
Detailed Placement Algorithm for VLSI Design with
Double-Row Height Standard Cells

Gang Wu and Chris Chu
Department of Electrical and Computer Engineering, Iowa State University, IA

Email: {gangwu, cnchu}@iastate.edu

Abstract—Conventional detailed placement algorithms typically
assume all standard cells in the design have the same height.
However, as the complexity and design requirement increase in
modern VLSI design, designs with mixed single-row height and
double-row height standard cells come into existence in order to
address the emerging standard cell design challenges. A detailed
placement algorithm without considering these double-row height
cells will either have to deal with a lot of movable macros or waste
a significant amount of placement area, depending on what type
of techniques people use to accommodate such design. This paper
proposes a new placement approach which can handle designs with
any number of double-row height standard cells. We transform
design with mixed-height standard cells into one which only contains
same height standard cells by pairing up single-row height cells into
double-row height. Then conventional detailed placement algorithms
can be applied. In particular, we generate cell pair candidates by
formulating a maximum weighted matching problem. A subset of the
cell pair candidates are then carefully selected to form double-row
height cells based on the local bin density. A refinement procedure
is performed at the end to further improve our placement quality.
We compare our approach with two alternative detailed placement
methods on mixed-height asynchronous and synchronous designs.
The experimental results show that our approach can achieve much
better quality and robustness.

I. INTRODUCTION

Standard cell methodology has been widely adopted as a quick
and efficient method to overcome the continuously increasing
complexity of integrated circuit design. In standard cell library
design, cell height is fixed to an integer multiples of a unit
row height, but cell width can be variable. Conventionally, a
standard cell library only contains cells with single-row height
[1], as smaller cell height can achieve a higher density for simple
standard cells (e.g., inverter, nand, nor) and hence lower the cost.
However, for complex standard cells (e.g., flip-flop, latch), the
limitation on cell height will create heavy routing congestion.
In this case, the persistence in single-row height standard cells
will greatly decrease layout efficiency and consume more layout
design time from engineers [2]. Also, for high performance
applications, single-row height cells might not be able to deliver
sufficient current because the transistor size is small [3]. Thus,
multi-row height standard cells, in particular double-row height
cells, are commonly intermixed with smaller single-row height
standard cells in order to increase the area, design efficiency and
help meet the design requirements [4][5].

Another case which motivates us to pay attention to double-
row height cells is their common existences in some other VLSI
design styles. For example, for asynchronous circuit design, most
of its standard cell can be double-row height. This is because
asynchronous logics require extra circuits to generate handshaking
signals [6][7], which means a larger and more complex cell is
required compared with their synchronous counterparts.

This work is supported in part by NSF award CCF-1219100.
Copyright (c) 2015 IEEE. Personal use of this material is permitted. However,

permission to use this material for any other purposes must be obtained from the
IEEE by sending an email to pubs-permissions@ieee.org.

Placement has become a very critical step in today’s VLSI
physical design flow. While double-row height placement is
available in commercial tools, it is still new in academic field
and most placement techniques typically assume all single-row
height cells to be standard cells and other cells to be fixed or
movable macros [8]. The detailed placement algorithm will focus
more on improving the placement of standard cells while relying
on floorplanning techniques to place macros into a good location
[9][10]. If the design only has a very small amount of double-row
height cells, treating them as macros works well. However, there
are designs which have more double-row height cells. In our case,
the set of asynchronous benchmarks we used for our experiment
has an average of 77% double-row height standard cells in each
design. If we treat all double-row height cells here as movable
macros, even the initial legalization step can take a lot of runtime
and we might still get overlaps in the end. This is because the
floorplanning techniques will not be scalable to hundreds and
thousands of movable macros [11]. Also, during later detailed
placement steps, no optimization (such as the commonly used
cell swapping methods [9][12]) is applied to these cells, as their
locations are fixed in the very beginning. Therefore, the placement
quality of the design will be greatly affected.

An alternative way to place these design is to expand all single-
row height cells to double-row height. Then all standard cells will
have the same height which is compatible to conventional detailed
placement algorithms. However, the cell expansion can increase
chip utilization quite a lot, depending on how many single-row
height cells we have in our design. If the chip utilization becomes
too high, there will not be enough free space for the detailed
placement algorithm to explore a good placement solution. If the
utilization becomes more than 100%, we will even not be able
to obtain a legalized placement. Also, cell expansion can lead to
some cells not be able to be placed closer together which means
the wirelength will be increased.

In this paper, we are focusing on the problem of detailed
placement for designs with any number of double-row height
cells. The input to our placement problem is a placement region,
a set of modules, and a set of nets. Also, we are given a set
of rough locations for each modules which is obtained from the
global placement result. Our algorithm finds a position for each
module within the placement region so that there is no overlap
among the modules and the total wire length is minimized. Our
idea is to transform mixed-height cells in a design into the same
height. Then conventional detailed placement techniques can be
applied on them. The equalization of cell heights is realized using
a combination of two techniques: cell expansion and cell pairing.
In particular, in low density areas, we apply cell expansion by
doubling the height of single-row height cells to have minimum
restriction on the cell movement. While in high density areas,
appropriate pairs of single-row height cells are identified and
combined into double-row height cells to achieve more available

free space compared with simply doing cell expansion.
Our detailed placement approach is compared with two alter-

native placement methods: for the first method, all the height
of single-row height cells will be doubled before doing detailed
placement. Then conventional detailed placement algorithm is
applied on this equal cell height but expanded design. For the
second method, we directly applied conventional detailed place-
ment algorithm, which means all double-row height cells will be
treated as movable macros during the detailed placement process.
The experimental results show that our placement approach can
always achieve a better wirelength compared with the other two
methods and is much more robust in handling designs with
different amount of double-row height cells.

The rest of the paper is organized as follows: Section II
provides an overview of our approach. Section III explains each
technique we used in details. Section IV shows the experimental
results compared with other methods. Finally, Section V con-
cludes the paper.

II. OVERVIEW

Our goal here is to develop an algorithm which can handle
designs with any number of double-row height cells, while
minimize the total wirelength of the design. Although we only
consider wirelength in this paper, other objectives (e.g., timing,
routability, manufacturability) can easily be considered by using
a detailed placer optimizing those objectives.

A single-row height cell can be changed to double-row height
by either simply expanding the cell or pairing up two single-row
height cells together and form a double-row height cell. Pairing up
cells can help to place them more tightly, which reduces the local
bin density and provide more free space for detailed placement
algorithm to explore a good solution. However, at the same time,
forcing two cells to be placed together will restrict their movement
and some potential placement solution cannot be explored. In
order to make sure that the formed cell pairs do not impose too
much restriction during the detailed placement, we only pick those
pairs which can provide us the most ”benefit”, which will be
defined in Sec. III. Also, we go back to the simple cell expansion
strategy in low density areas where there is sufficient free space
even after expansion, in order to give each single-row height cell
the maximum freedom to move.

A high-level view of the flow developed in this paper is shown
in Fig. 1.

Fig. 1: Detailed Placement Flow

Our flow works on a global placement result. The flow starts
with a cell pairing procedure, which is formulated as a maxi-

mum weighted matching problem and composed of three stages:
matching graph construction, maximum weighted matching and
matching pair selection. Each pair of single-row height cells
will be merged into a double-row height cell. In cell expansion
step, single-row height cells which have not been paired up will
be expanded to double-row height. Next, conventional detailed
placement algorithm is applied on the transformed design which
only contains double-row height cells. At the end, a refinement
procedure is performed based on the previous detailed placement
results, in which we fix the location of double-row height cells and
run detailed placement algorithm on unpaired single-row height
cells in order to further improve the placement quality.

III. DETAILED PLACEMENT APPROACH

A. Matching Graph Construction

The benefit of pairing up single-row height cells is modeled
using a matching graph here. The first thing we need to consider
while constructing the matching graph is a good trade off between
solution space and algorithm running time. If we simply construct
a matching graph which an edge exists between any two single-
row height cells in the design, we are able to explore all possible
cell pairing solutions. However, we will end up having a complete
graph with the number of edges quadratic to the number of single-
row height cells and the runtime of our matching algorithm will
not be acceptable. On the other hand, if we construct a matching
graph which each cell is only connected with very few other cells,
the total number of pairing candidates for a cell will be too small.
It is quite possible that some good cell pairs are missed.

Our matching graph is constructed like this: We divide the
placement region into m⇥ n equal sized bins. Only cells within
neighboring bins are considered to help limit the choice when
we search for candidates. In particular, for each single-row height
cell u, we first locate the bin containing this cell. Then we look
for all other single-row height cells V = {v1, ..., vn} within this
bin and the nearest neighboring bins. Next, we want to create
an edge between u and any vi 2 V , if the Manhattan distance
between u and vi is less than a target distance r. Here the target
distance r is carefully selected such that each cell will have
enough candidates to be chosen from and the overall running
time of the matching algorithm will not be too much. Ignoring
cells out of range r to be a candidate does not make a big impact
on the quality of matching algorithm, as pairing up cells far away
can dramatically change the global placement result and make the
overall wirelength worse.

Fig. 2: Construct Matching Graph

An example of matching graph construction is shown in Fig.
2. To search for matching candidates of cell Q, we first look at
all single-row height cells within the shaded region, which is cell
A, B and C. Cell D will be ignored in this case. Then we check
if the distance between (Q,A), (Q,B) and (Q,C) is within a
feasible range shown as a doted diamond in this figure. In this
example, A and B is selected as matching candidates and edges
(Q,A) and (Q,B) are added to the matching graph. We do not
consider C as a matching candidate, as C is out of the range.

B. Edge Weight Calculation

We want to calculate edge weight based on the associated
benefit if two cells are paired up. Three different factors are
considered during our weight calculation: cell connectivity, area
increase and cell displacement.

1) Cell connectivity: Here we want to consider the connec-
tivity between cells and give more chance to those with strong
connectivity in the netlist to form a pair.

Given two single-row height cells u and v. Let C be the
connectivity factor for edge (u, v) in our matching graph. Let
e be a hyperedge connecting cells u and v in the netlist. Let |e|
be the number of cells that are incident to this hyperedge. Clique
model is applied here to decompose hyperedges.

We define C as:

C =
X

e2E|u,v2e

1

|e|

where E is the set of hyperedges in the netlist.
2) Penalty on area increase: The width difference between two

cells can play an important role while we form pairs. Consider a
simple example which four cells A, B, C and D want to form into
two pairs. If a wide cell is paired up with a thin cell as shown in
Fig. 3 (a), a lot of placement area will be wasted after grouping
this two cells together. Instead, if we pair up cells with similar
width as shown in Fig. 3 (b), the total area after pairing will be
much smaller than the previous method.

(a) (b)

Fig. 3: (a) Pair up cells with large width difference (b) Pair up
cells with small width difference

Here we define PA as the penalty on area increase. Consider
two standard cells u and v which have single-row height h. We
can set PA as:

PA = h ⇤ |Wu �Wv|

where Wu and Wv are the widths of cells u and v.
3) Penalty on cell displacement: Another factor we considered

is cell displacement. We want to encourage pairing up two cells
which are closer together while adding penalty on forming pairs
which the two cells are relatively far away. The idea is to
minimize the perturbation of global solution, such that the total
wirelength will not be affected too much after pairing up cells.

Let PD be the penalty of cell displacement. Let d(u, v) be
the Manhattan distance between two cells u and v. The cell

displacement penalty can be defined as:

PD = d(u, v)

Putting everything together and let B be the benefit of forming
a pair, we can get:

B = C � ↵1 ⇤ PA� ↵2 ⇤ PD

where constant ↵1 and ↵2 can be chosen to adjust the effect
among cell connectivity, area penalty and displacement penalty.

C. Maximum Weighted Matching

We use maximum weighted matching to find a set of candidate
cell pairs such that pairing them up will result in maximum
benefit. Matching problem is one of the most well-studied prob-
lems in computer science. There are many existing algorithms
in the literature which can either find a perfect matching or do
some approximation [13]. In order to find the one which is most
suitable to our problem, we implemented two different matching
algorithms in our experiment to perform weighted matching.
One is based on the Edmond’s maximum weighted matching
algorithm [14] which provides O(nmlog(n)) runtime complexity
and another is a simple greedy approach [15] which can find
an approximate solution within a linear runtime. The experiment
results show that these two approaches provide similar wirelength
results, while the second approach has a much better runtime.
Thus, the second one is chosen in our flow.

D. Matching Pair Selection

It is not the best to pair up all single-row height cells from
the matching result. Forming a pair will force the two cell to
be placed together and put restrictions on detailed placement.
For the matched pairs with small edge weight, the benefit they
provide cannot justify to tie them up. This is especially true for
matched pairs in low density area. It would be better to simply
expand those cells and give them freedom to move, since in low
density area, there will always be enough free space even after
cell expansion.

In our flow, we only pick the top portion of matching results
based on edge weight and local bin density to perform actual cell
pairing, while the remaining single-row height cells are simply
expanded to become double-row height.

We should notice that, after the cell pairing and expansion, the
local bin density might change. The new density will depend on
not only the initial bin density of the given placement, but also
the total area of single-row height cells which do not form a pair.
This is because the unpaired single-row height cells will double
their area when they are expanded to double-row height.

Here we divide the chip into p⇥ q equal sized bins. The size
of the bins we used here can be different from the one we used
during matching graph construction in Sec. III A. Let Db be
the density for bin b after global placement. Let k be the area
percentage of single-row height cells which do not form a pair
in this bin. Then the new density D0

b after pairing and expansion
will be: D0

b = 2 ⇤ kDb + (1 � k)Db = (1 + k)Db. Here D0
b is

just an approximate value. Pairing process might move single-
row height cells from one bin to another bin which can affect the
bin density. There will also be some area wastage after we pack
two single-row height cells together. However, considering both
the cell movement and area wastage is small, we simply ignore
these facts to make our algorithm simple. As we are only locally

estimating D0
b, for designs with very high utilization, there might

be an utilization overflow issue after cell expansion. But because
of what we did, the chance of having such an issue is very unlikely
and we have never encountered any issue in practice.

After cell candidates are generated, we first globally filter out
matched pairs which have a small edge weight. Then for each
bin, we select part of the matching results to form cell pairs
based on D0

b. In particular, we want to keep D0
b within a good

range to make sure that each bin will have enough free space and
we also do not form too many pairs to limit the cell movement.
The selected single-row height cell pairs are then paired up into
double-row height cells with the new location in the middle of
the corresponding single-row height cells.

E. Unpair and Refinement

After we run conventional detailed placement algorithm on the
transformed design and get a legalized solution, there might still
be room for wirelength improvement. First is because the pairs we
formed in the design restrict two cells not be able to be placed in
separate places. Second, the expansion on some single-row height
cells also limits them to be put closer to other cells. Thus, we run
detailed placement for a second time without these restrictions by
unpairing cells and deflating the expanded cells. The locations of
double-row height cells are fixed at this run, as we assume they
have already been placed into a good location during the previous
detailed placement process.

IV. EXPERIMENTAL RESULTS

The proposed approach is implemented using C++ and run on
a Linux PC with 8 GB of memory and Intel 2.4 GHz CPU.

Two sets of benchmarks are used in our experiment. First
is a set of asynchronous VLSI designs synthesized using an
asynchronous frond-end flow [16]. Another set of benchmarks
are created based on the ISPD05 placement benchmark suite. We
randomly selected about 30% single-row height standard cells in
the design and doubled their height. The placement region area
is keep to be the same. POLAR [17] is used to generate global
placement results as an input to our flow.

We choose FastDP [9] as our detailed placement engine with
small modification to make sure double-row height cells are
placed only on even rows. Since FastDP is designed for single-
row height benchmarks, if all standard cells are placed on even
rows while some macros are aligned with odd rows, FastDP might
create some overlaps. We solve this problem by adding placement
blockages on the row above and / or below each macros. Two
alternative methods are developed to be compared with our ap-
proach. In method 1, we apply cell expansion technique in which
we double the height of single-row hight cells. Then, FastDP is
run on this expanded design with all cells having equal height.
In method 2, we treat the double-row height cells as movable
macros. The design is first legalized using techniques described
in [18], then we use FastDP to perform the detailed placement.
The values of ↵1 and ↵2 are experimentally determined and we
set ↵1 = 2⇥ 10�3 and ↵2 = 2⇥ 10�4 for all the benchmarks.

Comparison results on asynchronous benchmarks are shown
in Table I. Second column shows the total number of cells. The
percentage of double-row height cells and the chip utilization are
shown in the third and fourth column. The “Init” column shows
the wirelength of the global placement results after legalization.
For the wirelength, our approach is 3% better than the first method

and 14.8% better than the second method. The runtime of our
approach is a little bit worse than the first method, as our approach
run FastDP twice, but we are much better compared with the
second method. The “Overlaps” column shows the number of
overlaps reported by FastDP after the detailed placement. Both
our approach and method 1 can generate a legalized placement
with zero overlaps. However, for the second method, almost all
the designs cannot be legalized, as there are too many macros
which is beyond the ability of FastDP to handle.

Table II shows the comparison results on synchronous bench-
marks. On average, our wirelength is 72.2% better than the first
method and 3.5% better than the second one. Also, our algo-
rithm runtime on average is better compared with the other two
methods. For method 1, the reason is because the cell expansion
increases chip utilization too much and ends up making FastDP
take a much longer time to perform optimization. For method
2, its runtime is better than our approach only when the design
size is small. As the design size increases, legalization techniques
used inside FastDP will not be scalable to the increasing number
of movable macros. Thus, the runtime becomes much slower. We
can also see that method 1 failed to place some designs, as their
chip utilization become greater than 1 after we expanded single-
row height cells in this two designs.

To further illustrate the robustness of our approach, we did
another set of experiments using adaptec2 and bigblue1. We
generate a new set of benchmarks with different percentage of
double-row height cells in a design by randomly picking certain
number of single-row height cells and doubling their height. Then,
our approach and the other two methods are run on this new set
of benchmarks. The original adaptec2 and bigblue1 design have
the utilization of 81% and 61%. Since most of the cell area is
occupied by macros, there will not be an utilization overflow.

The results are shown in Fig. 4 and Fig. 5. X axis is the
ratio of double-row height cells in the design and Y axis is the
total wirelength. It can be seen that method 1 which apply cell
expansion techniques do a very bad job when single-row height
cells are dominating in the design. The total wirelength gradually
get improved with the increasing number of double-row height
cells. In contrast, method 2 which treats all double-row height
cells as macros works well when double-row height cells are
not so many, but the wirelength gets worse when total number
of double-row height gets increased. For adaptec2 dr, method
2 cannot even finish within a reasonable amount of runtime
when the number of double-row height cells below 30%. In
comparison, no matter how many double-row height cells exists
in the design, our approach always produces placement results
with better wirelength.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a detailed placement approach
targeting at designs with mixed single-row height and double-
row height standard cells. We incorporated cell paring and cell
expansion techniques and transformed the mixed-height design
into design containing only standard cells of the same height.
Then any conventional detailed placement algorithm can be
applied. Our approach is compared with other two alternative
methods to place design with mixed-height standard cells and
achieves both better quality and robustness.

Our future work is to incorporate bin utilization constraints into
our algorithm. In particular, we want to consider bin utilization

Table I. Comparison on asynchronous benchmarks

Design Size DH Util Wirelength x 106 (nm) Runtime (s) Overlaps
Cells Init Ours Method1 Method2 Ours Method1 Method2 Ours Method1 Method2

s9234 2108 85.10% 75.02% 167.74 134.10 133.55 159.04 1.14 1.21 244.36 0 0 294
s15850 6778 81.45% 75.35% 671.51 561.80 575.36 650.43 3.09 2.55 2112.03 0 0 1372
s13207 5658 84.36% 77.73% 521.02 432.58 435.20 509.90 2.72 2.97 1729.70 0 0 1104
s38417 15447 61.68% 68.73% 1457.15 1176.30 1223.99 1331.89 5.99 4.77 6211.27 0 0 200

ALUMAN16 2442 61.38% 63.26% 230.69 174.16 181.71 196.78 3.99 2.72 171.86 0 0 6
ALUMAN32 6866 63.17% 66.22% 819.71 643.14 692.35 733.20 3.84 5.49 1470.53 0 0 36
ALUMAN64 28974 70.69% 70.59% 3863.54 3204.05 3310.77 3659.70 15.18 9.05 26576.30 0 0 2018

acc64 3355 92.28% 75.68% 275.48 225.39 224.90 269.17 3.67 2.04 605.15 0 0 800
acc128 8401 90.44% 79.05% 692.96 601.34 604.00 682.36 8.90 6.32 3239.38 0 0 2760
GCD 445 67.64% 63.30% 36.35 24.14 25.09 30.00 1.00 0.45 6.39 0 0 0

FetchingUnit 5304 92.18% 75.05% 674.84 563.58 566.45 667.37 3.63 1.98 1411.80 0 0 1350
1.216 1 1.030 1.148 1 0.744 823.612

Table II. Comparison on synchronous benchmarks

Design Size DH Util Wirelength x 106 (nm) Runtime (s) Overlaps
Cells Init Ours Method1 Method2 Ours Method1 Method2 Ours Method1 Method2

adaptec1 dr 211447 30.18% 90.84% 97.24 91.35 Fail 94.28 38.33 Fail 28.49 0 Fail 0
adaptec2 dr 255023 30.16% 89.12% 109.07 105.66 242.12 107.94 44.36 300.86 42.62 0 0 0
adaptec3 dr 451650 30.11% 78.44% 249.69 242.13 433.40 245.89 82.44 417.53 75.98 0 0 0
adaptec4 dr 496045 30.19% 67.70% 214.30 208.92 295.04 211.46 84.03 296.20 65.83 0 0 0
bigblue1 dr 278164 30.14% 73.44% 117.73 113.09 181.99 115.42 41.60 244.19 38.47 0 0 0
bigblue2 dr 557866 32.90% 68.99% 169.32 160.86 278.03 164.62 85.88 262.05 87.33 0 0 0
bigblue3 dr 1096812 30.31% 91.10% 490.91 418.97 Fail 466.60 233.67 Fail 440.98 0 Fail 423
bigblue4 dr 2177353 30.26% 73.88% 913.23 882.51 Fail 895.39 469.78 Fail 753.53 0 Fail 171

1.062 1 1.722 1.035 1 4.495 1.420

Fig. 4: Experiment on adaptec2 dr benchmark

during the edge weight calculation in Sec III-B and use a detailed
placement engine which supports bin utilization constraints.

REFERENCES

[1] J. Wang, A. K. Wong, and E. Y. Lam, “Standard Cell Layout with Regular
Contact Placement,” Semiconductor Manufacturing, 2004.

[2] S. H. Baek, H. Y. Kim, Y. K. Lee, D. Y. Jin, S. C. Park, and J. D. Cho, “Ultra-
High Density Standard Cell Library Using Multi-Height Cell Structure,” in
Smart Materials, Nano-and Micro-Smart Systems, 2008.

[3] D. G. Breid, M. J. Colwell, T. R. Gheewala, and H. H. Yang, “Dual-Height
Cell with Variable Width Power Rail Architecture,” US Patent, 2005.

[4] A. P. Hurst, P. Chong, and A. Kuehlmann, “Physical Placement Driven by
Sequential Timing Analysis,” in ICCAD 2004, pp. 379–386, Nov 2004.

[5] S. Dobre, A. B. Kahng, and J. Li, “Mixed Cell-Height Implementation for
Improved Design Quality in Advanced Nodes,” in ICCAD 2015, pp. 854–
860, IEEE Press, 2015.

[6] A. M. Lines, Pipelined Asynchronous Circuits. Master’s thesis, California
Institute of Technology, 1998.

[7] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to
Asynchronous VLSI. Cambridge University Press, 2010.

[8] M. C. Kim, N. Viswanathan, Z. Li, and C. Alpert, “ICCAD-2013 CAD
Contest in Placement Finishing and Benchmark Suite,” in ICCAD 2013.

Fig. 5: Experiment on bigblue1 dr benchmark

[9] P. Min, N. Viswanathan, and C. Chu, “An Efficient and Effective Detailed
Placement Algorithm,” in ICCAD 2005, pp. 48–55, Nov 2005.

[10] S. Popovych, H. H. Lai, C. M. Wang, Y. L. Li, W. H. Liu, and T. C.
Wang, “Density-Aware Detailed Placement with Instant Legalization,” in
DAC 2014, pp. 1–6, June 2014.

[11] S. N. Adya and I. L. Markov, “Combinatorial Techniques for Mixed-Size
Placement,” TODAES, vol. 10, no. 1, pp. 58–90, 2005.

[12] J. Cong and M. Xie, “A Robust Detailed Placement for Mixed-Size Ic
Designs,” in ASP-DAC, p. 7 pp., 2006.

[13] R. Duan and S. Pettie, “Linear-Time Approximation for Maximum Weight
Matching,” Journal of the ACM (JACM), vol. 61, no. 1, p. 1, 2014.

[14] J. Edmonds, “Maximum Matching and a Polyhedron with 0, L-Vertices,”
Journal of Research of the National Bureau of Standards, 1965.

[15] D. E. Drake and S. Hougardy, “A Simple Approximation Algorithm for the
Weighted Matching Problem,” Information Processing Letters, 2003.

[16] P. A. Beerel, G. Dimou, and A. Lines, “Proteus: An ASIC Flow for GHz
Asynchronous Designs,” Design Test of Computers, 2011.

[17] T. Lin, C. Chu, J. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR:
Placement Based on Novel Rough Legalization and Refinement,” in ICCAD
2013, pp. 357–362, Nov 2013.

[18] N. Viswanathan, M. Pan, and C. C.-N. Chu, “FastPlace: an analytical placer
for mixed-mode designs,” in ISPD, pp. 221–223, 2005.

