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Highlights

• The use of Brain Computer In-
terface to help a handicapped 
user to find an object.

• Use of electroencephalogram 
based on four mental tasks to 
control the robot arm.

• The system enabled the control 
of the robot achieving an aver-
aged accuracy of 85.45%.

Graphical abstract

Abstract

Background: The Brain Computer Interfaces (BCI) are devices allowing direct communication between the brain of a user and a machine. This 
technology can be used by disabled people in order to improve their independence and maximize their capabilities such as finding an object in the 
environment. Such devices can be realized by the non-invasive measurement of information from the cortex by electroencephalography (EEG).
Methods: Our work proposes a novel BCI system that consists of controlling a robot arm based on the user’s thought. Four subjects (1 female and 
3 males) aged between 20 and 29 years have participated to our experiment. They have been instructed to imagine the execution of movements of 
the right hand, the left hand, both right and left hands or the movement of the feet depending on the protocol established.

EMOTIV EPOC headset was used to record neuronal electrical activities from the subject’s scalp, these activities were then sent to the computer 
for analysis. Feature extraction was performed using the Principal Component Analysis (PCA) method combined with the Fast Fourier transform 
(FFT) spectrum within the frequency band responsible for sensorimotor rhythms (8 Hz–22 Hz).

These features were then fed into a Support Vector Machine (SVM) classifier based on a Radial Base Function (RBF) whose outputs were 
translated into commands to control the robot arm.
Results: The proposed BCI enabled the control of the robot arm in the four directions: right, left, up and down, achieving an averaged accuracy 
of 85.45% across all the subjects.
Conclusion: The results obtained would encourage, with further developments, the use of the proposed BCI to perform more complex tasks such 
as execution of successive movements or stopping the execution once a searched object is detected. This would provide a useful assistance means 
for people with motor impairment.
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Fig. 1. Brain computer interface system.

1. Introduction

Our brain controls the various functions of the body. Each 
area of the brain is responsible for a specific function, such as 
arm and leg movements, vision, hearing and intelligence. The 
spinal cord is an organ that has a lot of functionality in our ner-
vous system among them the transmission of control messages 
to the muscles, damage to this organ causes in paralysis. There-
fore, patients who are suffering from this severe problem such 
as motor disabilities cannot handle the simplest daily routines 
and they need a great deal of support to improve their ability to 
carry out and move on with normal life. As a result, this prob-
lem has an impact on a person’s quality of life and adds a high 
cost for the residential care packages since an assistance is al-
ways needed to serve patient.

As a solution the Brain Computer Interfaces are devices al-
lowing direct communication between the brain of a user and 
a machine, these systems can be used in patient assistance or 
rehabilitation and require a closed-loop process, most of time 
composed of six steps (Fig. 1): brain activity measurement, pre-
processing, feature extraction, classification, translation into a 
command and feedback.

Numerous works which Brain Computer Interfaces have 
been used in controlling robotic platforms can be found in the 
literature.

Moreover since 1960, researchers [1] introduced the term 
cyborg and the idea to control an electronic system using brain 
activity. In 1973 researchers [2] tested the first real experiment 
on humans. The latter had an electronic control system via brain 
activity measured by EEG.

The past few years various ways in controlling robotic plat-

forms for people suffering from a diverse range of impairments 
were investigated. Guger and his colleagues had already shown 
that it is possible for patients suffering from ‘locked-in syn-
drome’, spinal cord injury or damaged regions of the brain 
responsible for the body movement to control a hand prosthesis 
by thought without the use of invasive techniques [3,4], another 
systems were proposed and applied for people with disability 
in order to control a wheelchair or robot arms [5,6].

BCIs appeared in the computer gaming domain, they have 
been applied in the virtual simulations, such as games or virtual 
tours. Pfurtscheller, Leeb and his collaborators [7,8] developed 
an application in which the subject can move in a virtual street 
by imagining the movement of the feet to move forward and 
movement of the right hand to stop. Then researchers start de-
veloping various novel applications with relatively low cost 
non-invasive EEG equipment and software development kits 
(SDKs). Furthermore, gaming technology has been assisted by 
virtual and augmented reality systems, making hybrid BCI sys-
tems for enhancing the user experience, study and improvement 
of brain-computer interaction [9].

In fact, what was once science fiction became a reality with 
the Brain Computer Interface. This approach became possible 
through the use of technology and mathematical method de-
scribing certain physical processes occurring in the brain and 
corresponding to specific mental tasks. Wavelet-based feature 
extraction algorithms were introduced in [10]. Power Spectral 
Density (PSD) [11], Band Powers (BP) [12], Adaptive Auto 
Regressive (AAR) [13], were also used for feature extraction. 
A great variety of classification methods was also used to de-
sign BCI systems. Linear Discriminant Analysis [14], Support 
Vector Machine (SVM) [15], and Hidden Markov Model [16]
are some examples of widely used classifiers in this field. Clas-
sification of mental tasks has been introduced in several works 
([17–19]), however, just a few applications in real time have 
been reported in the literature. Recently, Hortal designed a BCI 
for controlling an industrial robot arm through mental tasks [20]
in which the system performed SVM classification of four men-
tal states to control in real time the movements of the robot with 
an accuracy achieving 70%. The mental activities consisted of 
motor tasks involving two imagined movements of both hands 
separately and two concentration tasks which consisted of a 
mental recitation of the alphabet backward and a mental count 
down from 20 to 0. This work had been tested with two volun-
teers only.

The current work focuses on a non-invasive and spontaneous 
BCI based on the use of EEG biosignals elicited through mental 
tasks to control the movements of a robot arm with the goal to 
help handicapped people find a specific object in the environ-
ment. The BCI consists of two steps. Firstly, an Off-line BCI 
with four mental motor tasks is used to train a volunteer and 
brain activities recorded are analyzed and processed for fea-

ture extraction. Secondly, a real time BCI based on RBF Kernel 
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Fig. 2. The experimental environment.

Fig. 3. Emotiv Epoc headset.

SVM classifier is implemented to allow the user to control, with 
the same imagined tasks, a robot arm in the four directions: 
right, left, up and down. The system is assessed on the basis of 
the performance obtained with four volunteers who participated 
to the experiment that was high compared to existing systems 
which makes our system optimized considering the execution 
time and its reliability.

The rest of the article is structured as follows. Section 2
presents a description of our system. Sections 3 presents the 
two experimental prototypes that were implemented. Finally, 
section 4 illustrates primarily results and discussion and sec-
tion 5 presents conclusions and perspectives.

2. Materials

Controlling a robot arm is accomplished in this work through 
a BCI using four mental motor tasks performed by a user imag-
ining the movement of the right and the left hand separately, 
the movement of both hands and that of the feet. For each 
task, brain signals are measured using an acquisition system 
that records EEG from the users scalp, then processed and clas-
sified. The output of the classifier controls the movement of 
the robot arm in the four directions based on the user thoughts. 
The user can see the decisions of the system in real time via a 
monitor displaying the streaming of a webcam embarked on the 
robot arm.

As shown in Fig. 2, the experimental setting uses five com-
ponents: EMOTIV EPOC headset, a personal computer for 
acquisition and feedback, Advanced Robotic Manipulator by 
Invenscience (Arm 2.0), Trustcam’s Spotlight Webcam, and a 

second personal computer for controlling the arm.
Fig. 4. a: Electrodes of Emotiv Epoc headset. b: Electrodes positions according 
to the 10–20 system.

2.1. Data Acquisition system

The raw EEG signal was recorded using the EMOTIV EPOC 
headset shown in Fig. 3 consisting of 14 electrodes (Fig. 4a) 
whose locations do not correspond exactly to the positions of 
the standard 10–20 system (Fig. 4b). Since the C3 and C4 po-
sitions can cover a region of the motor cortex, they are the pre-
ferred placement of the electrodes for exploiting Event Related 
De-synchronization (ERD) and Event Related Synchronization 
(ERS) as reported by Pfurtscheller [21,22]. Consequently, the 
headset was tilted around the axis passing through the refer-
ence electrodes located behind ears [23] so that F3 and F4 can 
cover the positions of C3 and C4. Also, we used AF3 and AF4 
electrodes to eliminate the artifacts such as EMG and EOG ar-
tifacts and the two reference electrodes. An inbuilt notch filter 
at 50 Hz and 60 Hz removes power line noise. Data were then 
amplified and digitized with a sampling frequency of 128 Hz.

2.2. Robot environment

The robotic system used is a computer-assisted manipulator. 
The purpose of such a system is to help the subject detecting 
or finding the object he needs in the environment. It consists of 
(Fig. 2):

– A robot arm (Arm 2.0) fixed on a metal support, it is an ar-
ticulated robot with six degrees of freedom (referred as the 
base), the shoulder, the elbow, the wrist rotation, the wrist 
transition and the clamp. The robot performs the move-
ments of the base and the elbow controlled by the thought 
of the subject.

– An embedded camera is positioned on the wrist of the robot 
arm in order to stream the environment.

– A computerized system that allows the transfer of data 
between the robot arm and the acquisition system based 
on the TCP/IP communication, which sends the camera 
streaming to the computer of the acquisition system and 
receives the order from it.

2.3. Experimental protocol

Four users aged between 20 and 29 years (3 males, 1 female) 

volunteered to participate in the experiment. All subjects were 
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Fig. 5. The alphabet created between the user and the robot arm.

Table 1
The alphabet created between the user and the robot arm.

Arrow The imagining movement The robot movement

Right Right hand The base moves right
Left Left hand The base moves left
Up Right and left hand (at the same time) The elbow points up
Down Feet The elbow points down

free of any history of neurological or psychological disorders. 
The participants were required to remain still with minimal 
muscle movement during the experiment.

To control the robot in the four directions, we created an 
alphabet of four symbols which consist of arrows in four direc-
tions right, left, up and down. Once an arrow is presented on 
the screen of a monitor, the user must think of a movement ac-
cording to the direction of the arrow. As shown in Fig. 5 and 
Table 1, there are four options:

– If a right arrow is displayed, the user has to imagine the 
movement of the right hand that should control the base of 
robot arm to move to the right.

– If the left arrow is displayed the subject has to imagine the 
movement of the left hand that should control the base of 
the robot arm to move to the left.

– If the up arrow is displayed the subject has to imagine the 
movement of both right and left hand that should control 
the elbow of the robot arm to move to point up.

– If the down arrow is displayed the subject has to imagine 
the movement of the feet and that should control the elbow 
of the robot arm to point down.

Each experimental test takes about 30 minutes, it includes 
the training phase performed off line and the on-line test. 
Firstly, a description of the experiment’s sequences is intro-
duced to the user and then a period of five minutes is established 
to allow him (her) to familiarize with the protocol. A white 

fixation cross is displayed in the center of the monitor for 2 sec-
Fig. 6. Offline acquisition protocol.

onds at the beginning, then a cue is randomly presented as a 
right, left, up and down arrow for 2 seconds. When the cue is 
presented, the subject was instructed to start imagining a move-
ment of the right hand, the left hand, both the right and the left 
hand and the movement of the feet based on the displayed arrow 
direction as described above. Then, a black screen is displayed 
for 1 second as a resting period (Fig. 6).

2.4. Training

During the training phase, the arrows were displayed 15 
times each. The user performed the four imagined movements 
sixty times which required around five minutes. This was fol-
lowed by a period of ten minutes to allow the user to rest and 
get ready for the on-line test aimed at controlling the robot arm 
based on the user thought.

2.5. On-line control of the robot arm

Using the same setting as in the training phase, the user was 
fixing the screen where a streaming of the robot’s camera was 
displayed. At the beginning a white fixation cross appeared in 
the right down corner of the streaming for 2 seconds to inform 
the user that he has to prepare for a mental task, then this cue 
changed to a green square for 2 seconds as a start of the imag-
ined movement. When the green square turned red the subject 
had to stop imagining and he (she) could visualize on real time 
for 3 seconds the response of his (her) thought through the 
movement of the robot arm shown on the screen (Fig. 7). For 
validation, this protocol was repeated ten times by each user for 
the four movements thought.

3. Methods

Data used in this work were collected from each subject 
using four electrodes AF3, AF4, F3 and F4. Pre-processing 
consisted of using differential potentials between data collected 
with F3 and AF3 and between those collected with F4 and AF4 
to eliminate the artefacts. Secondly, a Butterworth stopband fil-
ter was applied to remove the power line interference (50 Hz). 

The set of data analyzed consisted of 60 epochs including data 
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Fig. 7. On-line protocol. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

corresponding to the four imagined movement represented each 
by a label of 15 epochs. Each epoch contained 500 samples.

The measurement of an imagined movement at the two chan-
nels lasts 2 seconds with a sampling frequency of 128 Hz

2 seconds ∗ 128 Hz ∗ 2 channels(F3–AF3, F4–AF4)

= 500 samples

Label 1: 500 samples*15 epochs
Label 2: 500 samples*15 epochs
Label 3: 500 samples*15 epochs

Label 4: 500 samples*15 epochs

Fig. 8. Chart of analysis met
3.1. Feature extraction

The analysis method is presented in the flowchart below 
(Fig. 8). Feature extraction was performed through analyzing 
the EEG signals using the Fourier transform method and com-
bining the Principal Component Analysis method to reduce the 
dimensionality of the features.

We were mainly interested in frequency components in the 
range of frequencies between 8 Hz and 22 Hz taking into ac-
count that the frequency bands responsible for the sensorimotor 
rhythms that appear when a person makes or imagines a move-
ment are μ [8 Hz–12 Hz] and β [12 Hz–22 Hz] [24].

Principal component analysis is a statistical algorithm which 
is widely used for feature extraction and dimensionality reduc-
tion. PCA can be defined as a linear projection transforming 
a number of possibly correlated variables into a smaller num-
ber of uncorrelated variables called principal components. The 
first principal component has the maximum variance, and each 
succeeding component in turn is orthogonal to the existing com-
ponents and with the maximum variance. PCA was invented in 
1901 by Karl Pearson. It is performed on the Covariance ma-
trix or on the Correlation matrix. These matrices can be calcu-
lated from the data matrix. It involves a mathematical procedure 
called eigen analysis; usually after normalizing (zero-mean) 
the data matrix for each attribute the analysis can be done by 
eigenvalue decomposition of a data covariance (or correlation) 
matrix of a data matrix. The basic goal in PCA is to decorre-
late the data by performing an orthogonal projection to remove 
unwanted components in the signal [25]. In our work, we use 
PCA to reduce dimensionality of data to 60 samples so that the 
obtained features matrix for each label was presented as:

Label 1: 60 features *15 epochs
Label 2: 60 features *15 epochs
Label 3: 60 features *15 epochs

Label 4: 60 features *15 epochs
hodology of the system.
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Table 2
Success rate of the control of the robot arm (%) obtained with the 4 users. (RH: 
right hand. LH: left hand. BH: both hands. FT: feet).

User Class

RH LH BH FT Mean

User 1 93.6 79.5 79.12 89.7 85.48
User 2 82.2 87.7 79.0 84.5 83.35
User 3 87.6 94.5 77.3 92.1 87.87
User 4 89.2 86.5 73.7 91.1 85.12

And it defined the training set for real time analysis. Fea-
tures were then fed into a classifier based on the Radial Base 
Function Support Vector Machine (RBF-SVM) that calculates 
the predicted label among the four labels based on the training 
set.

3.2. Classification

In BCI research, Support Vector Machine (SVM) is regarded 
as one of the more accurate classifiers [26,27]. To do the clas-
sification, SVM makes use of a hyperplane or groups of it in 
a very high (even infinite) dimensional space to distinguish the 
different classes to classify. The performance of a given lin-
ear SVM depends on a tradeoff parameter C: the C parameter 
balances the relative importance of minimizing the training er-
ror and maximizing the margins between the classes, which 
directly affect the classifier’s generalization ability. The accu-
racy of the SVM-based classifier depends on the kernel used. 
In the case of a BCI system, generally a Gaussian kernel or a 
Radial Base Function (RBF) is applied [28]. Cross-validation 
basically improves the accuracy of the model by avoiding the 
overfitting. In K-fold cross validation the data is first partitioned 
into k equally (or nearly equally) sized segments or folds. In this 
case, cross-validation is used to choose the best parameters C 
and gamma of the RBF kernel and to estimate the model per-
formance. In this work, a multiclass strategy was used in the 
RBF kernel SVM system using 10-folds cross-validation. Best 
results were obtained for C between 370 and 500 and gamma 
between 3.5 × 10−5 and 5 × 10−3.

4. Results and discussion

The results presented in Table 2 are the rates of success ob-
tained by each of the four users in controlling the robot arm by 
performing each of the four imagined movements. The last col-
umn of the table gives the average success rate for each user. 
These results showed good performance above 85% in average 
obtained with the four users. Nonetheless, they all showed less 
accuracy in performing the imagined movement involved both 
hands as revealed by the confusion matrix whose components 
are the probability of agreement between the true and the pre-
dicted label. Table 3 represents the confusion matrix computed 
with the user achieving the highest performance (User 3).

These results suggest that the classification accuracy may be 
affected by the degree of concentration of the user during the 
training phase. As reported by some users, a loss of concen-

tration is felt when the arrows were displayed randomly. This 
Table 3
Confusion matrix (%) – User 3 (RH: right hand. LH: left hand. BH: both hands. 
FT: feet).

True 
class

Predicted class

RH LH BH FT

RH 98.2 0.1 1.7 0.3
LH 0.8 94.7 4.2 0.3
BH 10.5 0.7 88.6 0.2
FT 2.4 0.3 3.8 93.5

Table 4
The performance (%) achieved by user 2 in both cases randomly and succes-
sively (RH: right hand. LH: left hand. BH: both hands. FT: feet).

User 2 RH LH BH FT Mean

Training (1) 82.2 87.7 79.0 84.5 83.3
Training (2) 85.4 86.8 84.2 85.6 85.5

was confirmed by comparing the performance achieved by user 
2 in both cases (1) the four arrows were displayed randomly 
15 times each and (2) each type of arrow was displayed suc-
cessively 15 times. Table 4 shows performance enhancement 
for all the movements and in particular the movement of both 
hands as shown in Table 4.

These findings demonstrate capabilities of the proposed BCI 
in controlling movements in the four directions, left, right up 
and down based on four motor mental tasks with an overall suc-
cess rate of 85.45%. As revealed by the confusion matrix the 
BCI proposed is more efficient (98.2 for the right movement, 
94.7 for the left movement) compared to the performance ob-
tained by Hortal (78.4.2 for the right movement, 89.7 for the left 
movement). In addition feature extraction performed prior clas-
sification reduced considerably data dimensionality from 500 to 
60 and thus the computation time cost.

5. Conclusion

The current work presents preliminary results in controlling 
through mental tasks the movements of a robot arm in four 
directions: right, left, up and down. The system used a brain 
computer interface that exploits EEG signals recorded for each 
mental task from the scalp at the locations F3, AF3, F4 and 
AF4 of the motor cortex. Spectral analysis based on FFT trans-
form combined with PCA method produced optimal features 
that were fed into an RBF Kernel SVM classifier to discriminate 
between the four movements. Tests performed with four volun-
teers showed an accuracy reaching on average 85.45%. Subject 
training was an essential step; the performance accuracy was 
impacted by the level of concentration during the movement 
imagination.

The good rate of success obtained in real time using the four 
basic movements would encourage, with further developments, 
the use of the proposed BCI to control the robot arm to perform 
more complex tasks such as execution of successive movements 
or stopping the execution once a searched object is detected. 
This would provide a useful assistance means for people with 

motor impairment.
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