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Abstract

In this paper, taking about 7 years’ high-frequency data of the Shanghai Stock Exchange Composite Index (SSEC) as an
example, we propose a daily volatility measure based on the multifractal spectrum of the high-frequency price variability within a
trading day. An ARFIMA model is used to depict the dynamics of this multifractal volatility (MFV) measures. The one-day ahead
volatility forecasting performances of the MFV model and some other existing volatility models, such as the realized volatility
model, stochastic volatility model and GARCH, are evaluated by the superior prediction ability (SPA) test. The empirical results
show that under several loss functions, the MFV model obtains the best forecasting accuracy.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Modeling and forecasting volatility in financial markets is a key issue in many important fields, such as derivative
products pricing, portfolio allocation and risk measurement. The seminal paper of Engle [1] has paved the way
for the development of a large number of so-called historical volatility models in which a time varying volatility
process is extracted from financial return data. Many of these models can be regarded as variants of the generalized
autoregressive conditional heteroskedasticity (GARCH) models [2]. A rival class for ARCH is associated with the
stochastic volatility (SV) models [3].

Both GARCH and SV models are regularly used for the analysis of daily, weekly and monthly returns. However
the recent widespread availability of intraday high-frequency prices of financial assets and the work done on them
have shed new light on the concept of volatility: as a matter of fact, data sampled at regular intradaily intervals can be
summarized into a measure called realized volatility (RV) which, under some assumptions, is a consistent estimator
of the quadratic variation of the underlying diffusion process [4]. In principle, the volatility measures derived from
high-frequency data should prove to be more accurate, hence allowing for forecast efficiency gains. Nevertheless,
recently Ref. [5] shows that realized volatility is prone to all sorts of microstructure problems.
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Since the suggestion of Mandelbrot [6] that multifractal is a powerful tool for depicting volatility complexities in
financial markets, much research has been done in this field. However most of these studies focus on empirical tests
of multifractality in different financial data sets. So we wonder whether multifractal analysis can contribute to the
measurement and forecasting accuracy of volatility in financial markets. Taking high-frequency data of SSEC index
in Chinese stock market as an example, first we propose a so-called multifractal volatility (MFV) measure based on the
multifractal spectrum of high-frequency price movements within one trading day. Second similar to realized volatility,
we also propose an ARFIMA process to model the dynamics of MFV and use a rolling-window method to forecast
the volatility of SSEC one day ahead. Finally, we use a formal test for superior prediction ability (SPA) proposed by
Ref. [7] to evaluate the forecasting performance of the MFV model and compare it to other popular volatility models,
such as RV, SV and GARCH models. The empirical results show that under several loss functions, i.e., mean square
error adjusted for heteroskedasticity (HMSE) and mean absolute error adjusted for heteroskedasticity (HMAE), the
MFV model obtains the best forecasting accuracy.

This paper is organized as follows. In the next section, we introduce the sample data and discuss how daily and
intraday returns are constructed. In Section 3, we discuss how realized volatility is derived from intraday returns and
the ARFIMA model for RV. In Section 4, we introduce the calculation of the multifractal volatility measure from the
multifractal spectrum of high-frequency price movements within one trading day. In Section 5, the historical volatility
models are briefly described. The out-of-sample forecasting methodology and SPA test are discussed in Section 6, and
in Section 7, the estimation and forecasting results are presented. Section 8 summarizes the conclusions.

2. The data, daily and intraday returns

The data for our empirical study consists of high-frequency (every 5 min) price quotes of the Shanghai Stock
Exchange Composite Index (SSEC), the most important stock index in the Chinese stock market, during the period
from 19 January 1999 to 30 December 2005, which contains totally N = 1670 trading days. The Shanghai Stock
Exchange is open from 9:30 a.m. to 11:30 a.m. and then from 1:00 p.m. to 3:00 p.m., so there are 4 trading hours in a
trading day, and there are 48 quotes (per 5 min) of index in a day (excluding the open price). The 5-min price quotes
are denoted as It,d , t = 1, 2, . . . , N and d = 0, 1, 2, . . . , 48. It,0 denotes the open price on day t and It,48 the close
price quote. Here the daily return Rt is defined as

Rt = 100(ln It,48 − ln It−1,48), (1)

and the intraday high-frequency return Rt,d is defined as

Rt,d = 100(ln It,d − ln It,d−1), d = 1, 2, . . . , 48. (2)

3. Realized volatility and the ARFIMA model

It is generally accepted that squared daily returns provide a poor approximation of actual daily volatility. Ref. [4]
first points out that more accurate estimates can be obtained by summing squared intraday returns. If we would apply
their method directly in this paper, we would define realized volatility as

RV ′
t =

48∑
d=1

R2
t,d . (3)

However, this definition ignores the information obtained in the overnight returns. In order to account for this
problem, Ref. [8] suggests scaling the realized volatility in this way:

RV t = γ RV ′
t , (4)

where the so-called scale parameter γ is defined as

γ =

N−1
N∑

t=1
R2

t

N−1
N∑

t=1
RV ′

t

. (5)
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In empirical work on realized volatility [9], it is pointed out that the natural logarithms of realized volatility series,
denoted as lnRV, can be modeled by a Gaussian dynamic process. Ref. [9] adopts the autoregressive fractionally
integrated moving average (ARFIMA) to model this process.

The ARFIMA(1, d, 1) model with mean µ for realized volatility can be given by

(1 − φL)(1 − L)d(RV t − µ) = (1 + θ L)εt , (6)

where L is the lag operator, coefficients d , φ and θ are fixed and unknown and εt is Gaussian white noise with
mean zero and variance σ 2

ε . Since different ARFIMA model specifications produce rather similar results [10], we also
consider the ARFIMA(1, d, 1) model in the following empirical study.

4. Multifractal volatility measure and its model

Some recent works find that the multifractal spectrum of the high-frequency price movements within a trading day
contains valuable volatility information of the assets [11–13]. So, in this section, we discuss how to construct a so-
called multifractal volatility (MFV) measure from the daily multifractal spectrum and how to model the multifractal
volatility series.

According to the method previously proposed [11–13], we also use the box-counting method to calculate the
multifractal spectrum of SSEC. To be clear, here we denote the high-frequency price quotes of SSEC, excluding the
open price, at time t as I (t) and t running from 1 to M = 48 × 1670 = 80, 160.

The index variation with time can be divided into many normalized boxes (time intervals) of size δ (δ < 1), for
example, in the case the box size can be 1/48, 1/24, 1/16, 1/12, 1/8, 1/6, 1/4, 1/3, 1/2 and 1.

Suppose we need m boxes to cover the 48, 5-min quotes in a trading day, I (t), t = 1, 2, . . . , 48, and there are n
quotes in each boxes. Pi is the average probability in the box i , then

Pi (δ) =

n∑
j=1

I (i j )

48∑
t=1

I (t)

, i = 1, 2, . . . , m, (7)

where Ii j is the j th quote in the i th box in the trading day.
Then we can describe it to be multifractal as

Pi (δ) ∼ δα, (8)

Nα(δ) ∼ δ− f (α), (9)

where α is the singularity or Hölder exponent of the subset of probabilities, Nα(δ) the number of boxes of size δ with
the same probability, and f (α) the fractal dimension of the α subset.

What is important for us is the statistical information about index fluctuations contained in multifractal spectra f
(α), and we may use the partition function Sq(δ) to calculate it. The partition function Sq(δ) is defined and expressed
as a power law of δ with an exponent τ(q), where q is the moment order (−∞ < q < ∞):

Sq(δ) =

m∑
i=1

Pq
i (δ) ∼ δτ(q). (10)

In our calculation, |q|max is 120, and τ(q) can be obtained from the slope of the linear part of ln Sq(δ)– ln δ curve.
Then f (α) can be obtained by performing Legendre transformation as follows:

α =
dτ(q)

dq
, (11)

f (α) = αq − τ(q). (12)

Therefore the width of the multifractal spectrum can be expressed as 1α = αmax − αmin, where αmax and αmin are
the maximum and minimum of α. Since the probability of each box is Pi (δ) ∼ δα and δ < 1, αmin and αmax denote
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Fig. 1. The time dependence of the indexes of 4 Feb., 2004 (a); and 5 Feb., 2004 (b); the multifractal spectra of 4 Feb., 2004 (c); and 5 Feb., 2004
(d).

the values of the maximum and minimum probabilities. In other words, αmin indicates the highest “price level” in that
trading day and αmax indicates the lowest “price level” in that trading day. Thus the larger the value of 1α, the more
violent the price fluctuation in the trading day, and 1α can be treated as a measure of daily volatility.

Fig. 1(a) and (b) show the high-frequency price movements of SSEC in two sequent trading days. Fig. 1(c) and
(d) are the multifractal spectra of the two days, and the maximum Hölder exponent and the minimum one of each
multifractal spectrum are αmax and αmin. Visibly, the price varies more violently on 4 February, 2004 than on 5
February, 2004, so 1α of the first day is larger than that of the second day.

To make 1α comparable to realized volatility and other historical volatility measures, similar to the means of
scaling realized volatility in Section 3, we formally define multifractal volatility measure (MFV) for day t as

MFV t = β1αt , (13)

where the scale parameter β is defined as

β =

N−1
N∑

t=1
R2

t

N−1
N∑

t=1
1αt

. (14)

As discussed in Section 3, realized volatility is computed by using every high-frequency data within the 48
intradaily quotes only about twice as illustrated by Eqs. (2)–(5). However MFV is constructed by 1α, where every α

is computed by using the box-counting method. To get the value of 1α, every high-frequency data is used many times
as illustrated by Eqs. (7)–(14). At this point, MFV may make fuller use of the statistical information in every high-
frequency data than RV. Therefore we expect that MFV is a more accurate measurement of daily volatility than RV.
Furthermore, the difference between MFV and other existing volatility measures is that RV, SV and GARCH model
daily volatility directly by using daily or intradaily price (return) data, however MFV is constructed by indirectly using
a kind of probability of multifractal measurement.
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Fig. 2. The time dependence of daily returns of SSEC between 19 January 1999 and 30 December 2005 (a), the realized volatility (b) and
multifractal volatility measures (c).

Fig. 2(a) gives the time dependence of daily returns of SSEC between 19 January 1999 and 30 December 2005,
totally 1670 trading days. Fig. 2(b) and (c) give realized volatility and multifractal volatility measures respectively.

Fig. 2 shows that the multifractal volatility measure is quite similar to realized volatility measures, especially when
there are large volatilities of daily returns. We further consider that many time series models, such as AR, MA and
ARMA, can be treated as special forms of the ARFIMA model. So similar to realized volatility model in Section 3, we
also propose an ARFIMA(1, d, 1) model with mean µ for the natural logarithms of multifractal volatility measures,
denoted as lnMFV.

5. Historical volatility models

5.1. GARCH model

The most popular historical volatility model is generalized autoregressive conditional heteroskedasticity (GARCH)
model. In our empirical investigation, the simple but effective GARCH(1, 1) model for daily returns is given by

Rt = σtεt , εt ∼ NID(0, 1),

σ 2
t = ω + αε2

t−1 + βσ 2
t−1, (15)

with parameter restrictions ω > 0, α ≥ 0, β ≥ 0 and α + β ≤ 1.

5.2. Stochastic volatility model

The stochastic volatility model is an alternative model to GARCH and for daily returns it is given by

Rt = σtεt , εt ∼ NID(0, 1),

σ 2
t = σ ∗2 exp(ht ),

ht = φht−1 + σηηt−1, ηt ∼ NID(0, 1), h1 ∼ NID(0, σ 2
η /{1 − φ2

}), (16)

where σ ∗2 may be treated as a scale parameter, the persistence parameter φ is restricted to be positive and smaller
than one to ensure stationarity. εt and ηt are assumed mutually uncorrelated.

6. Forecasting methodology and SPA test

For the empirical results given in the next section, we evaluate the forecasting performances of the four different
volatility models described in Sections 3–5. The forecasting study is handled as follows. Each volatility model is
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estimated 420 times based on 420 estimation samples that include 1250 observations (the total sample includes 1670
observations). The first estimation sample includes the observations from t = 1 to 1250. Based on this estimation,
a one-day ahead volatility forecast is made for time t = 1251. The second estimation sample starting at t = 2 and
ending at t = 1251, is used to forecast the volatility at time t = 1252. Similarly, this process can be repeated 420
times and produces 420 one-day ahead volatility forecasts σ̂ 2

m , where m = 1251, 1252, . . . , 1670.
Since the true volatility is not observable, the realized volatility measure in Eq. (4), denoted as RV t is generally

accepted to be an accurate estimator, and can therefore be used as a standard to evaluate the volatility forecasting
performances for various volatility models [10]. Furthermore various forecasting criteria can be considered to assess
the predictive accuracy of a volatility model. In this paper, we use 4 different accuracy statistics or loss functions, L i ,
i = 1, 2, 3 and 4, as forecasting criteria:

L1 : MSE = M−1
H+M∑

m=H+1

(RVm − σ̂ 2
m)2, (17)

L2 : MAE = M−1
H+M∑

m=H+1

|RVm − σ̂ 2
m |, (18)

L3 : HMSE = M−1
H+M∑

m=H+1

(1 − σ̂ 2
m/RVm)2, (19)

L4 : HMAE = M−1
H+M∑

m=H+1

|1 − σ̂ 2
m/RVm |, (20)

where H = 1250, M = 420 and so H + M = 1670. MSE and MAE are the most popular loss functions in this
comparison. HMSE and HMAE are MSE and MAE adjusted for heteroskedasticity.

The usual forecast comparison is based on different loss functions computed just in one single sample. However, the
fact that a particular loss criterion is smallest for a particular model does not provide any information about its forecast
superiority in other samples of the data set and in future samples of the data. Much works has focused on a testing
framework for determining whether a particular model is better than another model [14]. The results in Ref. [14] and
the important refinements in Ref. [15] constitute a framework that constructs a formal test for the superior prediction
ability (SPA) of a benchmark or base model relative to a set of rival models.

The SPA test can be used for comparing the performances of two or more forecasting models. The forecasts are
evaluated using a pre-specified loss function, and the “best” forecast model is the model that produces the smallest
expected loss. The key method of computing SPA test statistic and its p-value requires bootstrap samples obtained
by, for example, the stationary bootstrap procedure discussed in Ref. [16]. The technical details of SPA can be found
in Refs. [7,10,15]. In summary, the p-value of a SPA test indicates the relative performance for a base model (M0)

to an alternative model (Mk). The higher the p-value, the better the forecasting performance of the base model M0.
In particular, a p-value of about 1 can be treated as strong evidence that the base model is superior to the alternative
ones.

7. Empirical results

7.1. Some forecasting results

The one-day ahead volatility forecasts for different models are constructed using the rolling forecasting
methodology discussed in Section 6. To be clear, Fig. 3 shows only one piece of the forecasting results (t = 1350,
1351, . . . , 1550, about 200 days) in which the realized volatility measures as the forecasting benchmark are displayed
as dots. Fig. 3(a) shows the forecasting results of ARFIMA-lnRV and ARFIMA-lnMFV models and Fig. 3(b) the
forecasting results of SV and GARCH models.

Visibly, GARCH and SV make higher volatility forecasts than ARFIMA-lnRV and ARFIMA-lnMFV as a whole.
However to get reliable and robust evaluation, we need the results from SPA tests.
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Fig. 3. One-day ahead volatility forecasts from ARFIMA-lnRV and ARFIMA-lnMFV (a); SV and GARCH (b) and realized volatility measures
(as dots).

Table 1
Superior predictive ability (SPA) test for various volatility models

Loss function Base model M0 Alternative models Mk
ARFIMA-lnMFV ARFIMA-lnRV SV GARCH

MSE ARFIMA-lnMFV – 0.007 0.076 0.082
ARFIMA-lnRV 0.994 – 0.935 0.867
SV 0.924 0.065 – 0.170
GARCH 0.918 0.134 0.830 –

MAE ARFIMA-lnMFV – 0.035 0.415 0.740
ARFIMA-lnRV 0.965 – 0.971 0.993
SV 0.586 0.030 – 0.907
GARCH 0.261 0.007 0.093 –

HMSE ARFIMA-lnMFV – 1.000 1.000 1.000
ARFIMA-lnRV 0.001 – 0.940 1.000
SV 0.000 0.060 – 1.000
GARCH 0.000 0.001 0.000 –

HMAE ARFIMA-lnMFV – 0.993 1.000 1.000
ARFIMA-lnRV 0.007 – 0.980 1.000
SV 0.000 0.020 – 1.000
GARCH 0.000 0.000 0.000 –

7.2. SPA tests

In this empirical test, we use 2000 times of bootstraps to obtain a SPA p-value between two competitive models.
Table 1 presents the SPA results for various volatility models. The first column in Table 1 lists the four different loss
functions and the second column gives the names of base model M0. The numbers in the table are the SPA p-values.
As noted above, the higher the p-value, the better the forecasting performance of the base model (M0) than that of
the alternative ones (Mk).

Table 1 shows that the ARFIMA-lnRV model performs quite well in most of the cases, especially when it is
compared with SV and GARCH models. When the loss functions of HMSE and HMAE are taken into account,
ARFIMA-lnMFV outperforms all the other alternative models with almost all p-values of 1 (only a p-value of
0.993 with loss function of HMAE to ARFIMA-lnRV model). This result may indicate that multifractal volatility
measures are more accurate and sensitive to the market variability and especially suitable for depicting the volatility
heteroskedasticity. Table 1 also shows that the SV model does better volatility forecasts than does the GARCH model
except for MSE as the loss function. Generally the volatility model base on high-frequency data, i.e., ARFIMA-
lnRV and ARFIMA-lnMFV produce better volatility forecasts than those based on daily data, i.e., SV and GARCH
model. This phenomenon may indicate the fact that there is more valuable information about market volatility in high-
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frequency data than in low-frequency data. Therefore volatility models constructed with high-frequency data should
certainly be the direction for future research.

8. Conclusions

In this paper, taking about 7 years’ high-frequency data of Shanghai Stock Exchange Composite Index (SSEC)
as an example, we propose a daily volatility measure based on multifractal spectrum of the high-frequency price
variability within a trading day. An ARFIMA(1, d, 1) model is also constructed to depict the dynamics of the so-
called multifractal volatility (MFV) measure. To testify the efficiency of the MFV measures, we compare the one-day
ahead volatility forecasting performance of the MFV model with other three popular models, i.e., realized volatility
model, SV and GARCH. The empirical results of the superior prediction ability (SPA) test show that the ARFIMA-
lnMFV model outperforms all the other alternative models when the loss functions of HMSE and HMAE are taken
into account. Furthermore, we find that volatility models based on high-frequency data, RV and MFV models, produce
better volatility forecasts than those models based on daily data. These results suggest that the multifractal analysis
of high-frequency data of financial assets may produce much valuable statistical information on volatilities and their
dynamical characteristics. This information may help in the further research on derivative products pricing, portfolio
allocation and financial risk management.
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