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Abstract
The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Tumor
angiogenesis, growth of new blood vessels, is one of the major prerequisites for tumor growth as tumor cells rely on adequate
oxygen and nutrient supply as well as the removal of waste products. Growth factors including VEGF orchestrate the develop-
ment of angiogenesis. In addition, nervous system via the release of neurotransmitters contributes to tumor angiogenesis. The
nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this
system is integrally involved in tumor growth and progression via regulating tumor angiogenesis. Various neurotransmitters have
been reported to play an important role in tumor angiogenesis.
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Introduction

New growth in the vascular network (angiogenesis) is a normal
physiological phenomenon that tumors utilize to aid in their
growth, proliferation and metastatic spread. Angiogenesis in-
volves migration and division of endothelial cells, generation of
new basement membrane, arrangement into tubular structures
and coverage by pericytes. Angiogenesis is regulated by a pleth-
ora of pro- and anti-angiogenic molecules such as, interleukin
(IL)-8, tumor necrosis factor (TNF)-α, vascular endothelial
growth factor (VEGF), transforming growth factor (TGF)-α,
TGF-β, angiogenin, platelet-derived growth factor (PDGF) and
fibroblast growth factor (FGF) [1, 2]. The level of angiogenic
factors in tissues reflects the aggressiveness of tumor cells which
play a significant role in prognostic outcomes [3, 4]. In cancer,
the balance between pro- and anti-angiogenic factors is lost,
resulting in uncontrolled angiogenesis with irregular blood ves-
sels lacking a clear hierarchal arrangement [1, 5]. As a

consequence, anti-angiogenic therapies (in particular anti-
VEGF) have been approved for cancer treatment [4, 6–8]. The
interaction betweenVEGFwith its receptor, VEGFR2, is respon-
sible for the majority of the angiogenic stimulatory signals
in vivo, however, their therapeutic value for long-term patient
survival is relatively modest [3].

In addition to these factors, the impact of the tumor micro-
environment in tumor angiogenesis has attracted much inter-
est in recent years as another regulator of angiogenesis [9–12].
Furthermore, the role of the nervous system has also surfaced
as one of the major contributors to cancer progression through
the regulation of tumor angiogenesis via release of neurotrans-
mitters. The nervous system governs functional activities of
many organs, and, as tumors are not independent organs with-
in an organism, this system is integrally involved in tumor
growth and progression [13, 14]. Here we present an overview
of the nervous system role in tumor angiogenesis.

Neurotransmitters Influencing Tumor
Angiogenesis

Neurotransmitters are group of neurological chemical messen-
gers synthesized by neurons and secreted at nerve terminals
where they transmit signals to target cells through binding to
their receptors. Studies have demonstrated that various can-
cers express receptors for different neurotransmitters which
have been identified to play essential role in the control of
tumor angiogenesis (Table 1, Fig. 1).
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Catecholamines are a group of neurotransmitters that are
synthesized from amino acid tyrosine. These neurotrans-
mitters are intricately involved in the normal physiological
response of fight or flight response during stress [38, 39].
Epinephrine and norepinephrine released during chronic
stress play an important role in tumorigenesis via regulation
of angiogenesis through β-adrenergic signaling. The β-
adrenergic signaling pathway is involved in regulation of
cancer initiating factors such as apoptosis, DNA damage
repair, inflammation, cellular immune response, angiogen-
esis and epithelial-mesenchymal transition. Numerous in vitro
and animal studies have demonstrated that epinephrine and

norepinephrine acting on their receptors expressed on tumor
cells, stimulate angiogenesis via increased VEGF synthesis
[16, 38–41] through the cAMP-PKA signaling pathway
[40]. In fact, activation of the β-adrenergic signaling pathway
in primary mammary tumors has been shown to elevate
tumor-associated macrophages (TAMs) expressing vegf gene
which enhances angiogenesis [42]. Moreover, in some breast
cancer cell lines, direct activation of β-adrenergic signaling
can amplify expression of VEGF and cytokines, IL-6, and IL-
8 that stimulate tumor angiogenesis [43]. Jagged 1 is essential
factor mediating Notch signaling which regulates tumor an-
giogenesis through β2-AR-PKA-mTOR pathway.

Fig. 1 Neurotransmitter signalling pathways in cancer angiogenesis.
Neuro-cancer communication is through the release of neurotransmitters
activating different signalling kinases which promote cancer progression
via angiogenesis. ACh, acetylcholine; β2-AR, β2-adrenergic receptor;
cAMP, cyclic adenosine monophosphate; AKT, serine/threonine kinase
or protein kinase B; DA, dopamine; DR, dopamine receptor; ERK1/2, ex-
tracellular signal-regulated kinase; GABA, gamma-aminobutyric acid;
GABAA&B, gamma-aminobutyric acid receptorA&B; Glu, glutamate;
GRM1, glutamate receptor metabotropic 1; HIF-1, hypoxia inducible

factor 1; 5-HT, 5-hydroxytryptamine (serotonin); 5-HTR, 5-
hydroxytryptamine receptor (serotonin); MMP12, matrix metallopeptidase
12; mTOR, mammalian/mechanistic target of rapamycin; nAChR, nicotin-
ic acetylcholine receptor; NE, norepinephrine; NPY, neuropeptide Y; PI3,
phosphoinositide 3; PI3K, phosphoinositide 3-kinase; 4E–BP1, phosphor-
ylated 4E binding protein 1; PKA, protein kinase A; p70S6K, serine/
threonine kinase; VEGF, vascular endothelial growth factor; Y5R, neuro-
peptide receptor
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Upregulation of Jagged 1 in breast cancer patients correlates
with poor prognosis [44, 45]. Knockdown of Jagged 1 by
siRNA in MDA-231 breast cancer cells inhibits Notch signal-
ing in endothelial cells and impairs tumor angiogenesis in-
duced by norepinephrine [15].

In contrary, dopamine inhibits angiogenesis by down-
regulation of VEGFR-2-mediated signaling pathway in
both tumor endothelial and endothelial progenitor cells
through D2 dopamine receptors (DR2) [38, 39, 46, 47].
Furthermore, in mouse models of breast cancer induced
by MCF-7 cell line and colon cancer induced by HT29 cell
line, dopamine administration in combination with anti-
cancer drugs (eg. doxorubicin and 5-fluorouracil) impairs
tumor growth and improves survival outcome [48].
However, dopamine effect was found to have no direct im-
pact on tumor growth and survival but by inhibiting tumor
endothelial cell proliferation and migration via the suppres-
sion of VEGFR-2 and mitogen-activated protein kinase as
demonstrated in vitro [48]. In tissues from gastric cancer
patients and in rats with chemically-induced as well as mice
with Hs746T cell-induced gastric cancer, administration of
dopamine decelerates tumor growth by suppressing angio-
genesis via inhibition of VEGFR-2 phosphorylation in en-
dothelial cells [20]. This concurs with results obtained in
ovarian cancer mouse models induced by systemic injec-
tion of SKOV3ip1 and HeyA8 cells in which exogenous
administration of dopamine inhibits angiogenesis by a stim-
ulation of DR2, however stimulation of DR1 stabilizes tu-
mor blood vessels via cAMP-PKA signaling pathway [18].

Acetylcholine and Nicotine Nicotinic acetylcholine receptors
(nAChRs) can have either stimulatory or inhibitory effect on
the production and release of angiogenic factors [49]. Indeed,
the expression of VEGF, TGF-β, FGF and PDGF in endothe-
lial cells is increased by nicotine [50–53]. Nicotine-mediated
angiogenesis via activation of α7 and α9-nAChRs is cell-type
specific, e.g. in lung cancer cells angiogenesis is promoted via
activation of α7-nAChRs [53, 54], whereas in breast tumors
overexpression of α9-nAChRs [55] stimulates release of pro-
angiogenic factors [56]. In colon tumor tissues from HT-29
cell-bearing BALB/c mice, VEGF expression is elevated by
nicotine which correlates with enhanced microvessel density
[28]. The molecular pathways of nicotine-induced angiogen-
esis have been extensively reviewed [57]. The role of mus-
carinic acetylcholine receptors (mAChRs) in tumor angio-
genesis is not well understood, however administration of
autoantibodies against mAChRs in mouse models of breast
cancer (Table 1) mediates tumor angiogenesis via activation
of mAChRs through release of VEGF-A [29]. In addition,
in BALB/c mice bearing LMM3 mammary adenocarcino-
ma cells, administration of muscarinic agonist, carbachol,
in the presence or absence of various muscarinic antago-
nists shows an increase in VEGF expression [30, 58].

Furthermore, tumor macrophages stimulate angiogenesis
via activation of M1 and M2 mAChRs which trigger argi-
nine metabolic pathway [30].

Y-Aminobutyric Acid (GABA), Neuropeptide Y (NPY), Nitric
Oxide (NO) and Serotonin have varying effects on angiogen-
esis and tumor progression. In a mouse model of cholan-
giocarcinoma, GABA inhibits VEGF-A/C, decreases cell
proliferation and tumor mass [22]. NPY enhances the ex-
pression of VEGF and its secretion promoting angiogenesis
and breast cancer progression [31]. The suggested mecha-
nism by which NPY induces angiogenesis is by its influ-
ence on endothelial cells dependent on endothelial nitric
oxide synthase (eNOS) activation and partly on VEGF sig-
naling pathway The release of NO results in endothelial
activation inducing tumor cells lysis [59], although NO
can also promote tumor growth and metastasis by enhanc-
ing angiogenesis [36, 59–65]. For instance, NO increases
VEGF-C and nitrite/nitrate production in MDA-MB-231
breast cancer cells and high levels of nitrotyrosine correlate
with increased VEGF-C, lymph node metastasis, reduced
disease-free and overall survival in invasive breast carcino-
ma [35]. The expression of iNOS and VEGF in colorectal
cancer correlates with enhanced intratumor micro-vessel
density suggesting that NO can promote tumor angiogene-
sis [60]. In gastric cancer, overexpression of NOS III via
abnormal activation of sequence-specific DNA-binding
protein (Sp1) correlates with enhanced micro-vessel densi-
ty and poor survival [37]. Serotonin has also been implicat-
ed in tumor angiogenesis. In C57BL/6 mice bearing MC-
38-induced tumors, serotonin regulates angiogenesis by
plummeting matrix metalloproteinase 12 (MMP12) expres-
sion (eg. [66]) in macrophages infiltrating the tumor, as
well as reducing angiostatin (an endogenous inhibitor of
angiogenesis) levels [24].

Glutamate is an excitatory neurotransmitter that regulates
synaptic and cellular activity via binding to its receptors
including metabotropic glutamate receptors (mGluRs).
The expression of mGluRs has been implicated in tumor
angiogenesis as noted in mouse models of melanoma and
breast cancer [25, 26, 67]. As such, decreased activity of
mGluR1 inhibits angiogenesis in an orthotopic breast can-
cer (4 T1) model suggesting that mGluR1 acts is a pro-
angiogenic and pro-tumorigenic factor [25]. Likewise, in
an experimental non-small cell lung cancer in A549-
bearing nude mice, inhibition of mGlu1 receptor with
BAY36–7620 led to suppression of angiogenesis via
inhibiting AKT/HIF-1α/VEGF signaling pathway [68].
Similarly, high expression of glutamate receptor GRM1 in
several human melanoma cell lines (Table 1) leads to in-
creased expression of IL-8 and VEGF via activation of the
AKT/mTOR/HIF1 signaling pathway [26].
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Hence, these studies clearly demonstrate involvement of
neurotransmitters in tumor angiogenesis; however, most of
the studies have been performed mainly in animal models

and cell lines. Understanding their relevance to human pathol-
ogy may aid in the development of better anti-angiogenic
therapies.

Table 2 Other factors influencing tumor angiogenesis

Factors
Type of cancer Model Mechanism/pathway Ref.

ANG Breast cancer Human tissues The level of ANG correlates with clinical progression.
ANG derived from tumors activates angiogenesis via
suppression of miR-543-2p.

[69]

Bladder cancer Human tissues, T24, UROtsa and HeLa cells
subcutaneously injected in athymic BALB/c
(nu/nu) mice

↑ ANG expression correlates with high grade, and
muscle-invasive tumors via ERK 1/2 and MMP2.

Downregulation of ANG inhibits tumor angiogenesis via
AKT/GSK3β/ mTOR pathways.

[70, 71]

TNF-α Lung cancer LLC1 cells subcutaneously injected in wild type,
p75 knockout (KO) and double
p55KO/p75KO mouse xenograft models

Tumor growth ↓ in both LLC and B16 p75KO mice.
Decreased tumor growth correlates with ↓ VEGF
expression and capillary density via TNFR2/p75.

[72]

Melanoma B16 cell subcutaneously injected in C57BL/6
mice.

Wild type, p75 knockout (KO) and double
p55KO/p75KO mouse tumor xenograft
models

TGF-β Colon cancer Human tissues, FETα/DNRII cell TGF-β signaling is inversely correlates with the
expression of VEGF-A in tissues.

TGF-β ↓ VEGF-A expression via ubiquitination and de-
terioration in a PKA- and Smad3-dependent and
Smad2-independent pathways in vitro.

[73]

BDNF Chondrosarcoma JJ012 cell line,
JJ012 cells subcutaneously injected in

CB17-SCID mice

The expression of BDNF and VEGF correlates with tumor
grade.

BDNF knockdown ↓ angiogenesis and tumor growth in
mouse model.

BDNF ↑ expression of VEGF and stimulates angiogenesis
via the TrkB receptor, PKCα, PLCγ and HIF-1α sig-
naling pathways.

[74]

FGF Mammary cancer Mouse 66c14 mammary carcinoma and inguinal
mammary fat pad injection in BALB/c mice

In tumor cells suppression of FGFR signaling inhibits
expression of VEGF-C and induces VEGFR-3, netrin-1,
prox1 and integrin α9 expression.

[75]

Glioma Rat C6 glioma cancer cells injected
subcutaneously into rats

EGFR HNSCC Human tissues, CAL27 cells subcutaneously
injected in nude mice

In human tissues, ↑ EGFR correlates with ↑ HIF-1α and
microvessel density.

EGFR inhibitors ↓ the regulation of HIF-1α &
Notch1→↓ angiogenesis and tumor size.

[76]

NGF Breast cancer MDA-MB-231 cells subcutaneously injected into
SCID mice

NGF ↑ the release of VEGF in breast cancer cells and
mediates angiogenic effect via the activation of
PI3K-Akt, ERK, MMP2 and NO synthase pathways.

[77]

HGF ESCC Serum samples, human tissues, HKESC-1,
HKESC-2 and SLMT cells

In tissues, ↑ level of HGF correlates with tumor metastasis
and poorer survival.

In serum samples, ↑ HGF level correlated with expression
of VEGF and IL-8.

HGF stimulates cells to express VEGF and IL-8 in vitro
via extracellular signal-regulated kinase signaling path-
ways.

[78]

Prostate cancer Castration-resistant prostate cancer blood
samples and PC3 cell line

HGF levels ↑ in both blood samples and cell line. [79]

AKT, serine/threonine kinase or protein kinase B; ANG, angiogenin; BDNF, brain-derived neurotrophic factor; EGFR, epidermal growth factor receptor;
ESCC, esophageal squamous cell carcinoma; ERK1/2, extracellular signal-regulated kinase; FGF, fibroblast growth factor; FGFR, fibroblast growth
factor receptor; GSK3β, glycogen synthase kinase 3β; HNSCC, head and neck squamous cell carcinoma; HGF, hepatocyte growth factor; HIF-1α,
hypoxia inducible factor 1α; IL-8, interleukin-8; MMP2, matrix metalloprotease 2; mTOR, mammalian/mechanistic target of rapamycin; NGF, nerve
growth factor; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; PKA, protein kinase A; PKCα, protein kinase C alpha; PLCγ, phospholipase Cγ;
TGF-β, transforming growth factor beta; TNF-α, tumor necrosis factor alpha; TNFR2/p75, tumor necrosis factor receptor 2/neurotrophin receptor;
TrkB, tropomyosin related kinase B; VEGF, vascular endothelial growth factor
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Other Factors Influencing Tumor
Angiogenesis

Nerve growth factor (NGF), brain-derived neurotrophic factor
(BDNF), angiogenin (ANG), FGF, TNF-α, TGF-β, hepato-
cyte growth factor (HGF) and epidermal growth factor recep-
tor (EGF) are important signaling molecules promoting angio-
genesis (Table 2, Fig. 2). NGF is a neurotrophic factor that is
upregulated in tumor microenvironment of various cancers
including breast cancer [77]. NGF, secreted by MDA-MB-
231 breast cancer cells, stimulates angiogenesis in vivo after

injection of these cells subcutaneously to immunodeficient
mice and enhances endothelial cell proliferation, invasion, mi-
gration and tubule formation in vitro [77]. Furthermore, NGF
enhances secretion of VEGF by breast cancer cells; in vivo
administration of anti-VEGF antibody inhibits its angiogenic
capacity [77]. In human glioma microvascular endothelial
cells, NGF mediates tumor angiogenesis by interaction with
α9β1 integrin [80–83]. Another neurotrophic factor, BDNF
has been shown to play a role in tumor angiogenesis. For
instance, in chondrosarcoma patients, BDNF and VEGF pro-
tein expression is significantly higher which is correlated with

Fig. 2 Growth factors intracellular signalling pathways in cancer
angiogenesis. The binding of growth factors to their respective
receptors (eg, EGF to EGFR) activates multiple kinase pathways which
are involved in cancer angiogenesis. AKT, serine/threonine kinase or
protein kinase B; ANG, angiogenin; BDNF, brain-derived neurotrophic
factor; CEBPB, CCAAT/enhancer-binding protein beta; EGF, epidermal
growth factor; EGFR, epidermal growth factor receptor; ERK1/2, extra-
cellular signal-regulated kinase; FGF, fibroblast growth factor; FGFR,
fibroblast growth factor receptor; GSK3β, glycogen synthase kinase 3
beta; HGF, hepatocyte growth factor; c-Met, hepatocyte growth factor
receptor; HIF-1α, hypoxia inducible factor 1 alpha; ICAM-1, intercellular

adhesion molecule-1; MAPK, mitogen activated protein kinase; MEK1/2,
MAPK/ERK kinase; MMP2, matrix metallopeptidase 2; mTOR,
mammalian/mechanistic target of rapamycin; NGF, nerve growth factor;
NF-kB, nuclear factor-kappa B; NOS, nitric oxide synthase; PI3K,
phosphoinositide 3-kinase; PKC-α, protein kinase C alpha; PLC-γ, phos-
pholipase C-gamma; POU2F1, POU domain class 2 transcription factor
1; RAF, mitogen activated protein kinase; RAS,mitogen activated protein
kinase; Tie2, angiopoietin receptor 2; TrkA, tropomyosin related kinase
A; TrkB, tropomyosin related kinase B; VEGF, vascular endothelial
growth factor
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tumor stage [74]. Furthermore, BDNF knockdown decreases
the expression of VEGF and abolishes angiogenesis in in vitro
studies and animal models of chondrosarcoma [74].

In addition to neurotrophic factors, angiogenic factor ANG
is upregulated in number of cancers [84–86] and is associated
with worse clinical prognosis in urothelial carcinoma patients
[87]. ANG regulates tumor angiogenesis via activation of en-
dothelial and smooth muscle cells triggering various molecu-
lar pathways involved in the initiation of angiogenesis (Fig. 2)
[69–71, 88]. Elevated expression of ANG associates with high
grade and muscle-invasive human bladder tumors involving
increase p-ERK1/2 and MMP2 expression [70]. Similarly,
downregulation of ANG inhibits tumor angiogenesis via
AKT/GSK3β/ mTOR pathways [71]. FGF is involved in an-
giogenesis by suppressing VEGF-C expression and stimulat-
ing expression of pro-lymphangiogenic factors including
integrin α9, VEGFR-3, prox1 and netrin-1 [75]. In fact,
blocking of FGF2 with anti-FGF2 monoclonal antibody re-
sults in impaired angiogenesis of B16-F10 cell induced mela-
noma inmice [89]. In addition, TNF-α binding to TNFR1/p55
and TNFR2/p57 receptors has been implicated in the secretion
of cytokines and pro-angiogenic factors [72]. For example,
blocking p75 by short-hairpin RNA in cultured Lewis lung
carcinoma cells results in decreased TNF-mediated expression
of VEGF, placental growth factor and HGF, suggesting that
p75 is essential factor for tumor angiogenesis [72]. Similarly,
blocking TNF-α inhibits angiogenesis in metastatic oral squa-
mous cell carcinoma cells (sh-IFIT2 meta cell) in NOD/SCID
mice [90]. TGF-β negatively regulates VEGF-A expression
via a PKA- and Smad2-independent and Smad3-dependent
pathways as demonstrated in FETα/DNRII colon cancer cell
lines [73]. HGF is an angiogenic factor secreted predominant-
ly by fibroblasts; it stimulates invasiveness of cancer cells via
c-Met receptor tyrosine kinase activation [79, 91, 92]. In fact,
high HGF serum levels is correlated with VEGF and IL-8
expression, advanced tumor stage and poor survival of esoph-
ageal squamous cell carcinoma (ESCC) patients [78]. High
expression of another pro-angiogenic factor, EGFR correlates
with increased microvessel density resulting in enhanced tu-
mor angiogenesis via the HIF-1α and Notch1 pathways in
tissues from head and neck squamous cell carcinoma patients
[76]. Neuropilin is a transmembrane glycoprotein which
serves as a receptors or co-receptor for multiple ligands in-
cluding VEGF, HGF, EGF and FGF which are involved in
tumor angiogenesis [93, 94]. In gastric cancer, high expres-
sion of neuropilin correlates with advanced clinical stages (III
and IV) [95]. Depletion of neuropilin-1 inhibits the activation
of EGF/EGFR, VEGF/VEGFR2 and HGF/c-Met angiogenic
pathways activated by recombinant human VEGF-165, HGF
and EGF proteins [91, 95]. Thus, the role of neurotrophic
factors such as NGF, BDNF and their molecular pathways
should be considered in the development of anti-angiogenic
therapies.

Concluding Remarks

Despite the increasing interest to the role of the nervous sys-
tem in cancer development and progression, the knowledge in
this area is scarce. Most neurotransmitters released by nerve
fibers promote tumor angiogenesis, however, some neuro-
transmitters induce anti-cancer effects. Whether these effects
are cancer type or receptor dependent need further elucidation.

To date, most studies investigating the role of the nervous
system in modulation of tumor angiogenesis have been per-
formed in cell lines and animal models. Limited studies are
available from cancer patients and at different stages of dis-
ease. Understandingmolecular mechanisms bywhich nervous
system modulates tumor angiogenesis may open new avenues
for understanding mechanisms of tumor angiogenesis, identi-
fication of new biomarkers for cancer diagnosis and progno-
sis, and, defining novel targets for therapeutic interventions.
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