected from a drop-down list,
along with the binary input for permissibility of weekend split
tours. Optimal tour distributions are stored for each combination of
restrictions, which are created using baseline values for the global
input parameters. We employ this approach because, while
realistic variations in these values affect the scale of the required
staff curve, they do not appreciably affect its shape. Operationally,
the stored solutions are updated whenever new profiles are
entered for call volume, average handling time, and agent avail-
ability (typically, profiles are updated at least every six months for
stable products and associated centers). The resulting simple,
portable model has the added advantage of producing schedules
that do not exhibit radically different structures from one
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Table 1
Comparison of optimization methods.

IP minimum service level (%)

50 60

Total staff 391 402

IP CPU time (s)/Gap (%) 1/0.00 1/0.00

IP composite service level (%) 75.57 82.10

QP composite service level (%) 80.60 85.05

QP minimum service level (%) 44.18 49.94

Total staff 353 363

IP CPU time (s)/Gap (%) 1000/0.34 1/0.00

IP composite service level (%) 75.60 79.94

QP composite service level (%) 78.30 83.75

QP minimum service level (%) 47.00 46.98

Total staff 328 338

IP CPU time (s)/Gap (%) 258/0.00 1000/0.39

IP composite service level (%) 61.56 70.94

QP composite service level (%) 63.34 72.49

QP minimum service level (%) 42.57 51.67

Total staff 327 336

IP CPU time (s)/Gap (%) 1000/0.45 1000/0.42

IP composite service level (%) 61.11 68.27

QP composite service level (%) 62.87 71.13

QP minimum service level (%) 36.93 51.36
scheduling period to the next. For each period, tours from the
optimal schedule are assigned to individual agents in seniority
order based on submitted preference rankings for all tours.

The Qwest call center represented in Fig. 5 is open from 6 AM to 11
PM daily (overnight calls are routed to a single consolidated center
that handles multiple products). For the given input parameters, 360
scheduled agents ensure that 87.44% of offered calls are answered
within 20 s. For interval performance, the model predicts minimum
and maximum service levels of 74.93% and 99.26%, respectively. The
overall customer abandonment fraction is 1.77%, and the maximum
abandonment fraction for any interval is 5.03%. These abandonment
predictions align well with empirical experience.

The above results are based on a split tour restriction of 20%. As
indicated by Fig. 6, some split tours must be employed to produce
reasonably efficient schedules. With split tours completely prohib-
ited, a scheduling efficiency of 89.16% is realized and 389 agents are
needed to achieve the target service level of 80%. With split tours
completely unrestricted, efficiency increases to 99.67% and only 348
agents are required. For the unrestricted case, the model schedules 90
weekday split tours (26%) and 63 weekend split tours (38%). However,
as the figure illustrates, nearly all of the efficiency improvement can
be achieved with no more than 20% split tours. In practice, the model
is extremely valuable in providing this type of insight.

We also compared our optimization method with the tradi-
tional approach, which is to employ an integer programming model
and minimize the total number of scheduled agents while enfor-
cing staff requirements on all intervals. Unless the schedule is
perfectly efficient, some intervals will be overstaffed and the
composite service level will exceed the target. The interval service
level requirement can be iteratively modified to converge on a
composite target, but a new integer program must be solved at each
iteration. For the operationally normal case where the total number
of agents is specified, the agent population could be fixed by a
constraint and a different linear objective function could be
employed. For example, we could minimize the maximum normal-
ized surplus encountered on any interval. From our integer
programming experiments, we observe that the most effective
approach is to retain the objective of minimizing total staff, and
iteratively adjust the interval service level requirement (resolving
the model) until the optimal objective value is equal to the total
Split tour limit (%)

70 80

415 430

1/0.00 1/0.00

86.96 91.80 0

89.57 93.59

66.37 74.99

374 388

1/0.00 1000/0.39

86.36 91.49 10

88.75 93.39

62.24 74.94

348 360

1000/0.37 1000/0.29

78.48 86.21 20

79.97 87.44

62.78 74.93

346 358

1000/0.46 1000/0.49

77.35 85.65 100

79.12 86.62

62.10 74.02
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number of agents to be scheduled. Unfortunately, unlike our
quadratic programming objective, none of the implementable
integer programming objectives captures the nonlinear ‘‘diminish-
ing returns’’ property of queueing system performance.

Table 1 compares the service level performance of the quadratic
programming approach (QP) against a conventional integer pro-
gram (IP), parameterizing on the minimum interval service level
(which determines ri,iA I, for both methods) and the allowable
fraction of split tours. In this comparison, the total staff quantity is
determined by the integer programming optimization, and this
number is then employed as M in the competing quadratic
programming solution. All mathematical programs are solved
using CPLEX 11.2 software on a personal computer with a
2.26 GHz processor. The integer programs often require many
hours of CPU time to prove optimality (sometimes running out of
memory), so run times are restricted to 1000 s with the percent gap
between upper and lower bounds documented in the table (the gap
always closes to less than 1% within about 1 s, but we extend the
run time to strengthen the quality of the investigative comparison).
In every case shown, any suboptimality due to rounding is
dominated by the modeling advantage of the quadratic objective
function in maximizing the composite service level. The differences
range from 0.96% to 5.03%, with the rounded quadratic result
averaging 2.22% better than the integer programming result for the
same number of scheduled agents. The differentiation is generally
more pronounced when split tours are more severely restricted,
since the restrictions lead to less efficient schedules and, conse-
quently, larger staffing surpluses to be distributed (the integer
programming method distributes surpluses arbitrarily, without
regard for diminishing returns). While the table indicates lower
minimum service levels for the quadratic programming approach,
the average decrease of 7.63% from the integer programming
baseline is not excessive. Uniformity of service levels across
intervals is secondarily desirable, but the composite service level
is the primary performance metric.

It should be noted that, while the interval staffing constraint
imposed by Eq. (13) is required for the integer program, it is
optional for the quadratic programming approach. In preliminary
studies, we experimented with eliminating this constraint (and
consequently minimizing the sum of both squared normalized
surpluses and squared normalized shortages). This modification
yields slight improvement in composite service levels. However,
very low service levels can occur for some intervals under typical
scenarios, resulting in excessive nonuniformity of service and
weakened validity of the SIPP assumption. For the example
application shown in Fig. 5, removing the constraint marginally
increases the composite service level from 87.44% to 87.84%, but
markedly decreases the minimum service level from 74.93% to
52.02%. By retaining the constraint, we achieve more balanced
schedules by imposing a much stronger impediment to shortages
than to surpluses.
5. Concluding remarks

We have integrated queueing theory, quadratic programming,
and a variable-threshold rounding algorithm to develop a practical,
spreadsheet-based model for call center scheduling. The model has
been successfully implemented in several repair service centers at
Qwest Communications, resulting in substantial cost reductions
and near elimination of service level target misses. With the new
approach, we observe a 15–20% reduction in personnel require-
ments from those produced by previous scheduling methods. For
some centers, the model has been expanded to accommodate
additional tour types and varying operational practices. Hence, our
experience suggests that the approach is quite flexible and could be
applied to myriad call center environments including other repair
services, product delivery, public services, and retail sales.
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