
Accepted Manuscript

LBBSRT: An efficient SDN load balancing scheme based on server
response time

Hong Zhong, Yaming Fang, Jie Cui

PII: S0167-739X(16)30372-7
DOI: http://dx.doi.org/10.1016/j.future.2016.10.001
Reference: FUTURE 3173

To appear in: Future Generation Computer Systems

Received date: 22 May 2016
Revised date: 5 September 2016
Accepted date: 1 October 2016

Please cite this article as: H. Zhong, Y. Fang, J. Cui, LBBSRT: An efficient SDN load
balancing scheme based on server response time, Future Generation Computer Systems
(2016), http://dx.doi.org/10.1016/j.future.2016.10.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.future.2016.10.001

1

LBBSRT：An Efficient SDN Load

Balancing Scheme Based on Server

Response Time

Hong Zhong, Yaming Fang, Jie Cui*

School of Computer Science and Technology, Anhui University, Hefei, 230039, China

 [e-mail: cuijie@mail.ustc.edu.cn]

*Corresponding author: Jie Cui

Abstract—The response time is the most important factor determining user experiences in the service provision

model involving server clusters. However, traditional server cluster load balancing scheme are limited by the

hardware conditions, and cannot completely exploit the server response times for load balancing. In order to

effectively resolve the traditional load balancing schemes, we propose a load balancing scheme based on server

response times by using the advantage of SDN flexibility, named LBBSRT. Using the real-time response time of

each server measured by the controller for load balancing, we process user requests by obtaining an evenly

balanced server loads. Simulation experiments show that our scheme exhibits a better load balancing effect and

process requests with a minimum average server response times. In addition, our scheme is easy to implement, and

exhibits good scalability and low cost characteristics.

Index Terms—SDN, OpenFlow, load balancing, server response time

1 INTRODUCTION

 Achieving optimum load balancing is of significant importance whilst combating network

overhead issues in any distributed processing architectures. Service availability is paramount in

measuring end user satisfaction[1], which is heavily impacted by the level of achievable load

balancing among the process clusters. In general, a well-balanced load in the network helps to

optimize the utilization of the available resource by the ways of maximizing the throughput,

minimizing the response time, and avoiding overloading resources in the network [2]. For the

purposes of alleviating heavy-traffic network flux and reducing the risk of single server becoming

the main overhead contributor, many datacentres adopt dedicated hardware resources to achieve

load balancing whilst supporting a large number of users [3]. However, the increasing costs and

technical complications in the deployment of such hardware systems often require human

intervention to ensure consistent functioning of such strategies [4].

 Software-Defined networking (SDN) is one of the notable forms of computer networking [5][6],

facilitating a simple and conveniently maneuverable network flow control method requiring

minimal investment costs whilst availing maximum benefits for a massive number of users. SDN

controls the data transportation by deploying the network switches as a software implementation,

whereby a flow table lookup operation will be carried out whenever a data flow arrives at the

switches. Flow tables [7] ([Header: Counters: Actions]) are widely used in SDN. The headers and

counters of the flow table are updated accordingly whenever actions relevant to flow changes are

*Revised Manuscript with source files (Word document)
Click here to download Revised Manuscript with source files (Word document): LBBSRT-Revision-FGCS-D-16-00430.docClick here to view linked References

2

imposed. During this update process, the header information is usually recorded onto the database

and the OpenFlow switches process the data flow in accordance with the header records. Based on

the SDN model with a centralized controller, an OpenFlow switch [8] is designed with different

rules to control the network traffic using the header records. Balancing the network load at the

software tier is now practically realizable using the SDN facilitated flow control system. To this

end, Handigol [9] proposed plug, a load balancing model based on SDN. Based on the Openflow

environment, Kaur [10] achieved network load balancing using polling algorithm. Further, Zhang

[11] achieved the minimum number of connections in the network using the polling algorithm of

load balancing under the SDN framework. Shang [12] incorporated a middlebox based on the

SDN architecture to achieve load balancing by collecting the server information. Despite the

existing implementations of SDN to resolve high cost and poor flexibility issues in achieving

effective load balancing, notable drawbacks are still prevalent in the aforementioned schemes. To

add a few, Kaur and Zhang [10][11] applied traditional load balancing algorithms to the SDN

architecture, and so the two schemes cannot effectively reduce the server response time. Though

Shang [12] can effectively reduce the server response time, this scheme relies on the server

information which increases the complexities of the server architecture.

This paper proposes a new method of load balancing in SDN networks with the motivation of

enhancing the load balancing effect by reducing the server response time. In this paper, the server

response time is defined by the interval that begins from accepting user requests to responding to

user requests for server. If servers in a server cluster have several similar performances and

provide the same service, then for each server, the higher the load is, the longer the response time

is. Correspondingly, the longer the response time is, the higher the corresponding load is.

Therefore we propose a load balancing scheme based upon server response time. It can solve the

problem of the load balancing in the server cluster based on the server response time. Our

proposed approach effectively overcomes the drawbacks of the traditional methods, including high

cost, low reliability and poor extensibility. The contributions of the paper include:

 An effective load balancing scheme based on SDN architecture, using the real-time response

time of each server measured by an SDN controller.

 Realizing the potential implementation of our scheme by incorporating a floodlight controller

module in the scheme.

 Proving the effectiveness of our proposed scheme by evaluating the response time and

resource utilization metrics against the traditional schemes.

The rest of the paper is organized as follows: Section 2 reviews the existing traditional load

balancing schemes and introduces the background of SDN. Section 3 details the design of our

proposed scheme, LBBSRT (Load Balancing by Server Response Time). The performance

evaluation of LBBSRT is presented in Section 4. Section 5 concludes the paper.

2 RELATED WORKS

2.1 The traditional load balancing scheme

 The traditional load balancing schemes are categorized into four major types [12] such as based

on the client, based on the middle layer, based on the DNS, and based on the transport layer.

 In the load balancing scheme based on the client side, clients primarily collect every server

running parameters from the server clusters either periodically or non-periodically, and send a

request to different servers to achieve load balancing. Although this method can achieve a certain

3

degree of load balancing, it loses grip in large-scale server clusters due to a high degree of

coupling between client and the server.

 The most common method of load balancing based on the middle layer uses the reverse proxy

server. This proxy server requests the back-end servers to balance the load in the server clusters,

and also sends the cached data directly back to the clients. In some sense, this acceleration mode

accelerates the access speed of the static pages. The reverse proxy server can combine the load

balancing technology with the caching technology to enhance the performance. However,

developing a reverse proxy for each service is often a substantial demand. Usually reverse proxy

servers should maintain two connections: one connects to the client, and another connects to

server clusters. With the increasing number of concurrent connections, the reverse proxy server

itself will become the bottleneck of the system.

 Load balancing scheme [13] based on DNS configures a single domain for multiple IP

addresses in the server clusters. When a client requests a domain name service, the domain name

server uses the method of polling to allocate different servers for different clients, so as to achieve

the goal of load balancing. Load balancing based on DNS is simple and convenient, but

susceptible of several issues. For instance, DNS server is not aware of the difference among the

servers, and so cannot reflect the current state of the servers. But it is possible to send a

lightweight access to the idle servers while there is an increasing server load on currently utilised

servers. .

 The load balancing scheme based on transport layer sends the client's requests directly to the

load balancing server. The load balancing server will then forward the requests to the back-end

servers according to policies such as LVS [14], VS/NAT, etc. Although this approach balances the

server load, it often demands additional hardware resources and thus proven costly.

 Due to such hardware limitations, the load balancing among the server clusters is not only

complex but also expensive, and is susceptible of poor scalability. The emergence of SDN

architecture facilitates effective strategies to counteract such load balancing issues.

2.2 The SDN architecture

 SDN encompasses a decoupling layered architecture which segregates the data level access

from the control level access [15]. The control level includes the network operating system and

applications, while the data level incorporates standard protocol supports for the network

hardware equipment. The SDN process architecture can be categorized into a three-layer system

structure [16] including application, control and data. Rather than a simple extension of the

traditional network architecture, this three-layer structure of SDN is a disruptive innovation [17].

The centralized network control of SDN is effective in resolving the susceptible issues of the

traditional network devices. Moreover, SDN supports independent programming of the network

control system in the management mode, and instantaneous upgrading of which can also be

achieved by the network application interface. The application layer of the SDN architecture

provides users with a rich variety of API interfaces, which can be used to develop our own

development module with desired functionalities [18] based on individual business needs.

OpenFlow, one of the SDN mainstream southbound interface protocol [19], is one of the

fundamental elements required for building SDN solutions. OpenFlow is the first standard

communication protocol defined between the control layer and the infrastructure layer in SDN

architecture [20, 21]. OpenFlow uses the concept of flows to identify network traffic based on

4

matching rules that can either be statically or dynamically programmed by the SDN control

software. Switches are responsible for applying appropriate actions on the arriving packets and

update every action on their flow table entry. Using such entries in the flow tables, switches

simple forward packets without considering to construct or modify the flow tables. The SDN

controller will create and install a rule in the flow tables for the necessary packets. Also, the SDN

controller can manage the flow tables of all the switches simultaneously. OpenFlow-based SDN

architectures provide extremely granular control privileges, by the way of enabling the network to

react to real-time changes of both the application and the service users [22]. OpenFlow-based

SDN technologies can enhance the network bandwidth capabilities, can effectively handle the

dynamicity of the applications and can significantly reduce the operation and management

complexity [23]. The distinctive and innovative features of SDN support the development and

testing of novel forwarding strategies and network protocols effectively. There are three types of

message in OpenFlow: Controller-to-Switch, Asynchronous and Symmetric. Each message has

multiple sub message types, and two kinds of them are used in this paper which are Packet_out

and Packet_in respectively. Packet_out is the message that the controller sends to the switch. In

many cases, the controller needs to send packets to data plane. These packets it can be sent to the

switch in the way of being encapsulated as the Packet_out message. Packet_in is an important

message type in OpenFlow. If the data packet received by the switch is not matched with the flow

table or the controller is given as a specified port in the term of matched flow table as forwarding

action, the switch will encapsulate Packet_in message and send this data packet to the

controller[24].

2.3 The SDN controller

 The controller or network operating system is the heart of the SDN, which is responsible for

controlling and managing all the OpenFlow switches [25]. Some of the SDN controllers used

widely in academia and industry [26] are summarized as follows:

NOX is the first SDN controller, which is developed by Nicira [27]. It is the foundation for

many research projects during early SDN era.

Floodlight is created by Big Switch Network switches, and it is based on Beacon controller.

Ryu is originated from NTT in Japan. Ryu is based python and it is simple and easy to use..

OpenContrail is an open source controller written in C++ with a REST NBI, and it offers

integration plug-ins for cloud services such as Amazon, Openstack, and Cloudstack.

OpenDaylight and floodlight is based JAVA and has two major technical characteristics. One is

the use of OSGi architecture and the other is the introduction of SAL.

 We deployed the Floodlight SDN controller in our scheme.

3 THE DESIGN AND IMPLEMENTATION OF LBBSRT

 Usually, obtaining the response times of each server from a pool of servers is a tedious process

using the traditional network equipment. Such traditional schemes do not incorporate the server

response times whilst balancing the server loads. Instead, they simply ping the servers for

obtaining their reply time. Such strategies may not obtain the actual reply time of the server and so

are often not accurate. The segregation of the control plane and data plane in the SDN facilitates

obtaining the server response times accurately and effectively. Now, the traffic load can be

balanced among the servers utilizing the data obtained from the control plane. In this paper, we

5

propose a novel approach of realizing effective load balancing using the server response times

under the SDN architecture.

3.1 System model

 We develop our system model in the OpenFlow environment, as shown in figure 1. The system

is composed of three major parts described as follows. (1) Terminal equipment: server and client.

Client is the user's machine, usually of a large quantity. Any number of servers belonging to a

single server pool will be hosted on a single virtual IP address. For instance, there different servers

in the same server pool with IP addresses 10.0.0.1, 10.0.0.2 and 10.0.0.3 respectively, will be

referred with a common IP address as 10.0.0.1 for service provision. Users can obtain all the

services provided by the server pool by accessing the IP 10.0.0.1, controlled by the control plane.

All such control operations are transparent to the users. (2) Service network, which consists of

OpenFlow switches (used to connect users with the server) along with the other common switches.

Switches that connect to the server and the controller must support the OpenFlow protocol, which

is not required for the datacentre switches and other external network switches and routers. (3)

Decision platform contains the SDN controller, including several modules for facilitating different

functionalities. Decision platform includes the control plane of SDN, mainly composed one or

more SDN controllers depending on the number of active switches. .Some of the SDN controllers

used in practice today include NOX, POX Floodlight, etc. Some of them are open source and

some are commercial, the choice of the SDN controller is usually based on the server pools and

the configuration switches. In this paper, we use the floodlight controller which is open source.

Fig. 1 System model

3.2 Scheme description

 Traditional load balancing schemes mainly used Random, Round Robin, and Least Connections

due to the limitations of the hardware equipment. Such load balancing algorithms can only be used

6

in simple scenarios, and are not effective in a heterogeneous pool of servers. With the control

plane and the data plane being separated in the OpenFlow environment, software configurations

can be customised through the controller to achieve effective load balancing. Such strategy can be

applied to existing types of servers for a better load balancing effect. In this paper, we design a

load balancing algorithm in the OpenFlow environment, in which use the controller to obtain the

real-time response times of each server, which is then utilised to choose the server with minimum

or most stable response time. Because the server response time directly reflects the server load

capability, selecting server based on the response times helps to send user requests to the servers

operating under minimum server load to extract maximum performance. The concrete

implementation process is explained as follows.

3.2.1 Real-time measurement of server response time

This section describes our strategy of obtaining the server response time.

 Step1: Send Packet_out message to the switches. Once the system is initiated, the controller

sends multiple Packet_out messages to the switches with time interval t and records the

transmission time. The number of messages sent out is the same as the number of servers in the

resource pool. Each Packet_out message carries data packets whose source addresses are the

controller IP address, while destination address is assigned with each server IP.

 Step2: Switches handles the Packet_out message. When the OpenFlow switch receives the

Packet_out message sent by the controller, the switch will parse the data packets and sends these

data packets to each server.

 Step3: The server sends the reply message, from which the controller obtains the server

response time. After receiving the data packets sent from the controller, each server runs a

simulation of the client request and then sends a data packet with the source address assigned as

the server IP and the destination address assigned as the controller IP. Since this is a new event in

the flow table, the switch needs to send Packet_in message to the controller. Now the controller

obtains the arrival time of each server data packet by parsing the Packet_in message. As a result,

the controller obtains the response time of each server, and updates the database accordingly.

 Step4: Repeat Step1, step2, and step 3.

 The algorithm is described as follows:

Algorithm1: Measure server’s response time

1. While system startup do

2. If current time % t == 0 do

3. Send Packet_out to switches and record sending time sendT ;

4. End if

5. If receive a Packet_in message then

6. Parse message;

7. If the source address of the received packet is the server, the destination

 address is the controller then

8. Record the time arriveT of received message;

7

9. Calculate the response time by the formula sendarriveresponse T-TT  ;

10. Store response time;

11. Else

12. Send to other modules;

13. End if

14. End if

15. End while

Once the server response time is obtained by the controller, user requests are processed by

balancing the serer load, as described in the following sections.

3.2.2 The process of user request

This section explains our strategy of load balancing using the server response time.

 Step1: The controller handles the ARP messages. Users will send ARP_broadcast message to the

switches upon the first access since the switches do not contain flow tables for processing ARP in

order to send Packet_in message to the controller. The controller will then construct a virtual MAC

address, based on which, it sends a Packet_out message to the switches, and the switch sends the

ARP reply packet to the user terminal.

 Step2: The controller handles the user request. After users receiving an ARP reply packet, they

initiate a service request to the server, and the request process is similar to Step1. The controller will

also receive this user’s request service packet, and select the server with minimum or stable

response time according to obtained server data. The selection process is explained as follows.

 ①Using formula (1) and (2), we obtain the maximum value
maxT and minimum value minT of

the server response times for the current server cluster.

 maxT =Max },...,,,{ 0,0,30,20,1 nTTTT (1)

 minT =Min },...,,,{ 0030201 ，，，， nTTTT (2)

 where, ji,T is the response time of the th-i server in the j time interval before the current

time where each interval is t , and i,0T is the current response time of the th-i server.

 ②According to the obtained minT and maxT , we calculate | minT - maxT |. If | minT - maxT | <

λ, execute ③, otherwise execute ④. λ represents that the servers are of similar loads when the

response time difference is in the range of λ.

 ③ Now we obtain the standard deviation of each server’s response time by calculating the

standard deviation of m historical data of each server’s response time using formula 3. Then, we

will select the server with minimum standard deviation minS , then execute ⑤

2
_

1,

2
_

1,

2
_

0i,i)(...)(TTTTTTS mii  ）（
 (3)

8

 where,
_

T represents the average value of m historical data and
iS represents the

standard deviation of historical data for the i -th server.

 ④ Now, we select the server with minT .

 ⑤ The controller will send the flow table to the switches according to the selected server, then

user requests will be sent to selected server.

 The algorithm is described as follows:

Algorithm2: Handle user requests

1. If the controller receives a Packet_in message then

2. Parse message;

3. If data package for ARP request then

4. Controller sends Packet_out message reply ARP;

5. End if

6. If packet for user service request then

7. Based the formula (1), (2) obtain the current server in the cluster server response time

maximum and minimum value, maxT , minT ;

8. If maxmin -TT then

9. By the formula (3) select the standard deviation of the minimum value

 corresponding to the server;

10. Else

11. Select the minT corresponding to the server;

12. End if

13. Else

14. Send to other modules;

15. End if

16. End if

4 EXPERIMENT RESULT AND PERFORMANCE ANALYSIS

 In our experimental setup, the virtual switch is created by Open vSwitch. The floodlight is

chosen as the SDN controller. Due to the floodlight is a free open source, and add and delete

modules can be arbitrary used, so it provides much more convenience for our test. Three virtual

machines with identical configurations are assigned as servers to provide web services. In this

experiment, we let 30 clients to access to the server Moreover, the access frequencies of different

clients are usually not the same in the real world. So we set up two different access

frequencies.One is that each client sends a continuous HTTP request to the server, and another is

that each client sends a request every two seconds. WordPress is used to build a blog on three

servers. And then in the following three cases, we start these clients in 2 minutes randomly. On

9

another virtual machine, we use 30 clients to access the server under three different situations: (1)

12 clients send a service request to the server continuously, while 18 clients send a request

discontinuously; (2) 15 clients send a service request to the server continuously, while 15 clients

send a request discontinuously; (3) 18 clients send a service request to the server continuously,

while 12 clients send a request discontinuously. In the controller, we add two modules, one is used

to measure the server response time, and another is used to process the user requests and set flow

table. Figure 2, figure 3, figure 4 illustrate the server’s response time for a period after the

concurrent accesses reach the maximum value under the three situations respectively. There are a

lot of servers in a server resource pool, in our experiment, we select the average response time of

the servers as overall response time. The main purpose of load balancing is to avoid significant

system load deviation in the long time of running so as to enhance the system efficiency and

achieve a better user experience. Obviously, the effect of load balancing depends on the load and

response time of the server. So we choose these two parameters to compare with other schemes. In

this paper, we first evaluate the efficiency of our LBBSRT scheme against the traditional

round-robin and random schemes.

Fig. 2 The server’s response time in the first case

 In this case, the average server’s response time of the three schemes, Round Robin, Random

and LBBSRT are 0.831s, 0.857s, and 0.791s respectively.

Fig.3 The server’s response time in the second case

10

 The average server’s response time of the three schemes, Round Robin, Random and LBBSRT

are 0.954s, 0.996s and 0.892s respectively.

Fig.4 The server’s response time in the third case

 The average server’s response time of the three schemes, Round Robin, Random and LBBSRT

are 1.236s, 1.366s and 1.119s respectively. It is evident that the average server response times of

the server in LBBSRT is the minimum among the three schemes under the above three scenarios.

Also the polylines fluctuation of our LBBSRT scheme is stable and minimum, as shown in Fig.2,

Fig.3 and Fig4.This is because our scheme always chooses the server characterized with minimum

response time in order to provide services to the users. Moreover, round robin algorithm and

random algorithm does not consider the real-time status of the servers. As a result, the load among

all the server is balanced evenly and the server response time is reduced to minimum.

LBBSRT has significant advantages compared to other schemes in terms of the overall response

times. In order to achieve a more prominent load balancing effect in LBBSRT, we also extract the

CPU and memory utilization rates of each server when the system reaches the maximum number

of concurrent access. Figure 5, Figure 6 presents the CPU and memory usage graphs of the three

servers named h1, h2, h3 under Robin Round, Random and LBBSRT schemes.

Fig.5 CPU utilization

11

 Fig.6 Memory utilization

 From Figure 5, Figure 6, we observe a slight difference in memory utilization and CPU

utilization at 50% and 75% for the three servers respectively. The reason is that in our scheme, we

can use controller get the real-time response time of each server, and it is more difficult to achieve

in the traditional scheme. Our scheme always choose the server with minimal or the most stable

response time. The response time of the server is smaller or more stable, the corresponding server

load is lower or more stable. In comparison with the Round Robin and Random schemes, our

scheme exploits the server resources completely and thus achieves a much better effect of load

balancing. After comparing with the static load balancing scheme, we further add an experimental

contrast with zhang [11] based on the second cases. The experimental results are shown below.

Fig.7 The server’s response time

12

Fig.8 Resource utilization of Least-Connections

 From Figure 7, the average value of the server response time of zhang [11] is 0.936s which is

lower than the Round Robin and Random scheme. But compared to LBBSRT, it is still high. From

Figure 5, Figure 6 and Figure 8, we can also find that the load balancing effect of LBBSRT is

better than zhang [11].

5 CONCLUSIONS AND FUTURE WORK

 The emergence of SDN architecture provides us with a new train of novel prospects for solving

the prevailing issues in the traditional load balancing network. In order to solve the problems of

lower efficiency and higher deployments costs of load balancing in the traditional networks, this

paper proposes a dynamic load balancing scheme under the SDN architecture, using the controller

to obtain the real response time of each server ultimately to select a server with minimum or the

most stable response time. Our proposed scheme exploits the server resources and achieves a

much better load balancing effect in comparison with the traditional Round Robin and Random

schemes. Also, our schemes is cost effective than the traditional schemes, since we reduce the

requirements of hardware equipment by the way of software customizing approach. Although our

scheme solves the load balancing problem efficiently, there are still some limitations. We do not

take into account the issue of energy saving in the load balancing on the server. Accordingly, we

will further study how to save energy when achieve a balanced load so as to make a lot of more

sense in the future.

ACKNOWLEDGMENT

 The work was supported by the National Natural Science Foundation of China (No. 61572001,

No. 61502008), the Research Fund for the Doctoral Program of Higher Education (No.

20133401110004), the Educational Commission of Anhui Province, China (No. KJ2013A017), the

Natural Science Foundation of Anhui Province (No. 1508085QF132), the Tender Project of the

Co-Innovation Center for Information Supply & Assurance Technology of Anhui University (No.

ADXXBZ2014-7), and the Doctoral Research Start-up Funds Project of Anhui University. The

authors are very grateful to the anonymous referees for their detailed comments and suggestions

regarding this paper.

13

REFERENCES

[1] Huang Z, Liu J, Shen Q, et al. A threshold-based multi-traffic load balance mechanism in

LTE-A networks[C]//Wireless Communications and Networking Conference (WCNC), 2015

IEEE. IEEE, 2015: 1273-1278.

[2] Zha J, Wang J, Han R, et al. Research on load balance of service capability interaction

management[C]//Broadband Network and Multimedia Technology (IC-BNMT), 2010 3rd

IEEE International Conference on. IEEE, 2010: 212-217.

[3] Tian W, Xu M, Chen Y, et al. Prepartition: A new paradigm for the load balance of virtual

machine reservations in data centers[C]//Communications (ICC), 2014 IEEE International

Conference on. IEEE, 2014: 4017-4022.

[4] Musoll E. Hardware-based load balancing for massive multicore architectures implementing

power gating[J]. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 2010, 29(3): 493-497.

[5] Lopes F A, Santos M, Fidalgo R, et al. A Software Engineering Perspective on SDN

Programmability[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1255-1272.

[6] Hu F, Hao Q, Bao K. A survey on software-defined network and openFlow: from concept to

implementation[J]. Communications Surveys & Tutorials, IEEE, 2014, 16(4): 2181-2206.

[7] Bosshart P, Gibb G, Kim H S, et al. Forwarding metamorphosis: Fast programmable

match-action processing in hardware for SDN[C]//ACM SIGCOMM Computer

Communication Review. ACM, 2013, 43(4): 99-110.

[8] Naous J, Erickson D, Covington G A, et al. Implementing an OpenFlow switch on the

NetFPGA platform[C]//Proceedings of the 4th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems. ACM, 2008: 1-9.

[9] Handigol N, Seetharaman S, Flajslik M, et al. Plug-n-Serve: Load-balancing web traffic

using OpenFlow[J]. ACM Sigcomm Demo, 2009, 4(5): 6.

[10] Kaur S, Singh J, Kumar K, et al. Round-robin based load balancing in Software Defined

Networking[C]//Computing for Sustainable Global Development (INDIACom), 2015 2nd

International Conference on. IEEE, 2015: 2136-2139.

[11] Zhang H, Guo X. SDN-based load balancing strategy for server cluster[C]//Cloud Computing

and Intelligence Systems (CCIS), 2014 IEEE 3rd International Conference on. IEEE, 2014:

662-667.

[12] Shang Z, Chen W, Ma Q, et al. Design and implementation of server cluster dynamic load

balancing based on OpenFlow[C]//Awareness Science and Technology and Ubi-Media

Computing (iCAST-UMEDIA), 2013 International Joint Conference on. IEEE, 2013:

691-697.

[13] Xu Z, Huang R, Bhuyan L N. Load balancing of dns-based distributed web server systems

with page caching[C]//Parallel and Distributed Systems, 2004. ICPADS 2004. Proceedings.

Tenth International Conference on. IEEE, 2004: 587-594.

[14] Tong R, Zhu X. A load balancing strategy based on the combination of static and

dynamic[C]//Database Technology and Applications (DBTA), 2010 2nd International

Workshop on. IEEE, 2010: 1-4.

14

[15] Yu S. IEEE APPROVES NEW IEEE 802.1 aq™ SHORTEST PATH BRIDGING

STANDARD[J]. IEEE. Retrieved, 2012, 2.

[16] Shin M K, Nam K H, Kim H J. Software-defined networking (SDN): A reference architecture

and open APIs[C]//ICT Convergence (ICTC), 2012 International Conference on. IEEE, 2012:

360-361.

[17] Malishevskiy A, Gurkan D, Dane L, et al. OpenFlow-Based Network Management with

Visualization of Managed Elements[C]//Research and Educational Experiment Workshop

(GREE), 2014 Third GENI. IEEE, 2014: 73-74.

[18] Huang S, Griffioen J, Calvert K L. Network Hypervisors: Enhancing SDN Infrastructure[J].

Computer Communications, 2014, 46: 87-96.

[19] Lara A, Kolasani A, Ramamurthy B. Network innovation using openflow: A survey[J].

Communications Surveys & Tutorials, IEEE, 2014, 16(1): 493-512.

[20] McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus

networks[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69-74.

[21] Rotsos C, Sarrar N, Uhlig S, et al. OFLOPS: An open framework for OpenFlow switch

evaluation[C]//Passive and Active Measurement. Springer Berlin Heidelberg, 2012: 85-95.

[22] Kobayashi M, Seetharaman S, Parulkar G, et al. Maturing of OpenFlow and Software-defined

Networking through deployments[J]. Computer Networks, 2014, 61: 151-175.

[23] Yin H, Zou T, Xie H. Defining Data Flow Paths in Software-Defined Networks with

Application-Layer Traffic Optimization: U.S. Patent Application 13/915,410[P]. 2013-6-11.

[24] Pakzad F, Portmann M, Tan W L, et al. Efficient topology discovery in OpenFlow-based

Software Defined Networks[J]. Computer Communications, 2016, 77: 52-61.

[25] Scott-Hayward S. Design and deployment of secure, robust, and resilient SDN

Controllers[C]//Network Softwarization (NetSoft), 2015 1st IEEE Conference on. IEEE,

2015: 1-5.

[26] Hoang D B, Pham M. On software-defined networking and the design of SDN

controllers[C]//Network of the Future (NOF), 2015 6th International Conference on the.

IEEE, 2015: 1-3.

[27] Gude N, Koponen T, Pettit J, et al. NOX: towards an operating system for networks[J]. ACM

SIGCOMM Computer Communication Review, 2008, 38(3): 105-110.

Hong Zhong is a Professor (from 2009) and Executive Dean of the School of

Computer Science and Technology, Anhui University, China. She received PhD

degree in University of Science and Technology of China in 2005. Her research

interests cover network and information security.

Yaming Fang is now a research student in the School of Computer Science and

Technology, Anhui University. His research interest is Software Defined

Networking.

Jie Cui is now an Associate Professor in the School of Computer Science and

Technology, Anhui University. He received PhD degree in University of Science

and Technology of China in 2012. He has published over 30 papers. His

research interests include network and information security.

*Biographies (Photograph)

