
Identification of ARARX models

in presence of additive noise

Roberto Diversi ∗ Roberto Guidorzi ∗ Umberto Soverini ∗

∗ Dipartimento di Elettronica, Informatica e Sistemistica,
University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy

(e-mail: roberto.diversi@unibo.it, roberto.guidorzi@unibo.it,
umberto.soverini@unibo.it).

Abstract: The identification of dynamic processes can be performed by means of different
classes of models relying on different stochastic environments to describe the misfit between the
model and process observations. This paper introduces a new class of models by considering
additive error terms on the observations of the input and output of ARARX models and proposes
a three–step identification procedure for their identification. ARARX + noise models extend
the traditional ARARX or ARMAX ones and can be seen as errors–in–variables models where
both measurement errors and process disturbances are taken into account. The results of Monte
Carlo simulations show the good performance of the proposed identification procedure.
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1. INTRODUCTION

The modeling of a dynamic process on the basis of ob-
served sequences i.e. its identification, can rely on many
families of possible models, describing different stochastic
environments, as well as on different selection criteria
within a specified class of models. The choice of model
families and criteria is often based more on the planned
use of the model then on the adherence of the associated
stochastic contexts to real ones because real processes are
in general more complex than the representations used for
their description.

Equation error models constitute a very useful category
of models because of their applicability in prediction and
control (Söderström and Stoica, 1989; Ljung, 1999); the
description of the misfit between model and observations
only by means of an error term on the output is, however,
restrictive.

Errors–in–Variables (EIV) models are a class of mod-
els based on the assumption that the process behind
the data can be described by means of a linear model
whose observations are corrupted by additive errors, see
(Söderström, 2007) and the references therein. These mod-
els are often more realistic because all measures are con-
sidered as affected by errors.

This paper considers a new family of models that derives
from the integration of EIV models and ARARX ones.
Inside the class of equation error models, ARARX are very
peculiar since they can be considered as an extension of
ARX models and can approximate, at any desired degree,
the family of ARMAX models (Guidorzi, 2003; Söderström
and Stoica, 1989). This characteristic leads to the use of
ARARX processes also in model reduction (Söderström et
al., 1991; Tjärnström and Ljung, 2003).

ARARX + noise models consider additive error terms on
the observations of the input and output of an ARARX
model. In this way, it is possible to obtain representations
that take into account both measurement errors and
process disturbances. This feature is particularly suitable
for fault detection and filtering purposes.

This paper proposes a three–step identification procedure
for identifying ARARX + noise models. The first step
concerns the identification of an auxiliary high–order ARX
model and is based on the results reported in (Diversi
et al., 2007). The second and third steps take advantage
of the properties of polynomials with common factors
and consist in simple least–squares algorithms. The pro-
posed method has been tested by means of Monte Carlo
simulations and compared with an instrumental variable
approach.

The organization of the paper is as follows. Section 2
contains a description of the considered stochastic context
and the statement of the identification problem. Section
3 describes the steps to be performed in the identification
procedure. Section 4 concerns the identification of an aux-
iliary high–order ARX model while the complete ARARX
+ noise identification procedure is described in Section 5.
In Section 6 the ARARX + noise identification problem is
solved by using an instrumental variable approach. Section
7 reports some numerical results while short concluding
remarks are finally given in Section 8.

2. CONTEXT AND STATEMENT OF THE PROBLEM

Consider a linear, single input single output, discrete time
ARARX model described by the equation

A(q−1)ȳ(t) = B(q−1)u0(t) +
e(t)

D(q−1)
, (1)

where A(q−1), B(q−1) and D(q−1) are polynomials in the
backward shift operator q−1
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Fig. 1. ARARX model with noisy input and output.

A(q−1) = 1 + a1 q−1 + · · · + an q−n (2)

B(q−1) = b0 + b1 q−1 + · · · + bn q−n (3)

D(q−1) = 1 + d1 q−1 + · · · + dnd
q−nd . (4)

The ARARX structure admits the following interpreta-
tions:

• An equation error model, with input u0(t) and output
ȳ(t),whose equation error is given by the autoregres-
sive process e(t)/D(q−1) (see (1)).

• A “true” system B(q−1)/A(q−1), with input u0(t) and
output y0(t), whose output is affected by the additive
colored noise v(t) = e(t)/(A(q−1)D(q−1)) (see Fig.
1). In this case, ȳ(t) denotes the observed output:
ȳ(t) = y0(t) + v(t).

Remark 1. Since a moving average process driven by a
white noise η(t) = C(q−1) e(t) can be approximated by
an autoregessive process of suitable high order, η(t) ≈

1
D(q−1) e(t), v(t) can be seen as an approximation of a

generic ARMA model C(q−1)
A(q−1) e(t). As a consequence, an

ARARX model can approximate an ARMAX structure.

In this paper, we will assume that u0(t) and ȳ(t) are
corrupted by the additive noises ũ(t) and ỹ(t) so that the
available signals u(t), y(t) are given by

u(t) = u0(t) + ũ(t) (5)

y(t) = ȳ(t) + ỹ(t) = y0(t) + v(t) + ỹ(t). (6)

Model (1)–(6) can thus be seen as an errors–in–variables
model where the noise–free input u0(t) is affected by the
measurement error ũ(t) while the noise–free output y0(t) is
affected by two noise contributions, a measurement error
ỹ(t) and a process disturbance v(t) whose sum could also
be considered as a single colored noise generated by an
ARMA process. The separation of the output disturbance
into a white noise and a colored one considered in this
paper is however useful in the solution of specific problems
like, for instance, diagnosis.

Remark 2. Note that the EIV model (1)–(6) can approxi-
mate the extended–noise Kalman filter context described
in (Diversi et al., 2005), where input, output and state
noises are present.

The following assumptions are introduced.

A1. A(z) and D(z) have all zeros outside the unit circle.
A2. A(z) and B(z) do not share any common factor.
A3. The orders n and nd are assumed as a priori known.
A4. The noise–free input u0(t) is a zero–mean ergodic ran-

dom signal and is persistently exciting of a suitably
high order.

A5. e(t), ũ(t) and ỹ(t) are zero–mean ergodic white pro-
cesses with unknown variances σ2∗

e , σ̃2∗
u and σ̃2∗

y re-
spectively. These processes are mutually uncorrelated
and uncorrelated with the noise–free input u0(t).

The problem under investigation is the following.

Problem 1. Given a set of noisy input–output observations
u(1), . . . , u(N), y(1), . . . , y(N), determine an estimate of
the coefficients ak (k = 1, . . . , n), bk (k = 0, . . . , n),
dk (k = 1, . . . , nd) and of the variances σ2∗

e , σ̃2∗
u , σ̃2∗

y .

3. A THREE–STEP IDENTIFICATION PROCEDURE

By defining the polynomials of degree n̄ = n + nd

Ā(q−1) = A(q−1)D(q−1) (7)

B̄(q−1) = B(q−1)D(q−1), (8)

with coefficients

Ā(q−1) = 1 + α1 q−1 + · · · + αn̄ q−n̄ (9)

B̄(q−1) = β0 + β1 q−1 + · · · + βn̄ q−n̄, (10)

it is possible to rewrite (1) as

Ā(q−1) ȳ(t) = B̄(q−1)u0(t) + e(t). (11)

so that model (1)–(6) can be seen also as an ARX process
with noisy input and output, whose identification has been
treated in (Diversi et al., 2007).

On the basis of the above consideration, we will solve
Problem 1 by means of the following steps.

Procedure 1.

(1) Estimation of the high–order ARX model (11) and of
the variances σ2∗

e , σ̃2∗
u , σ̃2∗

y .

(2) Estimation of A(q−1) and B(q−1) by using the esti-
mates of Ā(q−1), B̄(q−1).

(3) Estimation of D(q−1) from the estimates obtained in
steps (1) and (2).

Let us introduce the regressor vectors

ϕ0(t) = [−y0(t) . . . − y0(t − n)u0(t) . . . u0(t − n) ]T (12)

ϕ(t) = [−y(t) . . . − y(t − n)u(t) . . . u(t − n) ]T (13)

ϕ̃(t) = [−ỹ(t) . . . − ỹ(t − n) ũ(t) . . . ũ(t − n) ]T (14)

ϕv(t) = [−v(t) . . . − v(t − n) 0 . . . 0
︸ ︷︷ ︸

n+1

]T , (15)

and the parameter vector

θ0 =
[

1 a1 · · · an b0 · · · bn

]T
=

[

1 θ∗
T ]T

. (16)

From A(q−1) y0(t) = B(q−1)u0(t) and (5)–(6) it is possible
to rewrite model (1)–(6) as follows

ϕT
0 (t) θ0 = 0, (17)

ϕ(t) = ϕ0(t) + ϕ̃(t) + ϕv(t). (18)

Similarly, define the regressor vectors
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φ̄(t) = [−ȳ(t) . . . − ȳ(t − n̄)u0(t) . . . u0(t − n̄) ]T (19)

φ(t) = [−y(t) . . . − y(t − n̄)u(t) . . . u(t − n̄) ]T (20)

φ̃(t) = [−ỹ(t) . . . − ỹ(t − n̄) ũ(t) . . . ũ(t − n̄) ]T (21)

φe(t) = [ e(t) 0 . . . 0
︸ ︷︷ ︸

2n̄+1

]T (22)

and the parameter vector

µ∗ =
[

1 α1 · · · αn̄ β0 · · · βn̄

]T
. (23)

By taking into account (11), model (1)–(6) can also be
written in the form

(

φ̄T (t) + φT
e (t)

)

µ∗ = 0, (24)

φ(t) = φ̄(t) + φ̃(t). (25)

The vector forms (17)–(18) and (24)–(25) will be both
useful in the sequel.

4. IDENTIFICATION OF THE AUXILIARY ARX
MODEL

Define the covariance matrices

Σ = E [φ(t)φT (t)] (26)

Σ̄0 = E
[

φ̄(t)
(

φ̄T (t) + φT
e (t)

)]

, (27)

where E[ · ] denotes the mathematical expectation. From
(25) and assumption A5 it follows that

Σ = E [φ̄(t) φ̄T (t)] + E [φ̃(t) φ̃T (t)], (28)

where

E [φ̃(t) φ̃T (t)] =

[

σ̃2∗
y In̄+1 0

0 σ̃2∗
u In̄+1

]

. (29)

Since E [ȳ(t) e(t)] = σ2∗
e it is also easy to show that

Σ̄0 = E [φ̄(t) φ̄T (t)] − diag [σ2∗
e 0 · · · 0

︸ ︷︷ ︸

2n̄+1

], (30)

and, because of (24)

Σ̄0 µ∗ = 0. (31)

Finally, by combining (28) and (30) it is possible to write

Σ = Σ̄0 + Σ̃∗, (32)

where

Σ̃∗ =







σ̃2∗
y + σ2∗

e 0

σ̃2∗
y In̄

0 σ̃2∗
u In̄+1






. (33)

The covariance matrix of the noisy data Σ can thus be de-
composed into the sum of a positive semidefinite singular
matrix Σ̄0, whose kernel defines the true parameter vector,
and of a diagonal matrix Σ̃∗.

Consider now the problem of determining the family of all
non–negative definite diagonal matrices Σ̃ of type

Σ̃ = diag [σ̃2
y + σ2

e , σ̃2
y In̄, σ̃2

u In̄+1] (34)

such that

Σ − Σ̃ ≥ 0, min eig (Σ − Σ̃) = 0. (35)

This problem, which is an extension of the dynamic errors–
in–variables problem considered in (Beghelli et al., 1990),
consists in determining the set of points P = (σ̃2

u, σ̃2
y , σ2

e)

σ̃2
y

σ̃2
u

σ2
e

Fig. 2. Typical shape of S(Σ).

belonging to the first orthant of R3 satisfying (34)–(35),
i.e. leading to positive semidefinite matrices Σ̄0(P ) =

Σ − Σ̃(P ) with one eigenvalue equal to zero. This set is
decribed by the following results (Diversi et al., 2007).

Theorem 1. The set of all diagonal matrices satisfying
(34)–(35) defines the points P = (σ̃2

u, σ̃2
y , σ2

e) of a convex
surface S(Σ) belonging to the first orthant of the noise
space R3 whose concavity faces the origin. Every point P
of S(Σ) can be associated with a coefficient vector µ(P )
satisfying the relation

Σ̄0(P )µ(P ) = 0, (36)

where

Σ̄0(P ) = Σ − diag [σ̃2
y + σ2

e , σ̃2
y In̄, σ̃2

u In̄+1] (37)

µ(P ) =
[

1 α1(P ) · · · αn̄(P ) β0(P ) · · · βn̄(P )
]T

. (38)

A typical shape of S(Σ) is shown in Figure 2.

Corollary 1. The point P ∗ = (σ̃2∗
u , σ̃2∗

y , σ2∗
e ), associated

with the true variances of ũ(t), ỹ(t) and e(t) belongs to
S(Σ) and the coefficient vector µ(P ∗) is characterized (af-
ter normalizing its first entry to 1) by the true parameters
(23), i.e. µ(P ∗) = µ∗.

In this asymptotic context, the identification of µ∗ consists
thus in finding, by means of a suitable selection criterion,
the point P ∗ among the set of possible solutions described
by S(Σ). Define, for this purpose, the k × 1 (k ≥ 1)
following vectors of delayed signals

φk
u0

(t) = [u0(t − n̄ − 1) . . . u0(t − n̄ − k) ]T (39)

φk
u(t) = [u(t − n̄ − 1) . . . u(t − n̄ − k) ]T (40)

φk
ũ(t) = [ ũ(t − n̄ − 1) . . . ũ(t − n̄ − k) ]T . (41)

Because of (5), they satisfy the condition

φk
u(t) = φk

u0
(t) + φk

ũ(t). (42)

Define also the covariance matrix

Σk = E [φk
u(t)φT (t)]. (43)

Because of (42) and assumption A5 we have

Σk = E [φk
u0

(t) φ̄T (t)] = E [φk
u0

(t) (φ̄(t) + φe(t))
T ], (44)

so that from (24)

Σk µ∗ = 0. (45)

Relation (45) constitutes a set of high–order Yule–Walker
equations that could be directly used to obtain the pa-
rameter vector µ∗. This approach can also be viewed as
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an instrumental variable method that uses delayed inputs
as instruments (Söderström and Stoica, 1989). In this
paper, equations (45) are used jointly with the results of
Theorem 1 and Corollary 1 in order to solve the first step
of Procedure 1, i.e. the identification of µ∗, σ̃2∗

u , σ̃2∗
y and

σ2∗
e . In fact, the search for the point P ∗ on S(Σ) can be

performed by minimizing the cost function

J(P ) = ‖Σk µ(P )‖2
2 (46)

= µT (P )(Σk)T Σk µ(P ), P ∈ S(Σ),

which exhibits the following properties

i) J(P ) ≥ 0
ii) J(P ∗) = 0.

For the practical implementation of the search procedure
it is useful to parameterize the surface S(Σ) in a different
way, that allows to associate a solution of (34)–(35) with
every straight line departing from the origin and lying in
the first orthant of R3. This parameterization, introduced
in (Guidorzi and Pierantoni, 1995), is described in the next
theorem.

Theorem 2. Let ξ = (ξ1, ξ2, ξ3) be a generic point of
the first orthant of R3 and r the straight line from the
origin through ξ. Its intersection with S(Σ) is the point
P = (σ̃2

u, σ̃2
y, σ2

e) given by

σ̃2
u =

ξ1

λM

, σ̃2
y =

ξ2

λM

, σ2
e =

ξ3

λM

, (47)

where

λM = max eig
(

Σ−1 diag [ξ2 + ξ3, ξ2 In, ξ1 In+1]
)

. (48)

Previous considerations lead to the following identification
algorithm.

Algorithm 1.

(1) Compute, on the basis of the available observations,
an estimate of Σ and Σk, i.e.

Σ̂ =
1

N − n̄ − k

t=N
∑

t=n̄+k+1

φ(t)φT (t),

Σ̂k =
1

N − n̄ − k

t=N
∑

t=n̄+k+1

φk
u(t)φT (t).

(2) Start from a generic direction r belonging to the first
orthant of R3.

(3) Compute, by means of (47)–(48), the intersection

P = (σ̃2
u, σ̃2

y , σ2
e) between r and S(Σ̂).

(4) Compute Σ̄0(P ) and µ(P ) by means of the relations

Σ̄0(P ) = Σ̂ − diag [σ̃2
y + σ2

e , σ̃2
y In̄, σ̃2

u In̄+1]

Σ̄0(P )µ(P ) = 0,

and normalize the first entry of µ(P ) to 1.
(5) Compute the cost function

J(P ) = ‖Σ̂k µ(P )‖2
2. (49)

(6) Move to a new direction r ± ∆r corresponding to a
decrease of J(P ).

(7) Repeat steps 3–6 until the point P̂ = (ˆ̃σ2
u, ˆ̃σ2

y , σ̂2
e)

associated with the minimum of J(P ) is found.

(8) The estimates of the model coefficients and of the

noise variances are thus given by µ̂ = µ(P̂ ) and
ˆ̃σ2

u, ˆ̃σ2
y, σ̂2

e .

5. ARARX IDENTIFICATION

In this section, the second and third steps of Procedure
1 are solved starting from the estimate of the ARX
coefficients obtained in Section 4. Multiplying (7) by
B(q−1) and (8) by A(q−1) it is easy to show that

Ā(q−1)B(q−1) − B̄(q−1)A(q−1) = 0. (50)

This expression can be written in the matrix form

ST θ0 = 0, (51)

where S is the (2n + 2) × (n̄ + n + 1) Sylvester matrix

S =



























β0 β1 . . . βn̄ 0 . . . 0
0 β0 β1 . . . βn̄ . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 β0 β1 . . . βn̄

−1 −α1 . . . −αn̄ 0 . . . 0
0 −1 −α1 . . . −αn̄ . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −1 −α1 . . . −αn̄



























. (52)

By partitioning ST as

ST = [ m M ], (53)

where m is the first column of ST and taking into account
(16) it follows that (Stoica and Söderström, 1997)

m + M θ∗ = 0. (54)

An estimate of θ∗ can thus be computed as

θ̂ = −
(

M̂T M̂)−1M̂T m̂, (55)

where M̂ and m̂ are constructed with the entries of µ̂.

Finally, once that an estimate of θ∗ is available, it is
possible to solve step (3) of Procedure 1. In fact, relations
(7) and (8) can be jointly written in the matrix form

µ∗ = Gθ∗D, (56)

where

G =









1 a1 . . . an 0 . . . 0
0 1 a1 . . . an . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 a1 . . . an

b0 . . . bn 0 . . . 0
0 b0 . . . bn . . . 0
...

. . .
. . .

...
0 . . . 0 b0 . . . bn









T

, (57)

and

θ∗D =
[

1 d1 · · · dn

]T
. (58)

The coefficients of D(q−1) can thus be estimated as follows

θ̂D =
(

ĜT Ĝ
)

−1
ĜT µ̂, (59)

where Ĝ has been constructed with the entries of θ̂.

Procedure 1 can thus be summarized as follows.
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Procedure 1.

(1) Estimate the high–order ARX model (11) and the
variances σ2∗

e , σ̃2∗
u , σ̃2∗

y by means of Algorithm 1. Let
µ̂ be the estimate of µ∗.

(2) Construct, with the entries of µ̂, the vector m̂ and the

matrix M̂ as in (52)–(53) and compute an estimate θ̂
of θ∗ by using (55).

(3) Construct, with the entries of θ̂, the matrix Ĝ with
structure (57) and compute an estimate of D(q−1) by
using (59).

6. AN INSTRUMENTAL VARIABLE APPROACH

The coefficients of A(q−1), B(q−1) can also be estimated
by means of an instrumental variable (IV) approach. In
fact, by defining the vector of delayed inputs

z(t) = [u(t − n − 1) . . . u(t − n − k) ]T , (60)

and the covariance matrix

Σzϕ = E [z(t)ϕT (t)], (61)

it follows, from (5), (18) and Assumption A5, that

Σzϕ = E
[

z(t) (ϕ0(t) + ϕ̃(t) + ϕv(t))T
]

= E [z(t)ϕT
0 (t)]

(62)
and, because of (17)

Σzϕ θ0 = 0. (63)

Relation (63) constitutes a system of equations in the
unknowns (a1, . . . , an, b0, . . . , bn). The matrix Σzϕ can be
estimated from the data as

Σ̂zϕ =
1

N − n − k

t=N
∑

t=n+k+1

z(t)ϕT (t). (64)

By partitioning (64) as follows

Σ̂zϕ =
[

r̂ R̂ ], (65)

where r̂ is a column, it is possible to obtain an estimate of
θ∗ by means of the least squares estimator

θ̂IV = −(R̂T R̂)−1R̂T r̂ (66)

which is an extended IV estimator (Söderström and Stoica,
1989). An estimate of D(q−1) can be finally obtained by
using (59).

This method is more simple from the computational point
of view since it does not require an estimation of the
auxiliary ARX model (11); however, it is characterized by
the following drawbacks:

• IV approaches lead often to poor estimation accuracy
(Soverini and Söderström, 2000; Söderström, 2007);

• An estimation of the noise variances cannot be di-
rectly obtained by means of IV estimators.

7. NUMERICAL RESULTS

The proposed identification procedure has been tested
by means of numerical simulations performed on the
following ARARX model, already used in (Tjärnström and
Ljung, 2003)

A(q−1) = 1 − 0.5 q−1 + 0.06 q−2

B(q−1) = q−1 − 0.7 q−2

D(q−1) = 1 + 0.95 q−1.

The noise–free input is a pseudo random binary sequence
with unit variance while the noises e(t), ũ(t), ỹ(t) are
gaussian white noise sequences with variances σ2∗

e = 0.1,
σ̃2∗

u = 0.06 and σ̃2∗
y = 0.02. These values correspond to

signal to noise ratios on the input and output

SNRI ≈ 12dB SNRO ≈ 4dB,

where

SNRI = 20 log10

√

E[u2
0(t)]

E[ũ2(t)]
= 20 log10

√

E[u2
0(t)]

σ̃2∗
u

SNRO = 20 log10

√

E[y2
0(t)]

E[v2(t) + ỹ2(t)]

= 20 log10

√

E[y2
0(t)]

(E[v2(t)] + σ̃2∗
y )

·

Monte Carlo simulations of 100 independent runs have
been performed by setting k = 5 in Step (1) of Algo-
rithm 1 and different numbers of data samples (N =
500, 1000, 2000).

Tables I and II report the true values of parameters and
variances, the means of their estimates and the associated
standard deviations for both Procedure 1 and the IV
approach described in Section 6.

The obtained results confirm the good performance of the
proposed procedure. As expected, the accuracy of the IV
estimator is quite poor, especially for short observation
sequences.

8. CONCLUDING REMARKS

This paper has introduced the new family of ARARX
+ noise models and proposed a three–step identification
procedure for these models. These models can offer a more
realistic choice than simple equation error models in many
applications like fault detection and filtering. ARARX +
noise models can, in fact, be seen as errors–in–variables
models where the noise–free input is affected by a measure-
ment error while the noise–free output is affected by two
noise contributions, a measurement error and a process
disturbance. The effectiveness of the proposed identifica-
tion procedure has been verified by means of Monte Carlo
simulations that show how it leads to accurate results also
in presence of low signal to noise ratios.
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