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a b s t r a c t

Analytical tuning rules for digital PID type–I controllers are presented regardless of the process com-
plexity. This explicit solution allows control engineers 1) to make an accurate examination of the effect of
the controller's sampling time to the control loop's performance both in the time and frequency domain
2) to decide when the control has to be I, PI and when the derivative, D, term has to be added or omitted
3) apply this control action to a series of stable benchmark processes regardless of their complexity. The
former advantages are considered critical in industry applications, since 1) most of the times the choice
of the digital controller's sampling time is based on heuristics and past criteria, 2) there is little a–priori
knowledge of the controlled process making the choice of the type of the controller a trial and error
exercise 3) model parameters change often depending on the control loop's operating point making in
this way, the problem of retuning the controller's parameter a much challenging issue. Basis of the
proposed control law is the principle of the PID tuning via the Magnitude Optimum criterion. The final
control law involves the controller's sampling time Ts within the explicit solution of the controller's
parameters. Finally, the potential of the proposed method is justified by comparing its performance with
the conventional PID tuning when controlling the same process. Further investigation regarding the
choice of the controller's sampling time Ts is also presented and useful conclusions for control engineers
are derived.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

It is by far accepted within the industrial control–automation
society that the PID control law offers the simplest and yet most
efficient solution to many real–world control problems, [1–8]. In
modern control applications, for instance in the field of electrical
drives and power electronics [9–12], where controllers are digitally
implemented, control engineers still tune the PID parameters
based on simple tuning rules, past experience, or heuristics [13,14].
This approach, often leads to poor tuning and unacceptable per-
formance of the control loop in terms of reference tracking and
disturbance rejection. Poor tuning is mainly observed in cases
where there is little a–priori information regarding the model of
the process. A representative example over the industry where
poor controller tuning is observed, is the vector control of medium
voltage motor drives where the range of switching frequency is

often a few hundreds Hz. In this case, the controller's tuning1 is
based often on a simple second order model of the motor and a
linear dc gain kp of the modulation scheme2. Since, both motor
parameters and the modulator's gain change quite frequently de-
pending on the drive's operating point (change of motor's output
frequency), high performance of the drive is not always achieved.
Specific parameters in the area of medium voltage drives which are
considered to change rather frequently are 1) the affect of the
temperature to the rotor time constant [15],3 2) variation of the
linear dc gain kp of the pulse width modulator when PWM
schemes are followed, [16–19]. In both cases, PI controllers are
tuned based on these two parameters. For that reason, many are
the cases when poor performance of the drive's control loop is
observed, since the aforementioned parameters change frequently
while the PI controllers stay tuned with the initial nominal values.

Over the literature, many are the tuning rules that assume the
existence of the First Order Lag Plus Dead Time (FOLPDT) model as
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the basis for developing a control law: a summary of such tuning
rules can be found in [20]. These control laws tune the PID's
parameters based on the dc gain kp of the process, the dominant
time constant and its time delay d, while ignoring other dynamics
of the process. One of these rules which is often used in the area of
many industry applications i.e. electrical drives, is the tuning of the
PID controller via the well known Magnitude Optimum criterion
[21,13]. The principle of the Magnitude Optimum criterion which
was introduced by Sartorius and Oldenbourg, is based on the idea
of designing a controller which renders the magnitude of the
closed loop frequency response as close as possible to unity, in the
widest possible frequency range, ω| ( )| ≃T j 1.

In other words, controller parameters are determined such, so
that the robustness of the control loop to disturbances occurring at
the output of the process, is maximized. Oldenbourg and Sartorius
applied the Magnitude Optimum criterion in type–I systems to
processes consisting of stable real poles and since then certain works
have been proposed towards the method's improvement, [14,22–26].

In this work, the proposed control law extends the application of
the Magnitude Optimum criterion to the design of digital PID con-
trollers. Since modern control applications involve digital controller
deployment, this work targets on defining an explicit PID solution

1. which tunes the PID controller's parameters explicitly as a
function of all modeled process parameters.

2. that involves the sampling time Ts of the controller. Given this
explicit solution, control engineers would be able to apply di-
rectly the explicit PID tuning conditions and investigate the af-
fect of the sampling time to the control loop's performance both
in the time and frequency domain.

3. The analytical expressions regarding the definitions for the P, I
and D gains are straightforward and can be easily integrated
within the software of a digitally implemented PID controller.

For clearly and properly presenting the proposed method, in Section
2, the explicit solution presented in [27] is shortly presented in
Section 2.1, which serves as a fundamental input to the reader to
understand the introduction of the sampling time Ts in the proposed
control law. Within the same section, the digital implementation of
the PID controller is introduced, the analytical proof of which, is
presented in Appendix B. In Sections 3, Sections 4 evaluation results
are presented focusing on the detrimental effect the choice of the
sampling time can have, when regulating the same process via the
analog and digital PID controller respectively. The comparison
focuses on the control of benchmark process models which are
often met over many industry applications. Finally, goal of this work
is to provide both the academic and industry society with a feasible
control action which shall be able to deliver reliable results that
control engineers can reproduce in–house, before deploying the
final control action on a real world prototype application.

2. The proposed PID control law

In this section the conventional, revised and the proposed di-
gital PID control action via the Magnitude Optimum criterion is
presented. For the paper's consistency, the conventional and the
revised analog control law are briefly presented here, since their
complete proof has been thoroughly discussed in [14]. The proof of
the proposed digital PID control follows the same line as in [14]. In
that a general transfer function of the process model is considered
and the explicit solution of the gains is derived based on the plant's
parameters and the sampling time Ts. The PID control law is pre-
sented in Section 2.2, however the whole proof is analytically
presented in Appendix B.

2.1. Analog PID controller design

In this section, a short presentation of the analytic tuning rules
for analog PID–type controllers via the Magnitude Optimum cri-
terion is presented. Its detailed proof has been presented in [14]
and serves as a fundamental input to the reader to further go
through the proposed PID digital control law.

To this end, let the plant transfer function consists of ( − )n 1 –

poles, m–zeros plus a dead time unit in series. Zeros of the plant
may lie both in the left or right imaginary half plane. In that, the
plant transfer function is defined by
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where − >n m1 . The proposed PID–type controller is given by the
flexible form
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allowing its zeros to become conjugate complex. Tpn
stands for the

unmodelled controller dynamics coming from the controller's im-
plementation. According to Fig. 1, the closed loop transfer function
T(s) is given by
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Fig. 1. Block diagram of the closed–loop control system. G(s) is the plant transfer
function, C(s) is the controller transfer function, r (s) is the reference signal, y(s) is
the output of the control loop, yf (s) is the output signal after kh, do(s) and di(s) are
the output and input disturbance signals respectively and no(s) is the noise signal
process output respectively. kp stands for the plant's dc gain and kh is the feedback
path. Switch S stands for the border of the open loop transfer function Fol(s) from r
(s) to yf (s).
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delay constant d is approximated by the Taylor series
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By substituting (8) into (7), ( ′)D s1 becomes
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Polynomials ( ′)N s , ( ′) = ( ′) + ( ′)D s N s k D sh 1 are then finally defined by
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where ( ) = =− (− )z z 02 1 , =z 10 and =(− )q 01 . Therefore, the resulting

closed loop transfer function is given by (13).

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦( ) ( ) ( ) ( )

( ′) = ( ′)
( ′)

=
∑ ′ ( + + )

∑ ′ + ( ( + + )) ( )

= ( ) ( − ) ( − )

= − − −

T s
N s
D s

s k z z x z y

s t q k k z z x z y 13

i
n i

p i i i

j
k j

i j p h j j j

0 1 2

0 1 1 2

For proving the revised analog PID control law the optimization
conditions of the closed loop transfer function defined in (A.7)–
(A.10)4 are utilized. By sticking to a PID type controller, only four
optimization conditions are necessary, see [14].

Optimization condition: =a b0 0.
From the application of (A.7) to (13) it is obtained

= ( )k 1. 14h

Condition (14) renders the zero order terms of the numerator and
denominator polynomial of the closed loop transfer function equal,
which means that the closed loop system has zero steady state
position error (type–I control loops), see [14,22]. Note that if kh¼1
then ( ′) = ⋯ +N s kp and ( ′) = ⋯ +D s k kp h.
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It is critical to point out the definition of the integral gain contains
all the dynamics involved in the closed loop.
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The application of (A.9) to (13) results after some calculus in
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Note that a12, b1 depend explicitly on process parameters.
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In compact form, the final optimal control law is defined by
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From the definition of the integrator's gain

4 A straightforward approach of the Magnitude Optimum criterion is being
presented in the Appendix. The optimization conditions serve for determining the
proposed optimal control law.
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standing for the poles of the process plus the
time delay Td must always be greater than the sum of time con-
stants of zeros of the open loop transfer function. Note that

= +X T Tn v, so by applying PID control action to a process with
large zeros, PI control can still be retained so that >T 0i becomes
positive again. In this case the derivative term is redundant and has
to be omitted.

If PID control is to be retained, the controller can be cascaded
with a first order low pass filter of time constant Tx in series of the
PID controller, so that the integrator's time constant >T 0i , be-
comes positive again.
In this case, the new integral gain is given by
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2.2. Digital PID controller design–the proposed control law

In this section the proposed digital PID control action is pre-
sented while its proof takes place in Section Appendix B. In the
following analysis the sampling time Ts of the controller is in-
troduced, which finally is involved within the explicit definition of
the PID control action.

For proceeding with the proof, let the stable process in Fig. 2 be
defined again by (1). The proposed PID type controller is given by
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where the *( )C s controller stands for the digital representation of
the analog PID control law. ( )C sZOH stands for the zero order hold
unit and Ts stands for the controller sampling period.

Intermediate calculations of the product ( ) ( )C s G s are presented
in Appendix B. The analysis proceeds by normalizing all time
constants in the frequency domain with the sampling period Ts of
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whereas the problem statement is as follows: given Eqs. (35), (36)
define explicitly the tuning formulas for parameters x y t, , i and the
feedback path kh as a function of plant's parameters kp, zj, ri, d, the
sampling time of the controller Ts, or = ( )x f k z r T, , ,p j i s1 ,

= ( )y f k z r T, , ,p j i s2 , = ( )t f k z r T, , ,i p j i s3 .
As analytically proved in Section Appendix B the optimal digital

PID control action is defined by
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are process dependent parameters as shown in Appendix B, see
Eqs. (B.25), (B.26) and (B.30), (B.31).

By solving (B.30), (B.31) parameters x̂ , ŷ are determined by
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where as shown in Appendix B, the controller's parameters x, y are
finally determined by

= ^ − ^ − = ^ − ^ + ( )x y x y x y2 2 and 1. 45

respectively. From the definition of the integrator's time constant
(38) it is critical to point out that
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or according to (B.14), (B.15)

Fig. 2. Block diagram of the closed–loop control systemwith the digital controller. G
(s) is the plant transfer function, C(s) is the controller transfer function, CZOH(s) the
transfer function of the zero order hold unit, sampling Ts is equal to the ZOH
sampling time, r (s) is the reference signal, y(s) is the output of the control loop, yf (s)
is the output signal after kh, do(s) and di(s) are the output and input disturbance
signals respectively and no(s) is the noise signals at process output. kp stands for the
plant's dc gain and kh is the feedback path.
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In other words and given the definitions of the integrator's time
constant in (18) regarding the revised analog PID control law, the
integrator's time constant for the proposed PID digital control law
is proved to be equal to

= − ( )T T k k T2
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Note in this case that Tidig
and Tian

are the optimal values for the

integrator's time constant regarding the digital and analog design
respectively.

3. Evaluation results

For justifying the potential of the proposed optimal control law
a comparison between the analog PID tuning via the Magnitude
Optimum criterion, (Section 2.1) and the digital control law (Sec-
tion 2.2) is carried out. Both closed loop control systems have been
normalized with sampling time Ts, ′ =s sTs. Controller dynamics
have been chosen equal to =ΣT T0.1c p1

.

For each one of the examples in Sections 3.1–3.3 six figures are
presented. Figure (a) focuses on τ( )y response in the presence of
input and output disturbance in the control loop when sampling

time is chosen = =t 10, 20, 100p
T

T

p

s1
1 .

In Section 3.4 the control of a process with a big zero is in-
vestigated. In this example, loss of controllability of the control
loop is observed. To overcome this obstacle the proposed PID
controller turns into PID–Lag control. In this case, sampling time

= 40
T

T

p

s

1 remains constant and an investigation of how the lag time

constant affects the performance of the control loop is presented.

3.1. A process with dominant time constants

In the first example, the process defined by

( ) ( )( )( )( )( ) ( )
′ =

+ ′ + ′ + ′ + ′ + ′ 49
G s

s s s s s
1

1 10 1 7.79 1 6.73 1 3.39 1 2.97

is adopted, for which = 10
T

T

p

s

1 . Gain kp has been chosen equal to kp
¼ 1. The analog control action and the corresponding proposed
digital control action are given by

( ′) = + ′ + ′
′ ( + ′ )

= + ′ + ′
′ + ′ ( )

−C s
s x s y

s t s t

s s
s s

1 1
1

1 22.42 135.1
18.91 18.91 50

PID an
i p

2

2

2

n

and
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⎝
⎜⎜

⎞
⎠
⎟⎟

( )
′( ′) = + ′ + ′

′ ( + ′ )

*
( − )

′
= + ′ + ′

′ + ′ + ′
−

−

51
C s

s x s y
s t s t

e
s

s s

s s s

1
1

1 1 22.96 143.6

24.32 31.26 20.84
PID dig

i pn

s2 2

3 2

respectively. In Fig. 3(a) the step response of both control loops is
presented in the presence of input and output disturbance at τ = 175
and τ = 361 with amplitude τ τ( ) = ( )d r0.25i and τ τ( ) = ( )d r0.75o re-
spectively.

Settling time tss of τ( )y in the control loop where the analog
controller is incorporated is τ= ( + )t 175 61.8ss and = ( +t 175ss

τ)58.22 for the digital control action respectively. Overshoot of the
step response is =ovs 6.9% in case of analog control action and

=ovs 6.6% in case of digital control action.
In Fig. 3(b) the command signal τ( )u is also presented. In this

case, the sampling time Ts has been chosen equal to = =t 10p
T

T

p

s1
1 ,

ten times smaller than the dominant time constant. In Figs. 4(a),
(b), 5(a), (b) the sampling time is reduced, and becomes equal to

= =t 20p
T

T

p

s1
1 and = =t 100p

T

T

p

s1
1 respectively. This decrease of the

sampling time proves to have a detrimental effect in the command
signal's amplitude which in many control applications is not ac-
ceptable due to constraints on the hardware5. Specifically, in Fig. 4

Fig. 3. Control of a process with dominant time constants. Input disturbance ( ) = ( )d s r s0.25i is applied at τ = 175, output disturbance ( ) = ( )d s r s0.75o is applied at τ = 361.

Sampling time is = 10
Tp

Ts
1 (a) Output τ( )y of the control loop at the presence of input and output disturbances, = 10

Tp

Ts
1 , =ovs 6.9%an , =ovs 6.6%dig .] (b) Control action τ( )u at

the presence of output disturbance, = 10
Tp

Ts
1 .

5 Constraints on the command signal are common in the area of electrical
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(b) the control effort of the digital controller is comparable with

the analog command signal, however in Fig. 5(b) ( = =t 100p
T

T

p

s1
1 )

the peak amplitude of τ( )u for digital control becomes almost
5 times greater than that of analog control. The calculated con-

troller parameters when = =t 20p
T

T

p

s1
1 and = =t 100p

T

T

p

s1
1 are pre-

sented in Sections C.1, C.2 respectively.

3.2. A process with long time delay

In the second example the process defined by

( ) ( )( )( )( )( )′ =
+ ′ + ′ + ′ + ′ + ′ ( )

− ′
G s

e
s s s s s

1.23
1 100 1 89 1 75 1 66 1 43 52

s200

is considered, for which = 10
T

T

p

s

1 has been chosen. The analog control

action and the corresponding digital control action are given by

( )
( ′) = + ′ + ′

′ ( + ′ )
= + ′ + ′

′ + ′
−

53
C s

s x s y
s t s t

s s

s s

1 1
1

1 26.09 232.5

48.47 48.47
PID an

i pn

2 2

2

and
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⎞
⎠
⎟⎟

( )
( ′) = + ′ + ′

′ ( + ′ )

*
( − )

′
= + ′ + ′

′ + ′ + ′
−

− ′

54
C s

s x s y
s t s t

e
s

s s

s s s

1
1

1 1 29.35 281.3

51.5 66.21 44.14
PID dig

i pn

s2 2

3 2

respectively. Input τ τ( ) = ( )d r0.25i and output τ τ( ) = ( )d r0.75o dis-
turbances are applied at τ265 and τ530 respectively. The control
loop's response τ( )y of the analog controller exhibits more attractive
characteristics compared to the digital controller both in terms of

Fig. 4. Control of a process with dominant time constants. Input disturbance ( ) = ( )d s r s0.25i is applied at τ = 361, output disturbance ( ) = ( )d s r s0.75o is applied at τ = 712.

Sampling time is = 20
Tp

Ts
1 (a) Output τ( )y of the control loop at the presence of input and output disturbances, = 20

Tp

Ts
1 , =ovs 7.6%an , =ovs 6.8%dig . (b) Control action τ( )u at

the presence of output disturbance, = 20
Tp

Ts
1 .

Fig. 5. Control of a process with dominant time constants. Input disturbance ( ) = ( )d s r s0.25i is applied at τ = 1740, output disturbance ( ) = ( )d s r s0.75o is applied at τ = 3521.

Sampling time is = 100
Tp

Ts
1 (a) Output τ( )y of the control loop at the presence of input and output disturbances, = 100

Tp

Ts
1 , =ovs 7.5%an , =ovs 6.9%dig . (b) Control action τ( )u

at the presence of output disturbance, = 100
Tp

Ts
1 .

(footnote continued)
drives introduced by the power electronics circuit. When a voltage–vector is deci-
ded to be applied to the machine's terminals, not all combinations are available so
that the hardware is protected, see [28].
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reference tracking and disturbance rejection, Fig. 6(a). However, as
shown in Fig. 6(b), the analog controller spends more effort for

achieving this result when = 10
T

T

p

s

1 . In case where = =t 20p
T

T

p

s1
1 the

control effort for both controllers becomes almost the same Fig. 7(b).

However, when = =t 100p
T

T

p

s1
1 the command signal's behaviour be-

comes unacceptable in the digital controller design, see Fig. 8(b) since
the peak overshoot becomes almost seven times greater than the

initial design = =t 10p
T

T

p

s1
1 . The calculated controller parameters

when = =t 20p
T

T

p

s1
1 and = =t 100p

T

T

p

s1
1 are presented in Sections C.3,

C.4 respectively.

3.3. A non–minimum phase process

In this example the process is described by

( ) ( )( )
( )( )( )( )( ) ( )

′ =
− ′ − ′

+ ′ + ′ + ′ + ′ + ′ 55
G s

s s

s s s s s

1 10.9 1 0.45

1 20 1 16.2 1 15.91 1 14.5 1 8.39

consisting of two right half plane zeros. The analog control action
and the corresponding digital control action are given by

( )
( ′) = + ′ + ′

′ ( + ′ )
= + ′ + ′

′ + ′−
56

C s
s x s y

s t s t
s s

s s

1 1
1

1 27.39 208.5
45.24 45.24

PID an
i p

2 2

2
n
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( ′) = + ′ + ′

′ ( + ′ )

*
( − )

′
= + ′ + ′

′ + ′ + ′
−

− ′

57
C s

s x s y
s t s t

e
s

s s

s s s

1
1

1 1 28.02 220.6

55.5 71.42 47.61
PID dig

i pn

s2 2

3 2

respectively. Input τ τ( ) = ( )d r0.25i and output τ τ( ) = ( )d r0.75o dis-
turbance is applied at τ252 and τ505 respectively, see Fig. 9(a).

Fig. 6. Control of a process with long time delay. Input disturbance ( ) = ( )d s r s0.25i is applied at τ = 265, output disturbance ( ) = ( )d s r s0.75o is applied at τ = 530. Sampling

time is = 10
Tp

Ts
1 (a) Output τ( )y of the control loop at the presence of input and output disturbances, = 10

Tp

Ts
1 , =ovs 5.3%an , =ovs 19.2%dig . (b) Control action τ( )u at the

presence of output disturbance, = 10
Tp

Ts
1 .

Fig. 7. Control of a process with long time delay. Input disturbance ( ) = ( )d s r s0.25i is applied at τ = 565, output disturbance ( ) = ( )d s r s0.75o is applied at τ = 1046. Sampling

time is = 20
Tp

Ts
1 (a) Output τ( )y of the control loop at the presence of input and output disturbances, = 20

Tp

Ts
1 , =ovs 5.4%an , =ovs 20.2%dig . (b) Control action τ( )u at the

presence of output disturbance, = 20
Tp

Ts
1 .
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From there it is apparent that if = =t 10p
T

T

p

s1
1 then both controller

implementations exhibit almost the same behaviour regarding
reference tracking, disturbance rejection and command signal re-
sponse, Fig. 9(a), (b). Rise trt and settling time tss for analog and
digital design are τ=t 28.8rtan

, τ=t 30rtdig
and τ=t 93ssan

,

τ=t 88.9ssdig
respectively.

If the controller's sampling time Ts is further reduced = =t 20p
T

T

p

s1
1 ,

the command signal effort remains within the same level of the analog
controller implementation (Fig. 10(b)). However, if sampling time Ts is

chosen such = 100
T

T

p

s

1 then the peak value of the digital control effort

(Fig. 11(b)) becomes 15 times higher compared to Fig. 9(b). The cal-

culated controller parameters when = =t 20p
T

T

p

s1
1 and = =t 100p

T

T

p

s1
1

are presented in Sections C.5, C.6 respectively.

3.4. A process with a large zero

Let us now consider the process defined by

( ) ( )
( )( )( )( )( ) ( )

′ =
+ ′

+ ′ + ′ + ′ + ′ + ′ 58
G s

s

s s s s s

0.0714 1 45.6

1 40 1 22.4 1 19.6 1 15.6 1 11.2
.

The analog control action and the corresponding digital control
action are given by

( ′) = + ′ + ′
′ ( + ′ )

= + ′ + ′
′ + ′ ( )

−C s
s x s y

s t s t
s s

s s
1 1

1
1 56.8 1128

5.94 1.4854 59
PID an

i p

2 2

2
n

and

Fig. 9. Control of a non–minimum phase process. Step response of the closed loop control system. Input disturbance ( ) = ( )d s r s0.25i is applied at τ = 252, output disturbance

( ) = ( )d s r s0.75o is applied at τ = 505. Sampling time is = 10
Tp

Ts
1 (a) Output τ( )y of the control loop at the presence of input and output disturbances, = 10

Tp

Ts
1 , =ovs 6.9%an ,

=ovs 6.5%dig . (b) Control action τ( )u at the presence of output disturbance, = 10
Tp

Ts
1 .

Fig. 8. Control of a process with long time delay. Input disturbance ( ) = ( )d s r s0.25i is applied at τ = 2830, output disturbance ( ) = ( )d s r s0.75o is applied at τ = 5172. Sampling

time is = 100
Tp

Ts
1 (a) Output τ( )y of the control loop at the presence of input and output disturbances, = 100

Tp

Ts
1 , =ovs 5.4%an , =ovs 21.1%dig . (b) Control action τ( )u at the

presence of output disturbance, = 100
Tp

Ts
1 .
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PID dig
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n

respectively. Controller sampling time has been chosen equal to

= 40
T

T

p

s

1 . In that case there is a loss of controllability both for the

proposed PID type control law, Figs. 12(a), 13(a), since the step re-
sponse exhibits an overshoot of ≈ovs 35% with unacceptable dis-
turbance rejection. This is due to the fact that the integral gain of the
explicit solution gets a very small value ≈T 0ian

, see (60),6 resulting in a
very fast response leading to an almost uncontrollable closed loop. The

aforementioned example result is justified theoretically if we see the
explicit solution for the integrator's time constant both for the analog
and digital controller implementation.

The revised definition of the integral gain regarding the analog
implementation is defined by

∑ ∑= ( + − − )
( )= =

T k k T T T X2 ,
61

i p h
i

n

p d
i

m

z
1 1

an i i

fromwhich it is apparent that Tian
becomes negative ( < )T 0ian

when
the sum of poles of the open loop transfer function becomes less or
equal the sum of zeros of the same function again,

     

∑ ∑( ) + < ( ) +

( )
= =

T T T X .

62
i

n

p d

F

i

m

z

F

1

sum of poles of

1

sum of zeros of

i

OL

i

OL

According to (48), = −T T k k T2i i h p s
1
2dig an

the digital control loop

Fig. 10. Control of a non–minimum phase process. Step response of the closed loop control system. Input disturbance ( ) = ( )d s r s0.25i is applied at τ = 502, output disturbance

( ) = ( )d s r s0.75o is applied at τ = 998. Sampling time is = 20
Tp

Ts
1 (a) Output τ( )y of the control loop at the presence of input and output disturbances, = 20

Tp

Ts
1 , =ovs 6.9%an ,

=ovs 5.9%dig . (b) Control action τ( )u at the presence of output disturbance, = 20
Tp

Ts
1 .

Fig. 11. Control of a non–minimum phase process. Step response of the closed loop control system. Input disturbance ( ) = ( )d s r s0.25i is applied at τ = 2450, output dis-

turbance ( ) = ( )d s r s0.75o is applied at τ = 4942. Sampling time is = 100
Tp

Ts
1 (a) Output τ( )y of the control loop at the presence of input and output disturbances, = 100

Tp

Ts
1 ,

=ovs 6.9%an , =ovs 5.4%dig . (b) Control action τ( )u at the presence of output disturbance, = 100
Tp

Ts
1 .

6 Integral gain is around unity and will approach the zero value if the sum of
zeros in the open loop transfer function becomes equal to the sum of poles of the
same function again.
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becomes uncontrollable again for the same aforementioned reason.
To that end, Tidig

becomes negative ( < )T 0idig
when

     

∑ ∑( ) + < ( ) + +

( )
= =

T T T X T
1
2

.
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sum of poles of

1

sum of zeros of

i

OL

i

OL

Therefore, for regulating such a process, the control law has to
force the sum of poles of the open loop transfer function FOL(s) to
become greater than the sum of zeros of FOL(s). To achieve this, the
PID controller is turned into PID–Lag control, see (64). The tuning
of the lag time constant Tx is presented in the following section. Of
course the price paid in this case is that the control loop becomes
slower, but finally controllable.

3.4.1. Tuning of lag time constant Tx
To overcome the loss of controllability in both cases when

→T 0ian
and →T 0idig

, the PID controller proposed in (2), (34) can be

turned into PID–Lag controller of the form

( ) = + +
( + ) ( + ) ( )

C s
sX s Y

sT sT sT
1

1
1

1
,
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s x
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dig n

s

respectively by adding a first order filter with time constant Tx. In
this case the new integrator's time constant for both analog and
digital implementation are given by

Fig. 13. PID controller turns into PID–Lag control to stabilize the control loop. Choosing a slow time constant tx¼16 stabilizes the control loop. Step response performance
metrics, i.e rise time trt, settling time tss can be improved by gradually reducing tx and making the control loop faster (a) Step response τ( )y for various values of the tx lag time
constant, = 40

Tp

Ts
1 , =

=
ovs 33%digtx 0

, =
=

ovs 5.2%digtx 16
, =

=
ovs 0%digtx 24

, =
=

ovs 0%digtx 28
. (b) Command signal response τ( )u for various values of the tx lag time constant,

= 40
Tp

Ts
1 .

Fig. 12. Control of a process with large zeros. Step response of the closed loop control system. Output disturbance ( ) = ( )d s r s0.75o is applied at τ = 872. Sampling time is forty

times smaller than the dominant time constant, = 40
Tp

Ts
1 (a) Output τ( )y of the control loop at the presence of output disturbances, = 40

Tp

Ts
1 . (b) Control action τ( )u at the

presence of output disturbance, = 40
Tp

Ts
1 .
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and X Y, PID controller parameters remain with the initial values
calculated from the explicit proposed solution. For the process de-
fined by (58) the initial PID controller for tx ¼ 0 is equal to (60).
However and since such a design leads to an unacceptable response,
the controller becomes PID–Lag with tx ¼ 28, tx ¼ 24, tx ¼ 16,

where =tx
T
T
x

s
. Initially we start with a high value of tx in order to

stabilize the control loop and start reducing its value gradually by
achieving the proper performance depending on our application. In
Fig. 13(a) the step response of the control loop is presented for three
different values of parameter tx. The command signal τ( )u is also
depicted in Fig. 13(b). The calculated PID–Lag controller is given by

⎛
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for all three different values of the tx time constant.

4. Sampling time effect investigation

In this section the effect of the sampling time Ts to the quality of
the proposed PID control action, compared to the optimal analog
design is investigated.

In the sequel, two curves are plotted within each figure. Given
the transfer function of the plant G(s), the response of the output

τ( )y and the command signal τ( )u are investigated. To do this, both
control loops are normalized with the sampling time Ts and the
digital controller is implemented according to the relation ′ =s sTs.
In Sections 4.1, 4.2, 4.3, 4.4 the transfer function G(s) is considered

the same and different ratios of
T

T

p

s

1 are investigated.

4.1. Sampling time
T

T

p

s

1 ¼ 1.25

In this case the plant is given by

( )
( ′) =

( + ′)( + ′)( + ′)( + ′)( + ′) 74
G s

s s s s s
1

1 1.25 1 0.97 1 0.84 1 0.42 1 0.37

and analog and digital controllers are equal to

( ′) = + ′ + ′
′ + ′ ( )−C s
s s

s s
1 2.8 2.11

0.29 2.36 75PID an

2

2

and

( ′) = + ′ + ′
′ + ′ + ′ ( )−C s

s s

s s s

1 3.22 2.99
5.28 6.79 4.52 76PID dig

2

3 2

respectively. In Fig. 14(a), (b) the output τ( )y and command signal
response τ( )u at the presence of output disturbance τ( )do . Peak
overshoot for digital control action is 16.3% whereas for analog
control action is 7.6%. The corresponding settling tss time is

Fig. 14. Process Gp is defined by (74), analog controller is defined by (75) and digital controller is defined by (76) (a) Output τ( )y of the control loop at the presence of output

disturbances, = 1.25
Tp

Ts
1 , =ovs 7.6%an , =ovs 16.3%dig . (b) Control action τ( )u at the presence of output disturbance, = 1.25

Tp

Ts
1 .
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τ=t 7.6ss for analog and τ=t 21ss digital control action respectively.

4.2. Sampling time
T

T

p

s

1 ¼ 2

In this example the transfer function of the plant is defined by

( ) ( )
′ =

( + ′)( + ′)( + ′)( + ′)( + ′) 77
G s

s s s s s
1

1 2 1 1.55 1 1.34 1 0.67 1 0.59

whereas the analog and digital control actions are defined by

( ′) = + ′ + ′
′ + ′ ( )−C s

s s
s s

1 4.48 5.4
0.75 3.78 78PID an

2

2

( ′) = + ′ + ′
′ + ′ + ′ ( )−C s

s s

s s s

1 4.89 6.66
6.96 8.95 5.97 79PID dig

2

3 2

respectively. After reducing controller's sampling time Ts, both step
and command signal responses are improved compared to the
previous example as observed in Fig. 15(a), (b) respectively. Peak
overshoot for digital control action is 13.3% whereas for analog

control action is 7.6%. The corresponding settling tss time is
τ=t 7.6ss and τ=t 17ss for analog and digital control law respec-

tively. Digital command signal response depicted in Figs. 14(b), 15
(b) does not exhibit undesired peaks as observed in the analog
control action.

4.3. Sampling time
T

T

p

s

1 ¼ 4

In this example the transfer function of the plant is defined by

( ) ( )
′ =

( + ′)( + ′)( + ′)( + ′)( + ′) 80
G s

s s s s s
1

1 4 1 3.11 1 2.69 1 1.35 1 1.18

whereas calculated analog and digital control actions are given by

( ′) = + ′ + ′
′ + ′ ( )−C s

s s
s s

1 8.97 21.6
3.02 7.56 81PID an

2

2

and

( ′) = + ′ + ′
′ + ′ + ′ ( )−C s

s s

s s s

1 9.4 24.25
11.32 14.55 9.7 82PID dig

2

3 2

Fig. 15. Process Gp is defined by (77), analog controller is defined by (78) and digital controller is defined by (79) (a) Output τ( )y of the control loop at the presence of output

disturbances, = 2
Tp

Ts
1 , =ovs 7.6%an , =ovs 13.3%dig (b) Control action τ( )u at the presence of output disturbance, = 2

Tp

Ts
1 .

Fig. 16. Process Gp is defined by (80), analog controller is defined by (81) and digital controller is defined by (82) (a) Output τ( )y of the control loop at the presence of output

disturbances, = 4
Tp

Ts
1 , =ovs 7.6%an , =ovs 8.5%dig (b) Control action τ( )u at the presence of output disturbance, = 4

Tp

Ts
1 .
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respectively. By further reducing sampling time Ts the trend of the
responses of τ( )y , τ( )u is similar to the ones observed in Section 4.2
respectively. Step response characteristics are further improved:
overshoot value for digital control action is 8.5% and settling time
is τ=t 34.3ss for digital control compared to τ=t 24.4ss regarding
analog control action. Peak value for digital command signal re-
sponse depicted in Fig. 16(b) has been slightly increased.

4.4. Sampling time
T

T

p

s

1 ¼ 10

In this example the transfer function of the plant is defined by

( ) ( )
′ =

( + ′)( + ′)( + ′)( + ′)( + ′) 83
G s

s s s s s
1

1 10 1 7.79 1 6.73 1 3.39 1 2.97

and the calculated analog and digital controllers are given by

( ′) = + ′ + ′
′ + ′ ( )−C s

s s
s s

1 22.43 135.1
18.9 18.91 84PID an

2

2

and

( ′) = + ′ + ′
′ + ′ + ′ ( )−C s

s s

s s s

1 22.96 143.6
24.32 31.26 20.8 85PID dig

2

3 2

respectively. In this case both responses of τ( )y are almost identical
as observed in Fig. 17(a). However, further sampling time reduction
compared to previous examples has led to an increase in the
command signal's peak value as observed in Fig. 17(b) regarding
the digital control action.

In Figs. 18, 19 the frequency response diagrams for sensitivity S
and complementary sensitivity T are presented, [27]. From there it
is apparent that reduction of sampling time Ts shortens the region
for which | ( )| ≃T ju 1. This behaviour is against the target of the
Magnitude Optimum criterion, for which | ( )| ≃T ju 1 is desired in the
widest possible frequency range. Therefore, sampling time Ts must
be chosen such, so that step response τ( )y approaches the analog
control loop response in such a manner which does not lead to
high peak values of the command signal. Frequency response of the
final control loop must also be observed, since shortening of the
region for which | ( )| ≃T ju 1 makes the control loop more sensitive
to possible disturbances in the low and high frequency region.

Fig. 17. Process Gp is defined by (83), analog controller is defined by (84) and digital controller is defined by (85) (a) Output τ( )y of the control loop at the presence of output

disturbances, = 10
Tp

Ts
1 , =ovs 7.6%an , =ovs 6.9%dig . (b) Control action τ( )u at the presence of output disturbance, = 10

Tp

Ts
1 .

Fig. 18. Frequency response diagrams for analog and digital control loops as those presented in Sections 4.1 and 4.2 respectively (a) Frequency response of sensitivity | ( )|S ju

and complementary sensitivity | ( )|T ju for = 1.25
Tp

Ts
1 (b) Frequency response of sensitivity | ( )|S ju and complementary sensitivity | ( )|T ju for = 2

Tp

Ts
1 .
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5. Conclusions

An explicit solution regarding the tuning of digital PID type con-
trollers has been presented. The proposed control law can be applied in
any linear stable SISO process regardless of its complexity. The pro-
posed solution allows for 1) accurate examination of the effect of the
controller's sampling time to the control loop's performance 2) decide
when the control has to be I, PI or PID 3) optimal disturbance rejection
at the output of the controlled process as it is frequently desired in
many industry applications. To this end, control engineers would be
capable of making accurate simulation of an industrial model, before
integrating the PID controller within the software of a real time ap-
plication. Examination of the effect of the controller's sampling time Ts
to the control loop's performance revealed interesting trade–off fea-
tures observed in the time and frequency domain responses. Future

work will concentrate on 1) proposing solutions for handling the
detrimental effects on the command signal that may appear because of
the choice of sampling time 2) the definition of explicit PID digital
control action for type–II, type–III7 control loops along with
experimental evaluation on a specific industrial application 3) examine
how different transformations from the s to z domain affect the control
loop's performance.
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Appendix A. Optimization conditions

In this section the optimization conditions that the proposed PID tuning method uses as a principle for developing the optimal control law are
presented. Let the closed loop transfer function be defined by

( ) =
+ + ⋯ + + +
+ + ⋯ + + +

=
( )
( ) ( )

−
−

−
−

T s
s b s b s b sb b

s a s a s a sa a

N s
D s A.1

m
m

m
m

n
n

n
n

1
1

2
2 1 0

1
1

2
2 1 0

where ≤m n. The target of the (MO) design criterion is to maintain | ( )| ≃T s 1 in the widest possible frequency range. Substituting ω=s j into (A.1)

and squaring ω| ( )|T j results in
( )
( )

ω( )| =
ω

ω
T j

N j

D j

2
2

2 where

ω ω
ω

ω ω ω
ω ω ω

( ) = ( )
( )

=
( ) + ⋯ + ( ) + ( ) +
( ) + ⋯ + ( ) + ( ) + ( )

T j
N j
D j

j b j b j b b

j a j a j a a
.

A.2

m
m

n
n

2
2 1 0

2
2 1 0

Polynomials ω( )N j and ω( )D j are rewritten as follows

( )ω ω ω ω ω ω ω ω ω( ) ≃ … + − + − + + ⋯ − + − + ( )N j b b b b b j b b b b A.38
8

6
6

4
4

2
2

0 7
7

5
5

3
3

1

and

( )ω ω ω ω ω ω ω ω ω( ) ≃ … + − + − + + ⋯ − + − + ( )D j a a a a a j a a a a A.48
8

6
6

4
4

2
2

0 7
7

5
5

3
3

1

or

Fig. 19. Frequency response diagrams for analog and digital control loops as those presented in Sections 4.3 and 4.4 respectively (a) Frequency response of sensitivity | ( )|S ju

and complementary sensitivity | ( )|T ju for = 4
Tp

Ts
1 (b) Frequency response of sensitivity | ( )|S ju and complementary sensitivity | ( )|T ju for = 10

Tp

Ts
1 .

7 Control loops with two and three integrators in the open loop transfer function, see [27]
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( )

ω ω ω ω

ω

ω

ω ω

ω ω

| ( )| ≃ ( ) + ( − ) + ( + − )

+ ( + − − )

+ ( + + − − )

+ ( + − − ) + ( + − )

+ ( − ) + A.5

D j a a a a a a a a a

a a a a a a a

a a a a a a a a a

a a a a a a a a a a a a

a a a a

2 2

2 2 2

2 2 2 2

2 2 2 2 2

2

2
8
2 16

7
2

8 6
14

6
2

4 8 5 7
12

5
2

3 7 2 8 4 6
10

4
2

0 8 2 6 1 7 3 5
8

3
2

1 5 6 0 2 4
6

2
2

0 4 1 3
4

1
2

0 2
2

0
0

and

( )

ω ω ω ω

ω

ω

ω ω

ω ω

| ( )| ≃ + ( − ) + ( + − )

+ ( + − − )

× ( + + − − )

+ ( + − − ) + ( + − )

+ ( − ) + ( ) A.6

N j b b b b b b b b b

b b b b b b b

b b b b b b b b b

b b b b b b b b b b b b

b b b b

2 2

2 2 2

2 2 2 2

2 2 2 2 2

2 .

2
8
2 16

7
2

8 6
14

6
2

4 8 5 7
12

5
2

3 7 2 8 4 6
10

4
2

0 8 2 6 1 7 3 5
8

3
2

1 5 6 0 2 4
6

2
2

0 4 1 3
4

1
2

0 2
2

0
0

By making equal the terms of ωj, ( = …j n1, 2, , ) in polynomials ω| ( )|D j 2, ω| ( )|N j 2 results in

= ( )a b A.70 0

− = − ( )a a a b b b2 2 A.81
2

2 0 1
2

2 0

− + = − + ( )a a a a a b b b b b2 2 2 2 A.92
2

3 1 4 0 2
2

3 1 4 0

+ − − = + − − ( )a a a a a a a b b b b b b b2 2 2 2 2 2 A.103
2

1 5 6 0 4 2 3
2

1 5 6 0 4 2

( )
( + + − − )= ( + + − − )

⋯= ⋯ A.11
a a a a a a a a a b b b b b b b b b2 2 2 2 2 2 2 24

2
0 8 6 2 1 7 3 5 4

2
0 8 6 2 1 7 3 5

Further optimization conditions are not presented on purpose, because the current analysis sticks to the PID control law. However, if higher order
controllers are designed, then further optimization conditions would essentially be required.

Appendix B. The revised digital PID control law

Given the process defined by

β β β β

α α α α
( ) =

+ + ⋯ + + +

+ ⋯ + + + + ( )

−
−

−
−

−G s
s s s s

s s s s
e

1

1 B.1

m
m

m
m

n
n

sT
1

1
2

2 1
1

1
3

3
2

2 1

d

the PID type controller

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟( ) = *( ) ( ) = + +

( + )

*
−

( )

−
C s C s C s

sX s Y
sT sT

e
sT

1
1

1

B.2
ZOH

i p

sT

s

2

n

s

is considered. *( )C s controller stands for the digital representation of the analog PID control action and ( )C sZOH stands for the zero order
hold unit with sampling period Ts. For the needs of the mathematical analysis, the product is rewritten in the form of

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

β β β β

α α α α
( ) ( ) =

+ + ⋯ + + +

( + ⋯ + + + + )( + )

+ + * −

( )

−
−

−
−

−

−

C s G s
s s s s

s s s s sT
e

sX s Y
sT

e
sT

1

1 1

1 1

B.3

m
m

m
m

n
n p

sT

i

sT

s

1
1

2
2 1

1
1

3
3

2
2 1

2

n

d

s

which is equal to

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

β β β β
( ) ( ) =

+ + ⋯ + + +

( + ⋯ + + + + )

+ + * −

( )

−
− −

−

C s G s
s s s s

s p s p s p sp
e

sX s Y
sT

e
sT

1

1

1 1

B.4

m
m

m
m

n
n

sT

i

sT

s

1
1

2
2 1

3
3

2
2 1

2

d

s

where
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α α α α

α α α α α

α α α

( + ⋯ + + + + )( + ) =

+ ( + ) + ⋯ + ( + )+

( + ) + ( + ) + =

+ ⋯ + + + + ( )

−
−

−
−

− −

s s s s sT

s T s T s T

s T s T

s p s p s p sp

1 1

1

1. B.5

n
n p

n
p n

n
p n n p

p p

n
n

1
1

3
3

2
2 1

1
1

2 1
3

3 2

2
2 1 1

3
3

2
2 1

n

n n n

n n

After normalizing all time constants in the frequency domain with the sampling period Ts and substituting

′ = ( )s sT B.6s

the resulting expressions for (B.2) and (1) are

( )
( ′) =

′ + ⋯ + ′ + ′ + ′ + ′ +
′ + ′ + ⋯ + ′ + ′ + ′ + ′ + ′ +−

−

− ′

B.7
G s k

s z s z s z s z s z

s r s r s r s r s r s r s r
e

1

1
p

m
m

n
n

n
n

s d
4

4
3

3
2

2 1
1

1
5

5
4

4
3

3
2

2 1

and

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ′) = *( ′) ( ′) = + ′ + ′

′

* −
′ ( )

− ′
C s C s C s

s x s y
s t

e
s

1 1

B.8
ZOH

i

s2

respectively, where

= = = =
( )

x
X
T

y
Y
T

t
T
T

d
T
T

, , , ,
B.9s s

i
i

s

d

s
2

β
= ∀ = … = ∀ = …

( )
r

p

T
j n z

T
i m, 1, , , 1, .

B.10
j

j

s
j i

i

s
i

have been set. The transition from the Laplace domain to the z domain is accomplished by making the transformation

′ = −
( )s

z
z

1
B.11

and since = ′z es then

′ = −
( )

′

′s
e

e

1
.

B.12

s

s

Therefore, the digital PID type controller at (B.8) takes the form

( ′) = *( ′) ( ′)

= ( + + ) − ( + ) +
( − ) ( )

′ ′

′ ′

C s C s C s

t
x y e x y e y

e e

1 1 2
1

.
B.13

ZOH

i

s s

s s

2

By setting

^ = + ^ = + + ( )x x y y x y2 and 1 B.14

results in

= ^ − ^ − = ^ − ^ + ( )x y x y x y2 2 and 1. B.15

By substituting Eqs. (B.15) into (B.13) results in

( ′) = *( ′) ( ′) = ( − )^ + ( − )^ +
( − ) ( )

′ ′

′ ′C s C s C s
t

e x e y

e e

1 1 1 1
1

.
B.16

ZOH
i

s s

s s

2

In addition, the respective open and closed loop transfer functions become

( ′) = ( ′) ( ′) ( )F s k C s G s B.17ol h

or

( ′) =
( ′ + ⋯ + ′ + ′ + ′ + )[( − )^ + ( − )^ + ]

( ′ + ⋯ + ′ + ′ + ′ + ) ( − ) ( )

′ ′

′( + ) ′F s k
k

t
s z s z s z s z e x e y

s r s r s r s r e e

1 1 1 1

1 1 B.18
ol h

p

i

m
m

s s

n
n

s d s

3
3

2
2 1

2

3
3

2
2 1

1

and

( ′) = ( ′) ( ′)
+ ( ′) ( ′)

= ( ′)
( ′)

= ( ′)
( ′) + ( ′) ( )

T s
C s G s
k C s G s

N s
D s

N s
D s k N s1 B.19h h1
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Approximating the time delay constant by the Taylor series
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For that reason, polynomial ( ′)D s1 and along with the help of (B.26), can be rewritten in the form of
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Making use of (B.21)–(B.23), the numerator of ( ′)C s is then equal to
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After some calculus at the numerator of the closed loop transfer function it is obtained
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Finally, the corresponding polynomials for both the numerator and denominator of the closed loop transfer function are given by

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

( )

( ′) = ( ′) + ( ′) = ⋯ + + ( + ^ − ^) ′ + + ( + ^ − ^) ′

+ + ( + ^ − ^) ′ + + ( + ^ − ^) ′

+ + ( + ^ − ^) ′ + + ( + ^ − ^) ′ +

B.32

D s D s k N s t q k k z y y x x s t q k k z y y x x s

t q k k z y y x x s t q k k z y y x x s

t q k k z y y x x s t k k z y x s k k2

h i h p i h p

i h p i h p

i h p i h p h p

1 6 6 6 6
6

5 5 5 5
5

4 4 4 4
4

3 3 3 3
3

2 2 2 2
2

1

and

( ′) = ⋯ + ( + ^ − ^) ′ + ( + ^ − ^) ′ + ( + ^ − ^) ′

+ ( + ^ − ^) ′ + ( + ^ − ^) ′ + ( + ^ − ^) ′ + ( )

N s k z y y x x s k z y y x x s k z y y x x s

k z y y x x s k z y y x x s k z y x s k2 . B.33

p p p

p p p p

6 6 6
6

5 5 5
5

4 4 4
4

3 3 3
3

2 2 2
2

1

For determining the optimal PID controller's parameters, equations (A.7)–(A.10) will be applied to (B.20). For that reason, from the ap-
plication of

Optimization condition: =a b0 0,
to the closed loop transfer function (B.19) along with (B.32), (B.33) results in

= ( )k 1. B.34h

which implies that the final closed loop control system exhibits zero steady position error if kh¼1.
Optimization condition: − = −a a a b b b2 21

2
2 0 1

2
2 0.

The second optimization condition results in

= ( + + ^ − ^ − ) ( )t k k r d x y z2 2 , B.35i h p 1 2 1

or according to (B.14), (B.15)

= ( + − − − ) ( )t k k r d z x2
1
2

. B.36i h p 1 1

Optimization condition: − + = − +a a a a a b b b b b2 2 2 22
2

3 1 4 0 2
2

3 1 4 0.
The application of the third optimization condition to the closed loop transfer function results in

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( − ) − ( − ) ^ − ( − ) − ( − ) ^

= ( − + − ) − ( − )( − ) ( )

q q q x x x q q q y y y

q z q z z q q q q z

2

2 . B.37

2
2

3 2 2 3 2
2

3 2 2 3

3 1 2 2 3 4 2
2

3 2 1

Optimization condition: + − − = + − −a a a a a a a b b b b b b b2 2 2 2 2 23
2

1 5 6 0 4 2 3
2

1 5 6 0 4 2.
Finally the application of the fourth optimization condition to the closed loop transfer function leads to
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⎡⎣ ⎤⎦
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( − ) − ( − ) − ( − ) + − ^

− − + − − + + ^
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q x q q x q q x q q x x
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q q q q q z

q z q z q z q z z q

2 4 2

2 2
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2 4 3 3 4 2 5 1 5 6

To that end, the optimal PID controller's parameters are given by

= ( )k 1. B.39h

= ( + − − − ) ( )t k k r d z x2
1
2 B.40i h p 1 1

^ − ^ = ^ − ^ = ( )x a y b x a y band B.411 1 2 2
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q q q y y

q q q x x
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By solving (B.40), (B.41) parameters x̂ , ŷ are determined by

^ =
−
−

^ =
−
− ( )

x
a b a b

a a
y

b b
a a

,
B.46

1 2 2 1

1 2

2 1

1 2

From the definition of the integrator's time constant (B.40) it is critical to point out that

= ( + − − − )
( )

T
T

k k r d z x2
1
2 B.47

i

s
h p 1 1

or according to (B.9), (B.10)

∑ ∑

β

= ( + − − − )

= ( + − − − )

= ( ( ) + − ( ) − − )
( )= =

T k k T r T d T z T x T

k k p T T x T

k k T T T X T

2
1
2

2
1
2

2
1
2 B.48

i h p s s s s s

h p d s s

h p
i

n

p d
i

m

z s

1 1

1 1

1 1
i i

In other words as it was proved in (18), integrator's time constant is equal

= − ( )T T k k T2
1
2

, B.49i i h p sdig an

where Tidig
and Tian

the optimal values for the integrator's time constant regarding the digital and analog design respectively.

Appendix C. Calculated controller parameters

In this section the calculated controller parameters for the examples discussed in Section 3 for the analog and digital implementation
are presented. All plots can be easily reproduced in Matlab/Simulink. Specifically, Figs. 3(a), (b) can be easily reproduced if all transfer
functions (G G ZOH k, , ,p c h) are defined as LTI blocks in Matlab/Simulink workspace. For Section 3.1, Gp is defined by (49), Gc is defined by
(51), and kh¼1 as proved in (B.34). Since sampling time of the control loop is inherited8, when inserting the ZOH block, its parameter
should be set to 1.
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C.1. Controller parameters for Section 3.1: = 20
T

T

p

s

1

In this case the plant is defined by (49). The analog control action is given by

( ′) = + ′ + ′
′ ( + ′ )

= + ′ + ′
′ + ′ ( )

−C s
s x s y
s t s t

s s
s s

1 1
1

1 44.85 540.4
75.63 37.82 C.1

PID an
i p

2 2

2
n

and the digital control action is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ′) = + ′ + ′

′ ( + ′ )

*
( − )

′
= + ′ + ′

′ + ′ + ′ ( )
−

− ′
C s

s x s y
s t s t

e
s

s s

s s s

1
1

1 1 45.57 564.5
45.95 59.08 39.39 C.2

PID dig
i p

s2 2

3 2
n

The step response and the command signal response of the closed loop control system and along with its response to input and output
disturbances is presented in Figs. 4(a), (b).

C.2. Controller parameters for Section 3.1: = 100
T

T

p

s

1

In this case the plant is defined by (49). The analog control action is given by

( ′) = + ′ + ′
′ ( + ′ )

= + ′ + ′
′ + ′ ( )

−C s
s x s y
s t s t

s s
s s

1 1
1

1 224 1351
1891 189.1 C.3

PID an
i p

2 2

2
n

and the digital control action is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ′) = + ′ + ′

′ ( + ′ )

*
( − )

′
= + ′ + ′

′ + ′ + ′ ( )
−

− ′
C s

s x s y
s t s t

e
s

s s

s s s

1
1

1 1 226.5 1392
219 281.5 187.7 C.4

PID dig
i p

s2 2

3 2
n

The step reponse and the command signal response of the closed loop control system and along with its response to input and output
disturbances is presented in Figs. 5(a), (b).

C.3. Controller parameters for Section 3.2: = 20
T

T

p

s

1

In this case the plant is defined by (52). The analog control action is given by

( ′) = + ′ + ′
′ ( + ′ )

= + ′ + ′
′ + ′ ( )

−C s
s x s y
s t s t

s s
s s

1 1
1

1 52.17 930.2
194 96.94 C.5

PID an
i p

2 2

2
n

and the digital control action is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ′) = + ′ + ′

′ ( + ′ )

*
( − )

′
= + ′ + ′

′ + ′ + ′ ( )
−

− ′
C s

s x s y
s t s t

e
s

s s

s s s

1
1

1 1 58.57 1124
99.05 127.3 84.9 C.6

PID dig
i p

s2 2

3 2
n

The step response and the command signal response of the closed loop control system and along with its response to input and output
disturbances is presented in Figs. 7(a), (b).

C.4. Controller parameters for Section 3.2: = 100
T

T

p

s

1

In this case the plant is defined by (52). The analog control action is given by

( ′) = + ′ + ′
′ ( + ′ )

= + ′ + ′
′ + ′ ( )

−C s
s x s y
s t s t

s s
s s

1 1
1

1 260.9 2325
4847 484.7 C.7

PID an
i p

2 2

2
n

and the digital control action is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ′) = + ′ + ′

′ ( + ′ )

*
( − )

′
= + ′ + ′

′ + ′ + ′ ( )
−

− ′
C s

s x s y
s t s t

e
s

s s

s s s

1
1

1 1 292.5 2812
479.1 615.9 410.6 C.8

PID dig
i p

s2 2

3 2
n

The step response and the command signal response of the closed loop control system and along with its response to input and output
disturbances is presented in Figs. 8(a), (b).

C.5. Controller parameters for Section 3.3: = 20
T

T

p

s

1

In this case the plant is defined by (55). The analog control action is given by

8 Ts is the normalization time constant of the control loop
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( ′) = + ′ + ′
′ ( + ′ )

= + ′ + ′
′ + ′ ( )

−C s
s x s y
s t s t

s s
s s

1 1
1

1 54.79 834
181 90.49 C.9

PID an
i p

2 2

2
n

and the digital control action is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ′) = + ′ + ′

′ ( + ′ )

*
( − )

′
= + ′ + ′

′ + ′ + ′ ( )
−

− ′
C s

s x s y
s t s t

e
s

s s

s s s

1
1

1 1 55.58 867
107.8 138.6 92.38 C.10

PID dig
i p

s2 2

3 2
n

The step response and the command signal response of the closed loop control system and along with its response to input and output
disturbances is presented in Figs. 10(a), (b).
C.6. Controller parameters for Section 3.3: = 100

T

T

p

s

1

In this case the plant is defined by (58). The analog control action is given by

( ′) = + ′ + ′
′ ( + ′ )

= + ′ + ′
′ + ′ ( )

−C s
s x s y
s t s t

s s
s s

1 1
1

1 273.9 2085
4524 452.4 C.11

PID an
i p

2 2

2
n

and the digital control action is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ′) = + ′ + ′

′ ( + ′ )

*
( − )

′
= + ′ + ′

′ + ′ + ′ ( )
−

− ′
C s

s x s y
s t s t

e
s

s s

s s s

1
1

1 1 276.2 2137
525.6 675.7 450.5 C.12

PID dig
i p

s2 2

3 2
n

The step reponse and the command signal response of the closed loop control system and along with its response to input and output
disturbances is presented in Figs. 11(a), (b).
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