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a b s t r a c t 

Nowadays, it is crucial to promote and develop the autonomy of people, and specifically of individuals 

with some disability, in order to improve their life quality and achieve a better inclusion into socio- 

cultural life. Therefore, the identification of stress situations can be a suitable assistive tool for improving 

their socio-cultural inclusion. This work presents important enhancements and variations for an existing 

fuzzy logic stress detection system based on monitoring and processing different physiological signals 

(heart rate, galvanic skin response and breath). First, it proposes a method based on wavelet processing 

to improve the detection of R peaks of electrocardiograms. Afterwards, it proposes to decompose the gal- 

vanic response signal into two components: the average value and the variations. In addition, it proposes 

to extract information out the breath signal by analyzing its frequential composition. Finally, an improved 

response in detecting stress changes is shown in comparison with other previous works. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Emotional Intelligence is an alive field of research, where some 

studies deal with human emotion measuring. These tendencies are 

within the approach of the assistive technologies, which have the 

target of improving people’s life quality. Several research tenden- 

cies try to improve the autonomy of people with disabilities by 

focusing on improving their inclusion in socio-cultural life. Physio- 

logical signal measurements by non intrusive sensing systems, sig- 

nal processing and analysis with Soft Computing techniques, iden- 

tification and classification of emotions and stress situations, are 

some of the approaches that are being studied in a high number 

of significant research groups as [9,21,29] . 

Applying these studies to emotional blockage situations induced 

by a high stress levels is a field of huge interest as presented by 

Sharma and Gedeon [26] . A prompt detection of blockage situa- 

tions is a powerful assistive tool for elder people and persons with 

disabilities. It is normal for people with special needs to have a 

caregiving person to help them when needed. For instance, a de- 

vice capable of detecting blockage situations could be useful to in- 

form the caregiver about a blockage taking place, helping them to 

give a quick assistance so the care-dependant person can overcome 

that difficult situation as fast as possible. This work presents an ex- 
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tended solution to the system presented in [23] , which proposed 

enhancements for the work of [7] , where such situations are de- 

tected and identified with the intention to be used in cases as the 

presented above. 

Multiple studies analyze the influence of human emotions in 

people’s everyday life, from qualitative studies based on human 

behavior as developed by López et al. [14] , to quantitative analysis 

of measured physiological variations that emotions elicit in each 

person, e.g. in [25] . In particular, there are very specific physiolog- 

ical changes related to stress, as the phylogenetic substrates study 

made by Porges [20] , or the activity study of the autonomic ner- 

vous system shown in [11] . As pointed in Cannon’s research works, 

[3] , when a person has to face a dangerous situation, the person’s 

body prepares to confront that situation and generates a physiolog- 

ical response known as ”fight-fly”. This response increases the ac- 

tivity of the sympathetic nervous system producing changes as the 

increase of the heart rate frequency in order to provide more blood 

to the body. This change also produces the respiratory system to 

activate as a bigger blood flow requires more oxygen, [19] . More- 

over, some other changes take place in the body such as the dila- 

tion of eye pupils to improve the vision or the increase of sweat 

secretion, [17] . 

Some proposals measure physiological signals using intrusive 

devices, as the work of [4] using cameras or electrode grids, to an- 

alyze and classify human emotions. Other lines are based on work- 

ing with non-intrusive devices, as those having electrodes inte- 

grated in wearable devices or clothing accessories, [27] . This work 

is based on using physiological signals that can be measured with 
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hidden devices, as the electrocardiogram (ECG), the galvanic re- 

sponse of the skin (GSR) and the movement produced by the sub- 

jects breathing (RESP). 

Currently, processing and analyzing real physiological signals is 

a very interesting challenge in Biomedical Engineering. The com- 

plexity of such variables is remarkable, being higher than it seems 

a priori, as discussed in [15] . Such difficulty comes from the large 

amount of the data generated by analyzing the captured time se- 

ries and from the countless noises and artifacts that appear in 

data entries. To solve these kinds of problems Soft Computing 

techniques have been highlighted considerably, as developments 

presented by Lee et al., Wozniak et al., Calvo-Rolle and Corchado 

[2,13,30] . 

In the study of human emotional changes, and specifically in 

stress situation labeling, some Soft Computing approaches have a 

special applicability, as [7] , and [22] . These allow researchers to 

add undefined indexes that can be detected looking at physiolog- 

ical data time series during blockage situations. Due to the com- 

plex equilibrium between parasympathetic and sympathetic ner- 

vous systems, [18] , at the present time it has not been possible to 

define the exact link between blockage situations and their associ- 

ated physiological changes. But, as presented below, the measured 

ECG, GSR and RESP signals allow to see such changes in data time 

series. 

The objective of this work is to continue developing an en- 

hanced identification system for blockage situations based on the 

measurement of non-intrusively obtained human physiological sig- 

nals. The work proposes to enhance the Matlab ® based system pre- 

sented in [23] by improving the processing of the input signals 

and adding a new input variable, based on the RESP signal. Three 

main improvements are proposed. First it proposes to increase the 

robustness of ECG processing using wavelet techniques, [10] , for 

a more accurate R peak detection, recently appeared in works as 

[6,16,24,28] . The second is to decompose the GSR signal into its 

average and variation components to improve the efficacy of the 

Fuzzy strategy. The last improvement proposes process the RESP 

signal in order to get the frequential composition of the breath and 

to use its standard deviation as an input of the detection system. 

This combination of advanced signal processing and the addition of 

a third signal gives the system a higher immunity to false detec- 

tions and implies an innovative approach to the strategy followed 

by the previous works where only two input signals were used. 

2. Experimental stage 

When humans are involved, the design of an experimental stage 

has to be performed with special care, considering and respecting 

all laws and each individual’s rights. Eliciting of emotional block- 

age situations is a very specific work line considered within the 

human emotions study. In the present work, a particular experi- 

mental stage was designed based on the previously established by 

authors as [5,8] . These experiments consist on proposing a chal- 

lenge of dexterity for solving a 3D puzzle in a limited period of 

time, in order to elicit a stress situation which will lead to an in- 

duced emotional blockage. In each experiment, each subject was 

previously informed about the elicitation process, and all the le- 

gal rules for testing on human beings were fulfilled. At the end of 

the experiment they were asked to fill a questionnaire where they 

explained how they had felt during the experiment. 

During the experiment, volunteers were connected to the elec- 

trodes needed to collect the ECG and GSR as shown in Fig. 1 . In 

addition, a chest band was used to measure the movements pro- 

duced by the breathing, the RESP signal. Regarding to these sig- 

nals two main states can be distinguished in Fig. 1 : Relax State 

(RS) and Stressed State (SS). These states are directly linked with 

the three main parts of the experiment. During the relaxing phases 

(RS) of the beginning and ending of the experiment the three vari- 

ables acquire values and tendencies that show that the subject is 

relaxing. In these two phases, the heart beats at a normal pace, 

the sweating is low and the breathing is harmonic. On the other 

hand, while solving the puzzle (SS), the GSR increases (the subject 

sweats more), the ECG beat period is reduced and the RESP tends 

to be faster and more irregular. These changes prove that the sub- 

ject is getting stressed. 

Unfortunately, using electrodes has disadvantages that difficult 

the extraction of information. The movements of the person can 

produce different artifacts in the ECG that make it difficult to ex- 

tract the information. Moreover, as the gel of the electrodes gets 

drier the conductivity between the skin and the electrode reduces, 

and so, signal amplitude decreases and noises appear easily. Fig. 2 

shows examples of these two possible problems. 

As in [7] it is proposed to use the heart rate (HR) signal as 

an input to measure the stress level, this paper proposes to make 

the HR calculation more robust in order to strengthen a subse- 

quent fuzzy stress detection. To accomplish the task this paper 

proposes to use median filtering and wavelet analysis for detecting 

ECG peaks. The signal that has been used to prove the effectiveness 

of the method is the shown in Fig. 2 , which has been collected in 

the experiments for very significant as it has different artifacts and 

noises. 

3. Enhancement of the R peak detection 

3.1. Median filtering 

When using electrodes, offset is one of the most common ar- 

tifacts that appear in collected ECG signals. As stated in [24] , one 

of the best methods to eliminate the offset produced by electrode 

movements is to apply a median filter to the ECG. 100 ms is a suit- 

able length for the filter as artifacts normally do not last for much 

longer. Fig. 3 shows how the offset is successfully removed from 

the original ECG by applying this filter. Anyway, the median filter 

maintains the shape of the signal, enabling the identification of R 

peaks. 

3.2. Wavelet analysis 

Once the offset is removed from the signal, the next step is to 

remove the noise which will be done using a wavelet decomposi- 

tion and reconstruction, [10] . Fig. 4 shows the diagram of how the 

wavelet processing is done (on the left and right sides of the dia- 

gram respectively). 

In the left side of the diagram, decomposition is shown. In each 

stage, the signal is divided into two parts: A and D coefficients. 

The A coefficients have low frequency information and the D co- 

efficients the high frequency information. These two parts are ob- 

tained by filtering and applying a dyadic downsample to the orig- 

inal signal. Depending on the desired coefficients a different de- 

composition filter has to be applied: the H high pass filter for D 

coefficients and the L low pass filter for A coefficients. On the right 

side of the diagram the reconstruction process is depicted, which 

is the opposite to what is done in the decomposition. Note that 

the reconstruction filters H’ and L’ are not the same as the H and 

L filters used during the decomposition. 

The last decision is to choose the specific wavelet to be used 

in the analysis. Choosing the best is a tough task beyond this pa- 

per. Anyway, the use of a wavelet is considered to be correct if it 

enables the perfect reconstruction of the original signal. Thus, this 

paper proposes to use the third wavelet of the Coiflet family (with 

its correspondent filters), which allows the reconstruction of the 

ECG. 
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Fig. 1. Electrode positioning scheme and collected data time series. 
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Fig. 2. Different noises and artifacts produced in the ECG signal. 
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Fig. 4. Wavelet decomposition and reconstruction scheme. 
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Fig. 5. Noise filtering by the 6th wavelet approximation. 

To remove the remaining noise on the ECG signal, this paper 

presents a signal decomposition developed in six iterations, using 

the above mentioned Coiflet wavelet. Afterwards, the reconstruc- 

tion is made using the approximation form by using the A coeffi- 

cients. If that process is applied to the ECG filtered by the median, 

the sixth level wavelet approximation is obtained, shown in Fig. 5 . 

Although some information might be lost, the noise of the ECG is 

removed and its shape is still considerably well kept. 

As the R peaks are placed in the positive part of the graphic, 

the used wavelet approximation has been limited to its positive 

values. The next step to detect the R peaks is to calculate an esti- 

mation of the position where the next peak is likely to be located 

and to sweep the signal around that point to find where exactly 

the maximum of the signal is. The estimated position is calculated 

by summing the average distance of the previous three peaks plus 

the position of the last peak. After this estimation and sweeping 

process, the R peaks are correctly detected in the wavelet approxi- 

mation, as shown in Fig. 6 . So far, no initialization process has been 

designed for this algorithm, so the position of the first three peaks 

has been selected manually. 

The final step is to verify whether the detected R peaks match 

the real R peaks of the original unprocessed ECG signal and that 

they have been detected despite the presence of artifacts or noises 

(see Fig. 6 ): 

3.3. Heart rate calculation 

For detecting stress, one of the proposed inputs for the detec- 

tion fuzzy system is the HR signal. Once all the R peaks have been 

detected, it is easy to calculate the time difference between con- 

secutive peaks. The signal that shows the time intervals between 

peaks is RR signal and it is needed to calculate the HR. It is ob- 

tained by (1): 

RR i = (P eak _ position i − P eak _ position i −1 ) /F sample (1) 

As the RR stands for the varying period of the R peaks, the fre- 

quency of the heart beats is obtained by inverting the RR signal. 

Continuing with the calculus, the HR value will be obtained if the 

frequency of the heart beats is multiplied by 60, as the heart rate 

stands for the number of beats per minute, shown in (2): 

F beats = 1 /RR → HR = 60 ∗ F beats (2) 

To use the fuzzy stress detection system it is necessary to have a 

good HR signal clean from noises or artifacts. The HR calculated 

using the proposed method analysis fits perfectly those character- 

istics. Fig. 7 shows how the proposed method has a better per- 

formance than the achieved by the commercial equipment from 

Biopac ® used to collect the signals of the experiments: 

4. Processing of the breath signal 

It can be considered that, when relaxed, the human breathing 

tends to be relatively harmonic. When air is taken, the lungs inflate 

resulting in a movement similar to the ascending part of a sine. 

When exhaling that air, the lungs do a movement similar to the 

descending part of a sine. 

On the other hand, when a person gets nervous or stressed, 

that person’s breathing becomes less harmonic. This variation of 

the breathing pace is due to the acceleration of the heart move- 

ments which force the lungs to move faster in order to maintain 

the oxygen transfer to blood. This phenomenon can provide valu- 

able information when trying to detect a stressful situation. 
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4.1. Frequential analysis of the breath signal 

When analyzing how harmonic a signal is, the first step is to do 

a frequential analysis of that signal. This paper proposes to calcu- 

late the correlation between the breath signal and different fre- 

quency pure sine waveforms. This method has been chosen be- 

cause it permits to focus in certain frequency components with- 

out having to pay attention to unnecessary intermediate or out of 

range frequencies. 

In order to know where frequential information is concentrated, 

a wider spectral analysis has been done. From this spectral analy- 

sis it can be inferred that most of the information concentrates in 

lower frequencies, in the [0,0.5] Hz range ( Fig. 8 ). After analyzing 

different subjects’ breath signals it has been concluded that this 

range implies both stressed and relaxed situations. 

Knowing that most of the information is found in this range, 

pure sinusoidal waves from 0.01 Hz to 0.5 Hz have been chosen to 

calculate their correlation with the breath signal. Different window 

sizes have been used as it is also interesting to determine which 

signal length is the best to extract information related to stress. 

Fig. 9 shows the results of the correlation calculus using different 

windows in the breath signal of a real subject. The selected win- 

dow sizes are 20 s, 40 s and 60 s with a moving step size of 10 s. 

The results of the correlation analysis show that during the 

beginning and the end of the experiment the highest levels of 

frequential correlation are mainly concentrated around a certain 

frequency. In addition, as several green spots appear (when the 

correlation value looks low), it is possible to deduce that during 

the stressful part the correlation values get bigger in a wider range 

of frequencies. 

4.2. Statistical analysis and softening process 

As mentioned before, the frequency correlation calculus shows 

that the frequential distributions are different during the relaxed 

and the stressful parts of the experiment. Therefore, this work pro- 

poses to use the standard deviation of the correlation values as 

an input of the Fuzzy system. The standard deviation seems to 

be a useful parameter when trying to detect stress. On the one 

hand, while stressing, the breath loses frequential concentration 

and most of the values obtained from the correlation tend to be 

closer from the average value. On the other hand, when relaxed, 

people’s breath becomes more harmonic producing a frequential 

correlation increase around a point and a decrease in the other fre- 

quential areas. It also alters the value of the standard deviation of 

the correlations that gets bigger as all the values get further from 

the average value. This standard deviation variation effect is shown 

in Fig. 10 (the graph on top depicts the breath signal and the bot- 

tom graph corresponds to the frequential standard deviation evo- 

lution). 

Fig. 10 depicts that at the beginning and ending of the test the 

standard deviation is bigger than in the middle part, the stress- 

ing part. Anyway, the standard deviation sometimes gets relatively 

high values which could lead the fuzzy system to a interpretation 
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problem. Because of that, it is interesting to increase the differ- 

ence between the values of the relaxing and the stressing parts. A 

good method to do it is to multiply the standard deviation by the 

RMS value of the RR signal mentioned in Section 3.3 . By combining 

them a new signal is obtained, where the level differences between 

relaxing and stressful parts have increased compared to what hap- 

pened on the previous standard deviation signal (shown in Fig. 11 ). 

This last signal enables to distinguish easily between stressed and 

relaxed states and so, it has been used as an input for the fuzzy 

detection system. 

5. Proposed stress detection fuzzy system 

The fuzzy logic systems are a paradigm of Computational In- 

telligence area widely used in identification problems, as intro- 

duced by Andujar and Barragan [1] . The fuzzy system proposed in 

this paper has the aim to detect continued stress situations in or- 

der to improve the social inclusion of people with disabilities and, 

subsequently, their life quality. The fuzzy system is based on the 

one posed in [7] , adding three enhancements: the R peak detec- 

tion procedure presented in Section 3 , the use of the frequential 
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Fig. 11. Peak differences increase after softening the standard deviation. 

component standard deviation of the RESP as an input, and the 

GSR signal decomposition shown later in the current section. 

This section will present the Matlab ® based fuzzy logic system. 

First it will be explained how to build the membership functions 

and the reason to do decompose the GSR signal. Second, the out- 

put membership functions will be explained. Then, the rules that 

relate the inputs to the outputs will be presented. Finally, results 

of the stress detection will be shown. 

5.1. Input membership functions and GSR decomposition 

As the GSR represents the level of conductance of the skin, 

and hence its moisture, it can be considered to have an accu- 

mulative nature. Thus, despite the amplitude gives some infor- 

mation, the variations of the signal respect to its previous val- 

ues provide much better indicators of changes in stress. In or- 

der to improve the detection, this paper proposes to decompose 

the GSR signal into two components: the average value and the 

variations. 

In the work presented in [23] the HR and average GSR mem- 

bership functions had a Gaussian shape. This was based on the 

template method of [7] , which proposed to design the membership 

functions using the average and standard deviation of the variables 

during the two periods of the experiment, RS and SS. 

Instead, the current work proposes to define a new intermedi- 

ate medium stress (MS) membership function which will give flex- 

ibility to the system allowing to detect better transitions between 

relaxed and stressed states. 

Moreover, this strategy avoids the overlapping of the HR mem- 

bership functions. Sometimes people have high HR pace variations 

which are perfectly normal and do not necessarily mean a transi- 

tion to stress, as it happens in the RS part of Fig. 12 . 

As seen in Fig. 12 , the HR remains relatively concentrated 

around its average value during the SS part of the experiment. 

However, during the RS period, the HR varies highly and in certain 

points it even reaches the same values as in the SS part. Despite 

that having such HR variations is perfectly normal, using the tem- 

plate method would lead to difficulties when detecting stress as 

the HR membership functions would overlap producing false situa- 

tions. Such problems are presented on the left side of Fig. 13 , which 

shows the template method based membership functions for the 

subject of Fig. 12 . 

Based on this criteria, three membership functions have been 

defined for all input variables: RS, MS and SS. This approach pro- 

poses to use trapezoidal functions for RS and SS and a different 

MS function filling the gap between RS and SS, as shown on the 

right of Fig. 13 . This paper proposes to use a triangular shape for 

GSR variations and Gaussian shapes for HR and average GSR MS 

functions. Unfortunately, it does not present an automatic method 

to fine tune the membership functions, and for the moment, the 

function tuning has to be done manually in order to adjust the 

system to each subject. 

The last membership functions to be defined are the cor- 

responding to the output. This paper follows the approach of 

[23] and presents the same three function strategy. In [7] it is 

only made the difference between non-stressed and stressed sit- 

uations. To make the stress level detection more reliable, this 

system includes the intermediate stress level MS triangular out- 

put function. The output has been normalized in an [0, 1] inter- 

val. Table 1 presents the details of the design of the membership 

functions: 
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Table 1 

Definition of the membership functions. 

Variable Definition States Shape Shape edges 

Input: RS Trapezoidal Variable 

Hear Variable MS Gaussian Variable 

Rate SS Trapezoidal Variable 

Input: RS Trapezoidal Variable 

Average Variable MS Gaussian Variable 

GSR SS Trapezoidal Variable 

Input: RS Trapezoidal [ −2 , −2 , −0.75,0] 

GSR [ −2.2] MS Triangular [ −0.5,0,0.5] 

variation SS Trapezoidal [0,0.75,2,2] 

Output: RS Trapezoidal [0,0,0.275,0.475] 

Stress [0,1] MS Triangular [0.25,0.5,0.75] 

level SS Trapezoidal [0.525,0.725,1,1] 

Table 2 

Previous variable relationships. 

State of variable 1 State of variable 2 Conclusion 

SS SS SS 

SS RS MS 

RS SS MS 

RS RS RS 

5.2. The inference rule system 

As done in [23] , the inference system variable linkage has been 

done matching the inputs in pairs. Again, the variables have been 

connected with IF AND IF THEN rules. Anyway, the main differ- 

ence proposed in this paper comes from the criteria of using three 

membership functions for the inputs. In that previous phase, most 

of the input variables had only two membership functions and so, 

it was difficult to define when to activate the MS output function. 

In that phase, the MS output would be activated when the states 

of the inputs were opposite to each other. Table 2 summarizes it 

what was done in [23] . 

Table 3 

Input variable relationships. 

State of variable 1 State of variable 2 Conclusion 

SS SS SS 

MS MS MS 

RS RS RS 

An after analysis proved that the rule system was prone to have 

drastic changes easily. Subsequently, the MS function was added 

to the input variables in order to give plasticity to the system. 

With it, establishing the relationships between variables has be- 

come much simpler: the RS output activates when both variables 

are RS, the MS output activates when both variables are MS and 

the same the SS output. Lastly, it is important to note that all the 

relationships do not weight the same when determining the de- 

tected stress level. This input variable linkage approach can be seen 

in Table 3 . 

5.3. Comparative results of systems 

The last step is to validate the system through simulation. All 

systems have been tested, the one from [7] , the one from the pre- 

vious work and the proposed in this paper. To compare results, 

these systems have used the same variables, with the difference 

that the proposed in this paper has a fourth input as it needs to 

consider the softened RESP Standard Deviation. As stress does not 

have strong dynamics, the simulations have used inputs that re- 

freshed every 20 s, time fast enough to represent the stress vari- 

ations correctly. The used HR signal has been taken from the HR 

calculated in Section 3 using the robust R peak detection method 

proposed in this paper. Additionally, the GSR signal has been pre- 

processed as mentioned ahead. 

As shown in Fig. 14 , the proposed system is more accurate iden- 

tificating stress changes as the weight of the instant GSR value 

is not that important compared to its tendency respect to the 
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Fig. 14. HR, GSR, GSR variation and RESP Standard Deviation inputs and estimated stress level outputs for the three methods. 

previous points, and the softened value of the RESP Standard De- 

viation becomes more important in order to decrease sharp tran- 

sitions. Anyway, it is difficult to assure which one represents bet- 

ter the reality as stress is an abstract and subjective matter and 

the only way to quantify it is to ask the volunteers to complete 

the normalized survey known as the Self-Assessment Manikin pre- 

sented by Lang [12] . 

6. Conclusions and future work 

This paper has presented an enhanced and renewed strategy 

based on a fuzzy logic and the simultaneous use of three phys- 

iological signals (ECG, GSR and RESP) to detect personal stress 

situations. This line has continued the work presented in [23] and 

has remarked the importance of the input signal processing. It 

has shown that important information can be extracted from 

physiological signals by applying certain mathematical strategies, 

as happened when detecting R peaks or when decomposing the 

GSR signal. In addition, it has proposed to use the RESP signal as 

it contains information about the stress level of people. All these 

improvements have been showed in comparison with the results 

of [7] and the further work in [23] . 

This work has also shown how it is possible to obtain successful 

results with a simple inference system. For further developments, 

outside the scope of this work, the prior tuning of the system will 

be solved applying other soft computing techniques, as for exam- 

ple, a neural network to create the input membership functions. 
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