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Abstract

The context of the problem tackled in this paper is a computer system composed by a single server and two
identical parallel machines. The processing times on the server are assumed to be unary and the objective is
to minimize the total completion time. The papers dealing with scheduling problems with a server generally
consider that the setup activities require simultaneously the server and the machine. In this paper, this constraint
is not considered and the studied problem is a two-stage hybrid 5ow shop with no-wait constraint between the
two stages. An algorithm that can solve optimally this problem in O(n log(n)) time is proposed. Finally, it
is shown that solving this problem optimally leads to an optimal solution to the problem without the no-wait
constraint.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Parallel processing has received a lot of attention these last years because of its e<ciency, which
is a crucial part in success of parallel computer systems. Hence, there is a necessity for developing
e<cient scheduling algorithms in computer systems. A classical con=guration is build with one
server of =les linked with clients by a network [1]. The =rst step of the parallelization consists in
dispatching on a designed client the code and the data of each program that can be parallelized.
For each program that has to be sent to a client, the server must, successively, read the code and
data on the hard disk and send them to the client by the network. In a =rst approximation these
two steps can be modeled by one task on the server. This assumption is not excessive because in
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such a context, the designer tries to balance the processing times on diGerent clients to obtain the
best performance of the parallelized execution. Then programs and data have often similar sizes and
as a consequence, reading and sending them takes similar times. The goal to achieve can be the
minimization of the maximum completion time if the user is waiting for fast result. But if the goal is
to use the network with the most e<ciency, the objective that has to be studied is the minimization
of the mean completion time or the sum of completion times.

We consider a deterministic scheduling environment with m identical parallel machines
M1; M2; : : : ; Mm and n jobs to schedule. Each job must be processed without preemption on a machine
to determine. Before its processing, a job has to be loaded on a machine. This loading activity or
setup activity, is performed by another special machine, called a server. After a setup, the server is
available again to perform another loading activity, that is to say a single server can handle only one
job at a time and can be considered like a single machine. The loading of a job must be immediately
followed by its processing. In this environment, we consider that setup times require a unit time
for any job. Moreover, we assume that the transfer times between the server and the machines are
non-signi=cant. The aim of this paper is to =nd a feasible schedule in an environment of m = 2
machines, and with minimum total completion time, which corresponds to the minimization of the
work in process in the network.

Many results of the last few years are issued from parallel machines scheduling problems with
server. Koulamas [2] proposes a beam search heuristic algorithm for a static environment with two
parallel processors and a single server where the aim is to =nd a feasible schedule which minimizes
the machine idle time resulting from the unavailability of the server. Kravchenko and Werner [3],
Hall et al. [4] and Brucker et al. [5] present a lot of complexity results for these problems. Glass
et al. [6] consider related models with parallel machines for which jobs are dedicated and provide
algorithmic, complexity and heuristic analysis results. Kravchenko and Werner [7] propose a heuristic
to minimize the sum of the completion times in the case of unit setup times and arbitrary processing
times. However, the problems tackled in these papers implicitly consider production environment
where the server can be a human operator, a robot or an automated guided vehicle. Hence, during
the loading operation, the performing machine cannot process another job. So, the loading activity is
usually considered like a multiprocessor task, that requires simultaneously the server and the machine
to be performed.

In a computer system, the server that send data to machines is called a network server. During
the loading activity, it is not necessary for the performing machine to be available: it can process
another job. Indeed, machines have a communication coprocessor which allows them to receive
server information at any time. So, in a computer system, the loading activity can be considered
like a job that requires only the server to be performed.

The computer system that we consider can be seen as a two-stage hybrid 5ow shop or multi-
processor 5ow shop, with a single machine at the =rst stage, which is the server and m parallel
machines at the second stage, with a no-wait constraint between the two stages. These problems
are known to be strongly NP-hard [8] even for their preemptive version [9]. Vignier et al. [10] and
Linn and Zhang [11] propose a state-of-the-art survey on hybrid 5ow shop scheduling problems.
However, most of the problems consider the makespan as criterion. In the case of the minimization
of the sum of completion times, Pinedo [12] shows that it is possible to =nd an optimal solution
using SPT rule, when all the operations of a job have the same processing times. Unfortunately, this
result is no longer valid under the hypotheses that we consider.
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In Section 2, the notations are introduced and a mathematical formulation is given for the general
problem (m machines). In Section 3, complexity results and resolution methods are given for two
particular cases where m = 2: the processing times at the second stage are all less than 1 and
the processing times at the second stage are all strictly greater than 1. In Section 4, we present a
polynomial reduction between parallel machine problems with server and hybrid 5ow shop problems.
In Section 5, a polynomial time algorithm is proposed to solve optimally the case where m=2, with
integer processing times. Finally, in Section 6 we show that this algorithm solves also optimally the
case without no-wait constraint.

2. Notations and mathematical formulation

2.1. Notations

According to the notation introduced in [13] and extended in [10], the hybrid 5ow shop problem
under consideration is denoted by FH2; (1; Pm)|nowait; pi;1 = 1|∑ Ci; the =rst =eld � indicates a
two-stage hybrid 5ow shop with a single machine at the =rst stage, m identical parallel processors
at the second stage. Fields � and � are the classical ones in scheduling literature.

We consider a set J of n jobs {i}16i6n to schedule on two stages. Each job i(16 i6 n) is
composed by two operations: the operation oi;1 processed at the =rst stage and the operation oi;2
processed at the second stage. We assume that preemption is not allowed and that each machine can
process only one operation at a time. We denote by pi;1 and pi;2 the processing times of operation
oi;1 and operation oi;2, respectively; we assume that pi;1 =1;∀i; 16 i6 n;p[‘]; j is the processing time
at stage j of the operation in position ‘ at the =rst stage (16 j6 2; 16 ‘6 n). In this paper, we
consider that the processing times at the second stage are positive integers. Ci refers to the completion
time of job i and Ci;j refers to the completion time of operation oi; j with 16 j6 2(Ci;2 = Ci). We
denote by Tk(16 k6m) the date before which it is not possible to perform a job on machine Mk
at the second stage. Because the processing times of the operations are unary at the =rst stage, we
have Tk = k;∀k.

Shortest processing time (SPT) is a non-decreasing order of the second stage processing times rule
and =rst available machine (FAM) schedules the current operation on the =rst available machine.
SPT/FAM denotes an O(n log(n)) resolution method [4] that sorts the jobs according to SPT rule
in O(n log(n)) time and then assign them according to FAM rule in O(n) time.

The notation Pm; S|si|� introduced by Hall et al. [4] represents the scheduling problems with a
server S and m parallel machines. As mentioned below, in these problems, setup si of job i must
be processed by the server and a parallel machine. In the following, we denote by PS-problems the
parallel machine problems with a single server under this constraint and FH2-problems the two-stage
hybrid 5ow shop problems for which this constraint is not valid.

2.2. Integer linear programming model

The data of the problem are: n; m and pi;j;16 i6 n; 16 j6 2. H is an arbitrary high value.
The variables are: ti; j; the starting time of operation oi; j;16 i6 n; 16 j6 2; xi;k equals to 1 if
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operation oi;2 is assigned to machine Mk and 0 otherwise, 16 i6 n; 16 k6m; yi;‘; j equals to 1
if job i precedes job ‘ at stage j; 16 i6 n; 16 ‘6 n; i �= ‘; 16 j6 2. The objective function is to
minimize

∑n
i=1 (ti;2 + pi;2).

Minimize
n∑

i=1

(ti;2 + pi;2) (1)

subject to
m∑

k=1

xi;k = 1; i = 1; : : : ; n; (2)

ti;2 = ti;1 + pi;1; i = 1; : : : ; n; (3)

t‘;1¿ ti;1 + pi;1 − H × (1 − yi;‘;1); i = 1; : : : ; n; ‘ = 1; : : : ; n; i �= ‘; (4)

ti;1¿ t‘;1 + p‘;1 − H × (yi;‘;1); i = 1; : : : ; n; ‘ = 1; : : : ; n; i �= ‘; (5)

t‘;2¿ ti;2 + pi;2 − H × (1 − yi;‘;2) − H × (2 − xi;k − x‘;k);

i = 1; : : : ; n; ‘ = 1; : : : ; n; i �= ‘; k = 1; : : : ; m; (6)

ti;2¿ t‘;2 + p‘;2 − H × (yi;‘;2) − H × (2 − xi;k − x‘;k);

i = 1; : : : ; n; ‘ = 1; : : : ; n; i �= ‘; k = 1; : : : ; m; (7)

ti; j¿ 0; i = 1; : : : ; n; j = 1; 2; (8)

xi;k ∈ {0; 1}; i = 1; : : : ; n; k = 1; : : : ; m; (9)

yi;‘; j ∈ {0; 1}; i = 1; : : : ; n; ‘ = 1; : : : ; n; i �= ‘; j = 1; 2: (10)

Constraints (2) ensure that each job is assigned to exactly one machine at the second stage.
The routing constraints and the no-wait constraint are formulated in (3). Constraints (4) and (5)
(respectively (6) and (7)) are the disjunctive constraints at the =rst stage (respectively at the second
stage). This model contains nm + 2n(n − 1) boolean variables and 2n positive variables and 4n +
(m+ 2)n(n− 1) constraints.

3. Particular cases

The problem under consideration is denoted by FH2; (1; P2)|nowait; pi;1 = 1|∑ Ci. For the
P2; S|si = 1|∑ Ci problem, Hall et al. [4] show that the SPT/FAM list algorithm returns an optimal
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solution. Unfortunately, when the multiprocessor constraint is released, i.e. when the loading activity
can be performed on the server, without the need of the performing machine, this algorithm is not
optimal. We detail in this section two particular cases of the problem FH2; (1; P2)|nowait; pi;1 =
1|∑ Ci: pi;26 1, ∀i; 16 i6 n and pi;2¿ 1;∀i; 16 i6 n and we show the optimality of algorithm
SPT/FAM for both cases. For the two following cases, we note that results remain valid when the
processing times at the second stage are real numbers.

3.1. Problem with pi;26 1;∀i; i = 1; : : : ; n

If we consider the problem with pi;26 1 ∀i; 16 i6 n, we have ∀i; 16 i6 n Ci=Ci;1 +pi;2. Thus∑n
i=1 Ci;2 is equivalent to

∑n
i=1 Ci;1, which is a constant because no idle time is introduced on the

machine at the =rst stage. This constant is equal to n(n + 1)=2. Thus, any semi-active schedule is
an optimal solution.

3.2. Problem with pi;2¿ 1;∀i; i = 1; : : : ; n

We consider that pi;2¿ 1 for all jobs and we propose a list algorithm based on SPT/FAM rule.
’ denotes the sequence SPT.

Theorem 1. Problem FH2; (1; P2)|nowait; pi;1 = 1; pi;2¿ 1|∑Ci can be solved optimally in
O(n log(n)) time by SPT/FAM algorithm.

Proof. We have seen that the second operation of the =rst job cannot start before time 1 and of the
second job before time 2. Hence, without loss of generality, we set T1 = 1 and T2 = 2. We therefore
consider the problem as a two-parallel-machine scheduling problem where M1 is available at time
T1 = 1 and M2 at time T2 = 2.
M1 is the FAM, so ’(1) is assigned to M1. Because p’(1);2¿ 1, M2 becomes the FAM. Then,

’(2) is assigned to M2 and because p’(1);26p’(2);2 and T1¡T2, M1 becomes the FAM. And so
on, jobs are assigned alternatively on M1 and M2. It follows that the completion times of any two
jobs cannot be equal, and because pi;2¿ 1 ∀i; 16 i6 n, the no-wait constraint with the =rst stage
cannot lead to an idle time on M1 or on M2. Consequently, the solution returned by SPT/FAM at
the second stage is equivalent to the optimal solution of the P2‖ ∑

Ci problem where machine M1

is available at time T1 = 1 and M2 at time T2 = 2 [14]. Thus, it also generates an optimal schedule
for problem FH2; (1; P2)|nowait; pi;1 = 1; pi;2¿ 1|∑ Ci.

Corollary 2. Theorem 1 cannot be applied when at least one operation has a processing time at
the second stage smaller than or equal to one.

Proof. The proof of Theorem 1 does not hold if one job is such that pi;26 1 because in this case,
idle times can be introduced on M1 and M2 and the result is then no more valid. In Fig. 1, we
present an example where SPT/FAM does not return the optimal solution.
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Fig. 1. Example where SPT/FAM is not optimal.

4. Reduction

In this section, we present a polynomial reduction that shows that a two-stage hybrid 5ow shop
problem with a single machine at the =rst stage, m parallel machines at the second stage, a no-wait
constraint between the two stages and equal processing times at the =rst stage, is at least as di<cult
as the m parallel machine problem with a single server and equal setup times. This reduction is
applicable to the total completion time criterion.

Theorem 3. For �∈ {m; ◦}, setup times si all equal and arbitrary processing times pi, the problem
P�; S1|si = s|

∑
Ci reduces polynomially to FH2; (1; P�)|pi;1 = s; nowait|∑ Ci.

Proof. Consider the following decision problems P� and FH2.
Problem: P�
Instance: n jobs, {pi}16i6n the processing times, s and B two positive integers.
Question: Can we =nd a feasible schedule to the P�, S1|si= s|− problem with a total completion

time less than or equal to B?
Problem: FH2
Instance: n′ jobs, pi;1 = p; ∀i; 16 i6 n′ and {pi;2}16i6n′ the processing times at the second

stage and a positive integer B′.
Question: Can we =nd a feasible schedule to the FH2; (1; P�)|pi;1 = p; nowait|− problem with a

total completion time less than or equal to B′?
It is clear that the decision problem FH2 ∈NP because we can check a positive answer in

polynomial time.
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Fig. 2. Schedule S constructed from schedule S′.

We construct an instance I of the problem FH2 by the following polynomial transformation:
n′ = n;pi;1 = p= s; ∀i; 16 i6 n; pi;2 = pi + si; ∀i; 16 i6 n; B′ = B+ n ∗ s.

Suppose that the answer to P� is ‘yes’, and let S be a feasible schedule for the problem P�.
Then we have

∑n
i=1 Ci(S)6B. We build from S a feasible solution to FH2 as follows: the setup

activities of P� are assigned to the machine at the =rst stage, and the assignment of the operations
to the machines is not changed. This solution is called S ′, and C ′

i denotes the completion time of job
i in S ′. In S, the diGerence between the starting times of an operation j and its preceding operation
i on a machine is always greater than or equal to pi + s. Then, even with the no-wait constraint, it
is possible in S ′ to assign to the operations at the =rst stage, the starting times of the corresponding
setup activities in S. Then, because of the no-wait constraint, we have C ′

i = Ci + s; ∀i; 16 i6 n.
Thus

∑n
i=1 C

′
i =

∑n
i=1 Ci + ns.

Because
∑n
i=1 Ci(S)6B;

∑n
i=1 C

′
i (S

′)6B+ ns⇒ ∑n
i=1 C

′
i (S

′)6B′ and the answer to FH2 is
‘yes’.

Suppose now that the answer to FH2 is ‘yes’, and denote by S ′ a feasible solution to the problem
FH2. Then we have

∑n
i=1 C

′
i (S

′)6B′ for this solution S ′. Because pi;2 =pi+s; ∀i; 16 i6 n in S ′,
the diGerence between the starting time of an operation j and its preceding operation i on a machine
is always greater than or equal to pi+s. Thus in S, after reducing the processing time of i to pi, it is
always possible to introduce a setup activity with processing time s before j. Thus in S, the starting
times of the operations are the same as in S ′, and then Ci = C ′

i − s; ∀i; 16 i6 n (see Fig. 2).∑n
i=1 C

′
i6B

′ ⇒ ∑n
i=1 Ci + ns6B+ ns⇒ ∑n

i=1 Ci6B and then the answer to P� is ‘yes’.
So, the problem P� reduces polynomially to problem FH2: P�˙ FH2.

So, because the P2; S1|si=s|
∑
Ci problem is NP-hard [4], we deduce that the FH2; (1; P2)|pi;1 =

p; nowait|∑ Ci problem is NP-hard. Moreover, solving the FH2; (1; P2)|pi;1=p; nowait|∑ Ci prob-
lem with pi;2 real numbers is equivalent to solve the FH2; (1; P2)|pi;1 =p; nowait|∑ Ci where pi;2
are positive integers. Because this problem is NP-hard, the FH2; (1; P2)|pi;1 = 1; nowait|∑ Ci prob-
lem with pi;2 real numbers is NP-hard.

5. Polynomial algorithm

We consider Algorithm 1 presented in Table 1. This algorithm splits the jobs in three sets and
sorts one of them according to SPT rule in O(n log(n)) time and then assigns the jobs according
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Table 1
Algorithm 1

1. #1 = 1; #2 = 2.
2. Determine sets A; B and C.
3. While (A ∪ B ∪ C �= ∅) Do
4. Let Mk be the machine such that #k = min{#1; #2}.
5. If (C �= ∅) then
6. Schedule a job i of C on Mk .
7. C = C \ {i}.
8. Else
9. If ((|#1 − #2| = 1 and B �= ∅) or A �= ∅) then

10. Schedule the =rst job i of B on Mk .
11. B = B \ {i}.
12. Else
13. Schedule a job i of A on Mk .
14. A= A \ {i}.
15. End If
16. End If
17. #k = #k + pi;2.
18. EndWhile.

to FAM rule in O(n) time. Thus, its complexity is in O(n log(n)) time. #s; #1 and #2 refer to the
completion time of the last job on the server, on M1 and M2, respectively. (#s; #1; #2) is called the
pro=le of the partial schedule.

We de=ne sets A; C and list B by A = {i|pi;2 = 1}; C = {i|pi;2 = 2} and B = {i|pi;2¿ 2}, where
B is sorted in non decreasing pi;2 order. The idea is to place judiciously the jobs with pi;2¡ 2 in
order to =ll in idle times at the =rst stage, created by the longest pi;2. Doing like this iteratively
reduces the total completion time. Indeed,

∑n
i=1 Ci;2 =

∑n
i=1 Ci;1 +

∑n
i=1 pi;2 because of the no-wait

constraint and
∑n
i=1 Ci;1 =n(n+1)=2+

∑n
i=1 (n− i+1)%i, where %i is the idle time between job i−1

and job i on the server at the =rst stage. Thus minimizing
∑n
i=1 Ci;2 is equivalent to minimizing∑n

i=1 (n− i + 1)%i.
In the following, we denote by C the list of completion times of jobs at the second stage, sorted

in non-decreasing order: C[‘] denotes the ‘th completion time. By extension, the job in position
‘ in C denotes the job with the ‘th completion time in C.

Lemma 4. For any schedule, we have

∀k; 26 k6 n : T1 + T2 +
k∑

i=1

p[i];26C[k−1] + C[k];

where p[i];2 refers to the processing time at the second stage of the job in position i in C.

Proof. Suppose, without loss of generality, that the job in position k in C is assigned to the =rst
machine. Let ‘ be the last job that completes before C[k] on the second machine.

If there is no such job ‘, the =rst job which is assigned to M2 completes after the job in position
k in C, and this job has a position greater than k in C. Thus, C[k] =T1 +

∑k
i=1 p[i];2 and C[k−1]¿T2
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and C‘¿T2. Indeed, we have seen that the second operation of the second job cannot start before
time T2 = 2, because the processing times of the operations are unary at the =rst stage. Then
T1 + T2 +

∑k
i=1 p[i];26C[k−1] + C[k].

Otherwise, all jobs in position 1; : : : ; k in C =t on the two machines between T1 and C[k] on
M1 and T2 and C‘ on M2. But we have C[k−1]¿C‘ due to the de=nition of C. Then C[k]¿T1 +∑
i∈’1
p[i];2 where ’1 = {i∈C|o[i];2 is processed onM1}. In the same way, C‘¿T2 +

∑
i∈’2
p[i];2

where ’2 = {i∈C|o[i];2 is processed onM2}. Then T1 + T2 +
∑k
i=1 p[i];26C[k−1] + C[k].

Theorem 5. Algorithm 1 returns an optimal solution to the FH2; (1; P2)|nowait; pi;1 =
1|∑ Ci problem.

Proof. In set B, jobs are sorted in nondecreasing order of their processing times at the second stage.
Let us de=ne �= |{i|pi;2 = 2}|.

According to Algorithm 1, during the =rst � steps, all jobs i in C with pi;2 = 2 are scheduled
on M1 and on M2 alternatively. So, at an arbitrary step v6 �, the partial schedule has a pro=le
(v; v+ 1; v+ 2) or (v; v+ 2; v+ 1) and the server (at the =rst stage) performs jobs without idle time
in [0; v].

After step �, jobs in A are not scheduled. At step (� + 1), Algorithm 1 schedules the =rst job ‘
of B with p‘;2¿ 2, in the time interval [�+ 1; �+ 1 +p‘;2]. At step (�+ 2), Algorithm 1 schedules
a job of A in [� + 2; � + 3] and iterates with jobs of A until the partial schedule has a pro=le of
type ('; '+ 1; '+ 2) or ('; '+ 2; '+ 1) with '= �+ p‘;2 − 1. Then, Algorithm 1 schedules the next
job of B and the process iterates until set A or set B is empty. Suppose that set B is empty. Then,
Algorithm 1 schedules jobs of A consecutively on the same machine. Because there is no idle time
on the server and because

∑n
i=1 Ci;2 =

∑n
i=1 Ci;1 +

∑n
i=1 pi;2, the schedule is optimal. Suppose set

A is empty. At this moment, say at iteration ', the pro=le of the current schedule is ('; ' + 1; '′),
with '′¿ ' + 2 (see Fig. 3). Then, the remaining jobs of B are scheduled according to SPT/FAM
algorithm. We denote by � the number of unscheduled jobs at step ', i.e. �= n− '. � is either odd
or even and we set �= 2k + h with h∈ {0; 1}. We have

n∑

i=1

Ci =
'+h∑

i=1

C[i] +
n∑

i='+h+1

C[i]:

• Let us consider the =rst '+ h jobs.
'+h∑

i=1

C[i] =
'+h∑

i=1

C[i];1 +
'+h∑

i=1

p[i];2:

The value
∑'+h
i=1 C[i];1 cannot be reduced since the server is working without idle time in [0; '+ h].

Thus,
'+h∑

i=1

C[i];1 = p[1];1 + p[2];1 + · · · + p['+h];1 =
('+ h)('+ h+ 1)

2
= K

⇒
'+h∑

i=1

C[i] = K +
'+h∑

i=1

p[i];2:
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Fig. 3. Example of pro=le with h= 1.

The value
∑'+h
i=1 p[i];2 cannot be reduced since this sum contains the '+h smallest pi;2, thus

∑'+h
i=1 C[i]

is minimum.
• Let consider the second part of the schedule. Because jobs are scheduled according to SPT/FAM

algorithm, they are assigned alternatively to M1 and M2. Thus, there is no idle time on M1 and M2

and we have:

C[n] + C[n−1] = T1 + T2 +
n∑

i=1

p[i];2;

C[n] = C[n−2] + p[n];2;

C[n−1] = C[n−3] + p[n−1];2

⇒ C[n−2] + C[n−3] = T1 + T2 +
n−2∑

i=1

p[i];2

⇒ C[‘] + C[‘−1] = T1 + T2 +
‘∑

i=1

p[i];2; ∀‘; n− 2k + 26 ‘6 n: (11)

Lemma 4 indicates that T1 +T2 +
∑‘
i=1 p[i];2 is a lower bound for C[‘] +C[‘−1];∀‘; 16 ‘6 n, thus,

we deduce that

C['+h+1] + C['+h+2]¿ T1 + T2 +
'+h+1∑

i=1

p[i];2;

...

C[n] + C[n−1]¿ T1 + T2 +
n∑

i=1

p[i];2:
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We set

LB=
n− ('+ h)

2
× (T1 + T2) +

1
2 (n−('+h+1))∑

w=0

'+h+2w+1∑

i=1

p[i];2:

Because of Eq. (11), the schedule obtained by Algorithm 1 for jobs in position ' + h + 1 to n is
such that

∑n
i='+h+1 C[i] = LB, and thus is optimal.

For any schedule +;
∑n
i=1 Ci(+) =

∑'+h
i=1 Ci(+) +

∑n
i='+h+1 Ci(+). For the schedule +a obtained by

Algorithm 1,
∑n
i=1 Ci(+

a)=
∑'+h
i=1 Ci(+

a)+
∑n
i='+h+1 Ci(+

a). We have shown that ∀+;∑'+h
i=1 Ci(+)¿∑'+h

i=1 Ci(+
a) and ∀+; ∑n

i='+h+1 Ci(+)¿
∑n
i='+h+1 Ci(+

a). Thus, ∀+; ∑n
i=1 Ci(+)¿

∑n
i=1 Ci(+

a) and
so, the obtained value of

∑n
i=1 Ci(+

a) is optimum.

6. Extension of result

We show now that an optimal solution for the FH2; (1; P2)|pi;1 = 1; nowait|∑ Ci problem is also
an optimal solution for the FH2; (1; P2)|pi;1 = 1|∑ Ci problem.

Theorem 6. An optimal solution for the FH2; (1; P2)|nowait; pi;1 = 1|∑ Ci problem is also an
optimal solution for the FH2; (1; P2)|pi;1 = 1|∑ Ci problem.

Proof. We assume, without loss of generality, that jobs are numbered according to the sequence
on the machine at the =rst stage. Consider the problem FH2; (1; P2)|pi;1 = 1|∑ Ci. There always
exist an optimal solution where all jobs are performed at the =rst stage without idle times. We have
a positive idle time ,i between the completion time of oi;1 and the starting time of oi;2, for all
i = 1; : : : ; n. Thus ,i = Ci;2 − Ci;1 − pi;2; ∀i = 1; : : : ; n.

Because we have no idle time at the =rst stage, we have
n∑

i=1

Ci;2 =
n∑

i=1

Ci;1 +
n∑

i=1

pi;2 +
n∑

i=1

,i

⇒
n∑

i=1

Ci;2 =
n(n+ 1)

2
+

n∑

i=1

pi;2 +
n∑

i=1

,i = K ′ +
n∑

i=1

,i:

Note that ,i = Ci;2 − Ci;1 − pi;2 = Ci;2 − pi;2 − (Ci−1;1 + 1).
Let consider now the problem FH2; (1; P2)|pi;1 = 1; nowait|∑ Ci. According to the no-wait con-

straint, we have no idle time between the =rst operation and the second operation of any job.
However, we have a positive idle time %i between the completion time of operation oi−1;1 and the
starting time of operation oi;1, for all i= 1; : : : ; n. We denote by C ′

i the completion time of job i for
this problem. Thus %i = C ′

i;1 − C ′
i−1;1 − pi;1; ∀i = 1; : : : ; n.

Thus
n∑

i=1

C ′
i;2 =

n∑

i=1

C ′
i;1 +

n∑

i=1

pi;2;
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we have

C ′
i;1 =

i∑

j=1

pj;1 +
i∑

j=1

%j ⇒
n∑

i=1

C ′
i;1 =

n∑

i=1

i∑

j=1

pj;1 +
n∑

i=1

i∑

j=1

%j

⇒
n∑

i=1

C ′
i;1 =

n∑

i=1

(n− i + 1)pi;1 +
n∑

i=1

(n− i + 1)%i =
n(n+ 1)

2
+

n∑

i=1

(n− i + 1)%i;

thus
n∑

i=1

C ′
i;2 =

n(n+ 1)
2

+
n∑

i=1

pi;2 +
n∑

i=1

(n− i + 1)%i = K ′ +
n∑

i=1

(n− i + 1)%i:

Suppose that an optimal solution to the problem with the no-wait constraint is given by the
sequence +∗ at the =rst stage and the vector of completion times C ′

i;2(+
∗) at the second stage. The

sequence +∗ is optimal if and only if for all sequence + �= +∗ we have
∑n
i=1 C

′
i;2(+)¿

∑n
i=1 C

′
i;2(+

∗).
That is to say if and only if

∑n
i=1 (n − i + 1)%i(+)¿

∑n
i=1(n − i + 1)%i(+∗). We build a solution

for the problem without the no-wait constraint as follows: we keep the same sequence at the =rst
stage and we shift to the left the operations at the =rst stage if possible, so that there is no idle time
between the =rst and the last operation. The completion times at the second stage are unchanged
because of the resource constraints (otherwise the sequence +∗ would not be optimal for the problem
with the no-wait constraint). We have to show that this solution is optimal for the problem without
the no-wait constraint.

Let k be the =rst job of +∗ shifted to the left. We have ,k(+∗) = %k(+∗).
Let k + i be the i + 1th job of +∗ shifted to the left. We have ,k+i(+∗) =

∑i
j=0 %k+j(+

∗). Thus
n∑

i=1

Ci;2(+∗) = K ′ +
n∑

i=1

,i(+∗) = K ′ +
k−1∑

i=1

,i(+∗) +
n∑

i=k

,i(+∗)

⇒
n∑

i=1

Ci;2(+∗) = K ′ + %k(+∗) + (%k(+∗) + %k+1(+∗)) + · · · + (%k(+∗) + · · · + %n(+∗))

with ,i(+∗) = 0; ∀i; 16 i6 k − 1.
Thus

n∑

i=l

Ci;2(+∗) = K ′ +
n∑

i=k

(n− i + 1)%i(+∗):

Because of the de=nition of +∗ for all sequence +′, we have
n∑

i=1

(n− i + 1)%i(+′)¿
n∑

i=1

(n− i + 1)%i(+∗):

Because
n∑

i=1

(n− i + 1)%i(+∗)¿
n∑

i=k

(n− i + 1)%i(+∗)
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for all sequence +′,
∑n
i=1 Ci;2(+

′)¿
∑n
i=1 Ci;2(+

∗) and thus +∗ is an optimal sequence for the
problem without the no-wait constraint.

Thus we deduce that Algorithm 1 gives also an optimal solution to the FH2; (1; P2)|pi;1 =1|∑ Ci
problem.

7. Conclusion

In this paper, we consider a parallel machine scheduling problem with a server in a computer
system, modeled by a two-stage hybrid 5ow shop scheduling problem with a no-wait constraint.
We propose a mathematical formulation for the problem and we propose two polynomial time
algorithms for particular cases. We show that the two-stage hybrid 5ow shop problem is at least as
di<cult as the parallel machine scheduling problem with a single server. We deduce that the problem
under consideration with real processing times is NP-hard. However, with integer processing times,
we propose an O(n log(n)) algorithm that solves the problem optimally. Finally, we show that an
optimal solution to the two-stage hybrid 5ow shop problem with the no-wait constraint is an optimal
solution to the problem without the no-wait constraint.

The further directions of this work are to consider the problem with m machines, and to consider
the communication process between the operation on the server and the corresponding operation on
the machine, with more details.
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