
LiPro: light-based indoor positioning with rotating handheld
devices

Bo Xie1,2 • Shimin Gong2 • Guang Tan2

� Springer Science+Business Media New York 2016

Abstract In this paper, an indoor positioning method,

namely LiPro, is proposed for handheld devices such as

smartphones. Based on an empirical light intensity model,

we propose a rotating multi-face positioning method that

enables a receiver to locate itself in ill-conditioned sce-

narios which would otherwise make the traditional multi-

lateration impossible—for example when less than three

LED lamps are visible to the receiver. In this method, the

user manually performs three rotations of the receiver

around three orthogonal axes, in a manner similar to the

calibration process of a compass. During this process, the

receiver continuously collects RSS and magnetic field

strength, which are then used to solve for the receiver’s

position. LiPro can work with a single source of light,

making it a more cost-effective and less demanding than

previous approaches. Our experiments show that LiPro

achieves a median error of 0.59 m in a corridor with lin-

early deployed LEDs, and 0.45 m in an office. Moreover,

LiPro is shown to be robust against interference from

ambient light sources.

Keywords Indoor positioning � LED light � Rotation

1 Introduction

Location-based services (LBS) and applications, relying on

the positioning capability of mobile devices, have been

studied extensively over the past decade, especially with

the recent boom of Internet of Things. Accurate indoor

positioning opens opportunities for a wide range of appli-

cations, such as personal navigation, object search, and

robot control. Although the GPS provides satisfactory

positioning performance in outdoor scenarios, it does not

work indoors due to the blockage of satellite signals [15].

To address this problem, researchers have explored various

techniques such as radio frequency (RF), ultrasound,

magnetism, and light to enable indoor positioning. Due to

interference and the multipath effects, RF based approa-

ches normally produce accuracy to a few meters. Light-

based approaches improve on this by leveraging the better

predictability of light propagation, at the cost of reliance on

line of sight between the transmitter and receiver.

In light of the widely deployed LEDs in indoor envi-

ronments, such as airport terminals, warehouses, and hos-

pitals (see Fig. 1), we propose the LiPro method that uses

the built-in light sensor of a handheld device, referred to as

the receiver, for positioning. A light sensor is a type of

photodiode with a PN or PIN structure, and is capable of

sensing incident light and outputting intensity readings.

The received light intensity, or received signal strength

(RSS), is a function of the distance and angles between the

LED and the receiver. Assuming known positions of the

LEDs, the position of the receiver can potentially be

derived from RSS and geometric constraints.

We first establish an RSS model based on the Lamber-

tian radiation pattern [2]. The model characterizes the

attenuation of light intensity over space with three inde-

pendent parameters: distance between the lamp and recei-

ver, radiation angle from the LED and incident angle on the

sensor. To avoid interference between nearby LEDs, we

design the modulation scheme, optical channel allocation

policy, and the structure of beacon frames. We propose a

rotating multi-face positioning (RMFP) method that
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enables the receiver to position itself. In this method, the

user rotates the receiver around the three axes, x, y and z in

her body coordinate system, during which course the

receiver continuously collects RSS values. At the same

time the receiver also measures magnetic field strength to

correct the heading measurement [22]. We show how to

select particular measurements to form a set of constraints

that allow us to find a unique solution of the receiver’s

position. The main highlight of the RMFP method is that it

makes positioning possible with only a single lamp in sight

of the receiver. This dramatically reduces the system’s

dependence on a high density of lamp deployment com-

pared with the conventional multilateration approach.

We have implemented a prototype system and con-

ducted experiments in two settings. In the first setting, the

lamps are sparsely deployed along a line in a corridor,

where the traditional multilateration method fails. LiPro

successfully produces position results with a median error

of 0.59 m. In an office area with three nonlinear lamps in

sight, LiPro is able to produce positions with a media error

of 0.45 m. Moreover, LiPro is robust against interference

from ambient light sources.

2 Related work

There is a large body of literature on indoor positioning

techniques, mostly based on a fingerprint database or

ranging techniques. Given the ubiquitous radio frequency

(RF) signals, measurement of RSS of WiFi [1, 5, 28, 32],

cellular radios [24], or FM radios [4], can be used to build

an RF signature database, or to establish a signal propaga-

tion model for positioning. However, RF signal is suscep-

tible to noise and interference, and thus is highly unstable,

leading to rather coarse-grained positioning results, with

distance errors typically to a few meters [23]. Hence, many

efforts have been devoted to mitigate the instability in a

multi-path fading environment [8, 12, 21, 27]. In a densely

deployed network, the multi-path effect is leveraged to

achieve improved positioning accuracy for RFID tags [26].

A similar technique is implemented in the RF-compass

system [25]. Another RF-based ranging technique is to

estimate the signal’s angle of arrival (AoA) [13, 14], which

may require sophisticated hardware design and signal pro-

cessing algorithms. Arraytrack [28] achieves sub-meter

accuracy by employing antenna arrays, and so does Ubi-

carse [9]. Tagoram [29] constructs an RF phase hologram

to localize a moving RFID tags.

In contrast to RF signals, light signal is much less

affected by the multi-path effect, and thus is viewed as an

appealing approach to accurate indoor positioning. Many

proposals in this domain have considered the multi-later-

ation method [2, 30, 31, 34]. Rajagopal et al. [19] use the

LED as the reference point and exploit the rolling shutter

effect of camera sensor. A similar idea has been adopted by

the commercial project ByteLight [3]. Epsilon [11] relies

on the measurements of light intensity from at least three

LEDs and adopts the conventional multi-lateration method

for positioning. Under ideal conditions, it reports position

accuracy to about a half meter. However, when Epsilon

operates in an ill-conditioned environment with only one or

two LEDs available, the performance is severely compro-

mised. To further improve positioning accuracy, a hybrid

RSS/AoA method is proposed in [17]. By using AoA

estimation from image analysis, Luxapose [10] achieves

accuracy to around 10 cm. This approach, however,

depends on a very dense deployment of lights which incur

a high cost.

Chung et al. [6] propose a method that locates the

receiver by exploiting the geomagnetic field, which is

similar to the RF fingerprint approach. Technologies with

accurate ranging, such as the ultra wide band (UWB) [20]

or the combination of radio and sound signals [18], can

improve positioning accuracy, but are generally expensive

to deploy. Yun et al. [33] propose to use the frequency

Fig. 1 LEDs in a an airport

terminal and b a warehouse
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shifts of sound to enable device tracking, with around

1.4 cm tracking accuracy.

3 The RSS model

In this section, we establish the RSS model which lays the

foundation for our positioning method. First we describe

how to measure RSS, taking into account environmental

interference, and then we empirically determine the

parameters of the model.

3.1 Avoiding interference

The RSS of light is generated by the light sensors at the

receiver. In practice, there exist environmental lights such

as sunlight and artificial lights, so the sensed light is a

mixture of multiple components. To obtain the intensity

from a particular LED, we let the LED flash at a specified

frequency under the control of a micro-controller. This will

generate a sequence of square waves. We denote the light

intensity by a periodical function f(t), as shown in Fig. 2.

For simplicity, let the square wave f(t) have a duty cycle of

50%, and thus the fourier series expansion of f(t) is

f ðtÞ ¼ E

p

X1

n¼1

1 � cosðnpÞ
n

sin n
2p
T

t

� �
; ð1Þ

where n ¼ 1; 2; 3; . . . denotes the harmonic orders, and E is

the received light intensity when the LED source is turned

on. The coefficients of the fourier series represent the

signal energy on different harmonics. Note that the first

harmonic frequency equals the flicker frequency 1 / T,

while the higher order harmonics are multiple times of the

first harmonic frequency and the strengths on even order

harmonics are zeros. Equation (1) indicates that the total

energy of the received LED light is scattered over different

harmonics. Though it is impractical to extract the light

energy from all harmonics, we find that the energy of the

first harmonic (i.e., 2E=p) is proportional to the received

light intensity E and irrelevant to the flicker frequency

1 / T. Therefore, by performing the fourier transformation

of f(t) and measuring the strength of the first harmonic, the

receiver can determine the light intensity.

3.2 Establishing the model

We assume that the LED lamp is mounted on the ceiling

with the LED chip facing vertically downward. The light

intensity sensed by a light sensor from an LED is impacted

by three factors: the distance d between the LED and the

receiver, the radiation angle x from the LED, and the

incident angle l, as illustrated in Fig. 3. Define the central

ray as a ray extending straight downward from the LED

chip. Thus, x is the angle between the incident ray and the

central ray, and l is the angle between the incident ray and

the normal vector of the surface of the light sensor, or the

sensing plane.

The impacts of d, l and x on the RSS s are denoted by

fdðdÞ, flðlÞ, and fxðxÞ, respectively. Thus, s is a function

of d; l and x:

sðd; l;xÞ ¼ fdðdÞ � flðlÞ � fxðxÞ: ð2Þ

To simplify the representation (2), we visualize a Cartesian

coordinate system as depicted in Fig. 3. The light sensor

and the LED are centered at the origin (0, 0, 0) and

(x, y, z), respectively. The distance between the LED and

the receiver is d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Let (A, B, C) denote the

0 t
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Fig. 2 RSS in the time and frequency domains excluding the DC

component. The first harmonics of the light carriers of the two LEDs

are 111 and 132 Hz

Fig. 3 The light intensity model: the light sensor and the LED are

located at (0, 0, 0) and (x, y, z), respectively. The received light

intensity s relates to the distance d, incident angle l, and radiation

angle x
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normal vector of the sensing plane. Then, the distance from

the LED to the sensing plane is given by

d0 ¼ jAxþ Byþ Czjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ C2

p :

Now, we can determine the incident angle l and the

radiation angle x as follows:

l ¼ arccos d0=dð Þ;
x ¼ arccosðz=dÞ:

Putting all terms together, we can evaluate the light

intensity as

sðx; y; zÞ ¼ k

d2
� fl arccos

d0

d

� �� �
� fx arccos

z

d

� �� �
: ð3Þ

where k[ 0 is a constant light intensity.

We conduct experiments in three settings. In the first

setting, we fix l ¼ 0� and x ¼ 0�, and gradually increase

d from 1 to 6 m while measuring the light intensity as

shown in 5(a). The results confirm the inverse-square

law, that is, fdðdÞ ¼ k=d2, see Fig. 4(a). The coefficient k

corresponds to the light intensity measured at d ¼ 1 m.

In the second setting, we keep x ¼ 0� and d unaltered,

and then vary the incident angle l from 0� and 90� by

tilting the receiver (and the sensing plane at the same

time) as illustrated in Fig. 5(b). The normalized mea-

surements are shown in Fig. 4(b). We observe that, the

angular function flð�Þ for different distance d are almost

in the same form, indicating that the decomposition in

(3) is reasonable. In the third setting, by varying the

radiation angle x as shown in Fig. 5(c), we record the

normalized measurements in Fig. 4(c). For each setting,

we perform curve fitting and obtain closed-form

expressions for fdð�Þ, fxð�Þ, and flð�Þ, respectively. The

established light intensity model is robust as all the

results are obtained in an office environment with mul-

tiple sources of ambient light.

4 LED data communications

The LED lamp needs to broadcast its location and RSS model

parameters to the receiver. The data is carried in a periodic

beacon frame, which is divided into a few fields: frame

preamble, LED ID, data, and CRC, as shown in Fig. 6.

The preamble is known to the receiver and serves as a

synchronization code to determine the starting point of the

beacon frame. It is also the energy signal, that is, the

receiver can sample the preamble and perform the fourier

transformation to extract the light intensity on the 1st

harmonic frequency, which serves as an estimate of the

received light intensity.

4.1 BFSK modulation

The data carried in the beacon frame is coded into a binary

bit stream and then modulated by the LED’s flicker pattern

to avoid interference with ambient lights. The duration of
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Fig. 4 The light intensity as a function of d, l, and x. a fd(d), b lf(l), c xf(x)
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Fig. 5 Three measurement settings

Fig. 6 Beacon frame
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each information bit lasts a symbol length. There are many

modulation schemes, such as PSK, ASK, and BFSK, pro-

posed for visible light communications. Some of these

schemes require complex algorithms or special hardware to

modulate/demodulate the bit stream.

In this work, we adopt the BFSK scheme for its sim-

plicity, as illustrated in Fig. 7. The modulation relies on the

off-the-shelf micro-controller that switches the LED source

between the ‘‘ON’’ and ‘‘OFF’’ states. The switching of

LED states is controlled at two different frequencies f0 and

f1, representing the symbols ‘‘0’’ and ‘‘1’’, respectively. At

the receiver, time-domain sampling of the sensed light

intensity in a symbol length is transformed into frequency

domain. Then we can inspect on the frequency components

and make binary decisions to determine the information bit

carried in the beacon frame.

4.2 Optical channel allocation

When multiple, unsynchronized light sources broadcast

beacons over shared light medium, at the receiver side, the

beacons may interfere with each other or with ambient

lights. It is infeasible to adopt time division multiple access

(TDMA) to coordinate among the light sources since they

are not designed to communicate with each other. We

channelize the whole available bandwidth of light medium

into multiple disjoint and even-spaced sub-carriers; two

adjacent sub-carriers comprise one subchannel. In LiPro,

we choose to allocate a static subchannel to each light

source. However, in indoor scenario with large space, there

is a possibility that the number of subchannels is less than

the number of light sources deployed. In this case, we

spatially separate the subchannels for nearby LEDs to

avoid collision.

5 Normal vector calculation

In this section, we describe the calculation of the normal

vector based on a 3-axis magnetic sensor and a 3-axis

accelerometer. Following the aircraft convention, we need

to determine three angles, namely the pitch, roll and

heading, as shown in Fig. 8(a). Once the attitude angle of

the receiver is determined, we can calculate the normal

vector (A, B, C) of the sensing plane.

5.1 Attitude angle measurement

The pitch and roll can be calculated as

pitch ¼ arcsinð�AxÞ;
roll ¼ arcsin Ay=cosðpitchÞ

� �
;

where Ax and Ay are the normalized measurements of the

gravity imposed on the x and y axes of the accelerometer,

respectively. Figure 9 shows that the measurement error is

less than 2�. The measurements of heading is provided by

the magnetic sensor:

heading ¼ arctan My=Mx

� �
;

Fig. 7 BFSK modulation: the binary information ‘‘0’’ and ‘‘1’’ are

modulated by two square waves with different frequencies f0 and f1,

respectively

(a) (b)

Fig. 8 a Aircraft body coordinates and b heading calculation

Fig. 9 Measurement errors of pitch and roll
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where Mx and My are the strengths of magnetic field on the

x and y axes of the magnetic sensor, as illustrated in

Fig. 8(b) where Mh is the horizontal component of the

earth’s magnetic field pointing to the magnetic North Pole.

5.2 Magnetic sensor calibration

In practice, the magnetic sensor is susceptible to the

interference from ambient magnetic fields, resulting in

great errors. Figure 10 shows that the heading error can be

up to 60�, which will severely decrease the positioning

accuracy.

A magnetic sensor may experience varying distortion

patterns at different locations, thus calls for a method to

correct the measurement. In our work, we adopt the three-

axis rotation method to do this. In this method, the user

rotates the receiver around the three axes, x, y and z in the

body coordinate system, see Fig. 11. Ideally, the normal-

ized magnetometer measurements should lie on the surface

of a sphere centered at the origin. However, due to mag-

netic interference, the distribution of the measurements

will deviate from the sphere, as shown in Fig. 12(a). We

adopt the ellipsoid calibration method [16, 22] to calibrate

the magnetic sensor. The calibration parameters of ellip-

soid can be calculated by using the least square method.

Figure 12(b) indicates that the corrected measurements

now are well distributed on the sphere. Figure 10 shows the

heading error drops to around 4�.

6 Rotating multi-face positioning

With the RSS model and all system parameters collected,

one can naturally choose to position the receiver via the

classic multilateration method. However, such a method

requires at least three nonlinear lamps being visible to the

receiver. This may not be satisfied in many practical situ-

ations, for example in a corridor where the lamps are

deployed on a line, or when the light is blocked by furni-

ture or the user herself.

To address this problem, we propose a rotating multi-

face positioning method that can work with only a single

visible light source. This method takes advantage of the

three-axis rotation process that has been exploited to

Fig. 10 Measurement errors of heading produced before and after

applying the ellipsoid calibration

Fig. 11 A top view of the rotating receiver (smartphone) at a fixed

position

Fig. 12 Measurements before and after magnetic sensor calibration.

a Three circles deviating from the sphere. b Results after calibration

Fig. 13 Three sensing planes generated at a fixed position; the light

sensor is represented by a green block
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correct the magnetic sensor (see Sect. 5.2). In this process,

the receiver is rotated 360� around each axis of the body

coordinates at a fixed position in the space.

Fig. 13 depicts three sensing planes selected during the

rotations, each corresponding to a rotation around one axis.

The three sensing planes do not really pass through the

same position, since the light sensor is not located right at

the center of the receiver (in this case the smartphone), and

also because of the inaccuracy of manual operation.

However, as the receiver is often small in size when

compared with the distance to the light source, we can

approximately treat the generated sensing planes as passing

through the same point.

During the rotation process, the receiver continuously

records the RSS when there is a line of sight between the

LED lamp and the light sensor. Note that, for each rotation,

only a maximum RSS is recorded. Suppose the receiver is

located at (x, y, z) and the coordinate ðxj; yj; zjÞ of the jth

light source is known, where xj [ 0, yj [ 0, zj [ 0. We

have three RSSs and their corresponding normal vectors,

the following equations can be established to solve the

receiver’s position.

sj;i ¼
kj

d2
j

� fl arccos
d0j;i
dj

� �� �
� fx arccos

jz� zjj
dj

� �� �
;

ð4Þ

where i 2 1; 2; 3, j 2 1; 2; . . .;M, 3�M� 1 denotes the

number of different light sources from which the three

RSSs are obtained. sj;i means the ith RSS obtained from the

jth light source. Note that, M ¼ 1 means the three RSSs

only obtained from a single light source. The variable

kj [ 0 is a constant RSS which is measured once for good.

The distance from the receiver and the sensing plane to the

light sources are

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xj
� �2þ y� yj

� �2þ z� zj
� �2

q
;

and

d0j;i ¼
jAj;i x� xj

� �
þ Bj;i y� yj

� �
þ Cj;i z� zj

� ��
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
j;i þ B2

j;i þ C2
j;i

q ;

respectively.

6.1 Solvability of equations

The system of Eq. (4) is a high-order nonlinear one. In

general, its properties are not easy to obtain. Fortunately,

the solvability of the system of equations relates to the

matrix R ¼ ½Aj;i Bj;i Cj;i�3�3 consisting of the normal

vectors of the sensing planes from which the three RSSs

are generated. The rank of the matrix is r(R). With regard

to the solvability of the equations, there are three cases as

follows.

1. If rðRÞ ¼ 3, which means there exist at least three

linearly independent sensing planes and implies that

the three RSSs come from at least one light sources.

2. If rðRÞ ¼ 2, which means there exist at least two

linearly independent sensing planes and implies that

the three RSSs come from at least two different light

sources.

3. If rðRÞ ¼ 1, which means there exist only one sensing

plane and implies that the three RSSs come from at

least three different light sources. This is the case of

the classic Multi-lateral positioning.

According to the analysis above, Eq. (4) has a least square

solution.

7 Prototype system

The hardware LiPro consists of two components, the

transmitter and the receiver. The transmitter is an off-the-

shelf IR LED lamp, with a transmission range of about

7.5 m and an illuminating angle about 130�. This translates

to a covered area of about 130 m2 on the ground when the

lamp is mounted on the ceiling 3 m above the ground. The

LED inside the lamp has a power rating of 8 Watts and is

attached to an MCU, as shown in Fig. 14(a), (b). To avoid

interference between lamps, each LED is assigned two

different frequencies, that is, a static subchannel.

At the receiver side, one can use a smartphone such as

the Samsung Omnia II GT-I8000 which hosts an IR light

sensor. However, the particular implementation of the OS

kernel limits the sampling rate of the sensor so is not

suitable for our experiments. To exploit the full power of

the sensor, we design a specialized sensor module that

consists of an ISL29023 light sensor [7] and an

LSM303DLH electronic compass. The main board inte-

grates an MCU and a communication module, as shown in

Fig. 14(c). The MCU samples the magnetic sensor and the

accelerometer at a rate of 20 Hz, and samples the light

signal at 800 Hz. The flicker frequency of the LED ranges

from 100 to 400 Hz. We evenly divide this range into 20

subchannels with a guard interval of 15 Hz. Hence, a

maximum of 10 LEDs are allowed to appear in an over-

lapped area without interfering with each other, which is

more than enough in practice. For example, we can assign

the frequencies f0 ¼ 100 and f1 ¼ 115 Hz to the first LED,
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denoted by LED1, and frequencies f19 ¼ 385 and

f20 ¼ 400 Hz to LED10. Note that, to avoid conflict, the

third harmonic of frequency should be reserved.

8 Performance evaluation

While we envision that the legacy visible light bulbs can be

used as light sources for indoor localization in the future,

we currently consider IR LEDs in our experiments as they

are invisible and non-intrusive. The experiments are con-

ducted under two typical indoor scenarios: a corridor and

an office room. As shown in Fig. 15, we deploy three LEDs

in both scenarios. The corridor is of 1.7 m wide and 15 m

long, and is free from obstruction. The three LEDs are

evenly spaced in a straight line, and we uniformly select

180 positions in the field for testing. The office area

measures 8:7 m � 6:5 m, and contains various types of

objects such as cubicles and file cabinets. The three LEDs

are mounted on the ceiling, forming a triangle. We uni-

formly select 60 test points. LiPro is compared with three

light-based indoor positioning methods:

1. Epsilon [11]: which follows the classic multilateration

method, or requires the user’s manual operation

depending on application scenarios. As with LiPro, it

is based on the Lambertian radiation model [2].

2. RSS weighted average (weighted-Avg): it locates a

receiver based on a weighted average of the light

sources’ locations in sensible range, using light

intensities as weights.

3. Coverage: in which the device simply takes the

position of the LED lamp producing the highest

intensity as its own position. Hence, its positioning

accuracy largely depends on the density and placement

of the LEDs.

Note that the multilateration method is not applicable in the

corridor scenario where the LEDs are deployed linearly.

8.1 Position accuracy

Figure 16 presents the location error of different methods,

and Table 1 gives some statistics of errors. For LiPro, the

median error is 0.59 and 0.43 m in the corridor and office

scenarios, respectively. Epsilon uses the multilateration

method in the office room, and requires users’ manual

operation in the corridor. However, the location error

increases by more than two times in the corridor than in the

office. This is due to the environmental magnetic inter-

ference that causes large errors in heading measurement.

LiPro improves the accuracy by two times than weighted-

AVG and by four times than the Coverage method in the

office scenario. Moreover, in the corridor, LiPro reduces

Fig. 14 Hardware design of LiPro. a An infrared LED. b LED control board. c The sensor system

Fig. 15 LED lamps deployed in

a corridor and an office area,

each with three LED lamps,

marked by red circles.

a Corridor, b office room (Color

figure online)
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the median error and the 90th percentile error by two times

than Epsilon, and five time than Coverage, thanks to the

calibration of the magnetic sensor.

Compared to the others methods, coverage produces the

largest errors in both scenarios, especially in the corridor

where it produces errors up to 5.8 m, due to the very rough

estimate of the receiver’s position.

8.2 Performance stability

With LiPro, the RSS at the receiver will become lower with

the increase of distance between the LED and the device,

following an inverse-square law. However, the interference

from ambient light sources remains constant. That means a

lower signal to noise ratio, which potentially leads to

degraded positioning performance.

To study the stability of LiPro, we verify the location

error for different distances between the receiver and the

closest LED. Generally, the error increases with the dis-

tance as shown in Fig. 17. At a reasonable distance, for

example 3 m, the location error remain below 0.6 m, which

is still acceptable.

We are also interested in how ambient light affects the

positioning accuracy. We run the same experiment in

different times of the day with five levels of illuminance (in

Lux), i.e., 1, 172, 320, 656, 4600, corresponding to the

ambient light intensity at night, in the dusk, in the morning

and at noon, respectively, and the 4600 Luxes is measured

near the window with sunshine at noon. Figure 18 shows

that the variation of ambient light has no noticeable impact

on the positioning result.
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Fig. 16 CDF of the location

error in two scenarios.
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Fig. 18 Location error under ambient light interference

Table 1 Location error statistics of different methods

Test scenario Method Error statistics (m)

Stdev Mean Median Max

Corridor LiPro 0.21 0.58 0.59 1.14

Epsilon 0.61 1.08 0.96 2.54

Coverage 1.31 3.06 3.10 5.83

Office LiPro 0.18 0.45 0.43 0.78

Epsilon 0.23 0.49 0.41 1.05

Weighted-AVG 0.41 0.79 0.71 1.90

Coverage 0.66 1.53 1.57 2.85

The bold values emphasize the good performance our technology

achieved
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9 Conclusion

We have proposed the design and implementation of LiPro,

a light based indoor positioning method. LiPro uses off-

the-shelf LEDs as signal sources as well as location ref-

erence points. The receiver continuously measures the light

intensity and magnetic field while being rotated by the

user. The measurements are then used to solve for the

device’s position following a rotating multi-face position-

ing method. The device is able to locate itself with only a

single LED light source in sight, which dramatically

reduces the system’s reliance on light density. Our future

work will consider improving the method’s applicability in

non-line-of-sight scenarios by combining it with RF tech-

nology and inertial sensors.
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