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The scheduling of preventive maintenance is crucial in reliability and maintenance engineering.
Hundreds of parts compose complex machines that require replacement and/or repairing. Maintenance
involves the machine vendor (1), the machine user (2) and the service maintenance provider (3). The
vendor and the maintenance service provider have to guarantee a high level of availability and
productivity of the machines and maintain their down-time at a minimum even though they are installed
worldwide and usually far from the vendor’s headquarters and/or the locations of the provider’s regional
service offices. Moreover, many companies have great profits from maintenance and spare parts
management.

This study aims to illustrate an original mixed integer linear programming (MILP) model for the
cost-based, reliability-based and resource-constraints scheduling of preventive maintenance actions.
The model minimizes the total cost function made of spare parts contributions, the cost of the execution
of the preventive actions and the cost of the additional repair activity in case of unplanned failure. The
cost of the personnel of the producer and/or the maintenance service provider is also included. Finally,
the paper presents a case study in a what-if environment demonstrating the effectiveness and the novelty
of this study in real and complex applications.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Literature classifies maintenance planning and scheduling into
two major categories: the scheduled maintenance (1) and the
unscheduled maintenance (2). The second deals with emergency
breakdowns. The first includes preventive and routine mainte-
nance (1.1), and the scheduled overhauls and corrective mainte-
nance (1.2). The unscheduled maintenance is stochastic in
nature. According to Duffuaa and Al-Sultan (1999) ‘‘this stochastic
nature makes maintenance scheduling a challenging problem’’.

Many companies produce and distribute worldwide complex
production systems and machines. They also offer several mainte-
nance services that include spare parts management, preventive
maintenance actions, corrective maintenance actions, warranty
management, and training of personnel. Maintenance service is a
strategic activity to have a high level of productivity, quality,
safety, and reliability of production systems. Furthermore, this
can be a very expensive and labor-intensive service but also an
opportunity for economic returns by post-sale services. The cost
of maintenance can be also significantly affected by logistics deci-
sions, including the number and location of service providers and
regional offices, the inventory management of spare parts, and
the organization of maintenance crews.

This paper illustrates an original cost-based, reliability-based
and capacity-constraints optimization model for the scheduling
of the maintenance and repair tasks within a maintenance plan
(i.e., task plan).

The maintenance tasks refer to the set of activities necessary to
replace a component or a group of components subjected to wear
and tear within a generic plant or machine. The group of mainte-
nance tasks including all the repairing and/or replacing activities
that a generic machine or a plant require over its own life-cycle
is named task plan. Each task to be scheduled usually involve spare
parts, personnel (e.g., local personnel or service providers’ opera-
tors), resources and equipment. The frequency of each task is gen-
erally determined by the failure rates (i.e., the curve of failure
probability to the machine up time) of the most critical component
of the task. The general rule complied by the maintenance service
provider in presence of complex components is assuming a con-
stant failure rate (i.e., Assumption 1) corresponding to the average
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value suggested by the machine vendor. This assumption is critical
in the presence of mechanical and mechatronic components that
are mostly diffused in the modern automatic machines. However,
Assumption 1 is often necessary due to the large amount of parts
and components involved simultaneously and physically con-
nected. Another assumption that frequently follows the constant
failure rate is the constant frequency to execute preventive main-
tenance tasks (i.e., Assumption 2).

Furthermore, the provider commonly executes the preventive
task on a component after a time equal to the mean time to failure
(MTTF) of the task/component from the previous action and/or
replacement (Assumption 3).

Unfortunately, when applied to real instances, these assump-
tions are not consistent, especially in presence of parts subject to
‘‘aging’’, e.g., ‘‘early wear out’’ components or ‘‘old age and rapid
wear out’’ components (Manzini, Regattieri, Pham, & Ferrari,
2010). Furthermore, the parts and components of a production sys-
tem, e.g., a packaging machine, are not ‘‘as good as new’’ items
after repairing or a preventive action, even in case of the part
replacement.

To find more concrete and realistic solutions and go beyond to
the illustrated assumptions, this paper presents an original mixed
integer linear programming (MILP) model for the determination of
the maintenance schedule that minimizes the total cost associated
to the task plan. These costs include the preventive maintenance
contributions, the corrective contributions (the so-called
unplanned costs), the spare parts management, and the labor
accounted by the maintenance operators.

The task plan scheduling is the result of the assignment and
sequencing of different preventive maintenance tasks to a set of
available service orders. This set is usually known in advance and
results from a deal between the supplier of maintenance service,
i.e., the previously defined ‘‘service provider’’, and the client which
requires for the maintenance of its plant. The generic service order
corresponds to a time bucket located on a specific calendar date.
This is the reason we adopt the terms time bucket to indicate a ser-
vice order of a finite capacity.

The client purchases a calendar of preventive maintenance time
buckets, and the service provider has to assign maintenance tasks
to these buckets, controlling the availability of the system and
reducing costs to realize a profitable service. In other words, the
aim of the provider is to minimize the total cost of maintenance
while guaranteeing a standard level of availability (i.e., up time)
of the production system.

The remainder of this paper is organized as follows. Section 2
presents a literature review on the scheduling of the preventive
maintenance. Section 3 illustrates the proposed maintenance plan-
ning model. Section 4 presents a significant case study which
inspired the development of the proposed model. A sensitivity
analysis is conducted to demonstrate the effectiveness of the pro-
posed planning model. Finally, Section 5 discusses the conclusions
and further research.
2. Literature review

The literature presents many contributions to preventive main-
tenance and scheduling issues for production systems with a spe-
cial focus on operations. In particular, management science and
operational research frequently discuss scheduling and optimiza-
tion problems, but few studies deal with reliability and mainte-
nance engineering (Manzini et al., 2010; Regattieri, Manzini, &
Battini, 2010).

Sherwin (2000) presents a review and a discussion of the main
issues in maintenance management. He also attributes significant
and strategic importance to data collection to conduct effective
planning and scheduling of maintenance tasks.

Many studies deal with maintenance planning applied to pro-
duction and operations, e.g., models and methods to schedule pre-
ventive maintenance activities on manufacturing systems subject
to failure, i.e., corrective maintenance (Hadidi, Al-Turki, & Rahim,
2012; Xiang, Cassady, Jin, & Zhang, 2014). In particular, they for-
mulate integrated planning models to simultaneously face produc-
tion and maintenance planning (Cassady & Kutanoglu, 2005; Kuo &
Chang, 2007). These contributions are not based on the reliability
of parts and components involved and are not suitable to strategi-
cally design a task plan tailored to a selected production system
subject to failure. They do not involve the management of spare
parts and the assignment of tasks in agreement with finite capacity
constraints.

Duffuaa and Al-Sultan (1999) present one of the first mathe-
matical formulation of the stochastic programming for scheduling
maintenance personnel. It incorporates deterministic and stochas-
tic contributions. Heuristic algorithms to solve the maintenance
scheduling problem are proposed by Raza and Al-Turki (2007).
This adoption of heuristic and meta-heuristic approaches is sup-
ported by a demonstration of the NP-hard problem complexity.

Several contributions present interval time models, i.e., reliabil-
ity based static state models for the determination of the time to
replace components without any discussion on capacity and time
constraints, which are very important in real applications (Hui,
Zheng, Liu, Zhao, & Sun, 2013). Simple and basic models are col-
lected and illustrated by Jardine and Tsang (2006). More complex
and recent contributions based on MILP are illustrated by Perez
Canto (2011) and Bell and Percy (2012).

Kim and Yoo (2012) discuss the planning of maintenance
actions combined with manpower by the determination of the
workforce size as a relevant issue in the presence of
labor-intensive actions and high labor costs.

Alardhi and Labib (2008) present a preventive maintenance
scheduling model based on mixed integer programming, which is
the modeling approach adopted by the authors of this paper.
They include crew constraints, maintenance window constraints
and time-limitation constraints, but they do not include reliability
based functions.

Tam, Chan, and Price (2006) present three integer linear pro-
gramming models for maintenance interval determination, mini-
mizing cost and maximizing system availability. They adopt a
Weibull distribution for failure rates, but they do not consider time
capacity constraints for the execution of a task. Personnel assign-
ment and costs are not included. Finally, spare parts contributions
are not modeled.

Moghaddam and Usher (2011) present two non-linear models.
The first minimizes the global cost; the other maximizes the sys-
tem reliability. They adopt increasing failure rates, but they do
not consider the time capacity constraints and the time duration
of tasks.

Ebrahimipour, Najjarbashi, and Sheikhalishahi (2013) present
non-linear models for parallel machines focusing on the difference
between maintenance (not as good as new) and replacement (as
good as new) activities. They use a Weibull distribution of failure
rates, and tasks take a uniformly distributed amount of time.
These models are not suitable to scheduling multiple tasks for a
complex machine in agreement with the time capacity constraints.

Different modeling approaches to preventive maintenance
scheduling are illustrated by Zhang and Nakamura (2005) and
Xu, Xueshan, Wang, and Sun (2012), the first illustrating a simula-
tion model and the latter heuristic algorithms, which do not sup-
port the decision making techniques adopted by the authors of
this paper.  
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Fig. 1. Path-wise linear failure probability function for the evaluation of the
unplanned costs of task i.
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Other recent contributions on maintenance scheduling are pro-
posed by Levi, Magnanti, Muckstadt, Segev, and Zarybnisky (2014),
Bajestani and Banjevic (2014), Tantardini, Portioli-Staudacher, and
Macchi (2014), Tarakci, Ponnaiyan, and Kulkarni (2014), and
Gustavsson, Patriksson, Strömberg, Wojciechowski, and Önnheim
(2014). The latter propose an ILP model to schedule the preventive
maintenance of the plant components over finite discretized time
batch, given a common set-up cost and component costs depen-
dent on the lengths of the maintenance intervals.

Literature does not yet present effective models for cost-based,
reliability-based and time resource constraints maintenance plan-
ning and scheduling.

The model proposed in this paper addresses the scheduling
problem, including both costs (labor cost, spare parts cost, and fail-
ure cost) and reliability issues, i.e., preventive and corrective tasks
according to finite capacity constraints. The model meets complex
instances without any limitations due to the number of tasks and
the unit time periods. The sensitivity analysis conducted in this
paper demonstrates the effectiveness of the proposed model in
complex instances, renouncing the optimum and accepting
near-optimal feasible solutions as necessary in real and complex
applications.

The original contribution of the proposed model is due to both
the mathematical formulation and its applicability to large and real
instances as demonstrated by the case study illustrated below.
3. Maintenance planning model

This model deals with the scheduling of maintenance actions in
a planning period of time made of pre-defined set of time buckets.
The previously defined client purchases a calendar of preventive
maintenance time buckets and the provider schedules the mainte-
nance action in according with this calendar.

The problem object of this study is the planning and scheduling
of maintenance tasks in the available time buckets corresponding
to a set of planned stop periods and preventive maintenance
actions. The aim is to minimize the total expected and probabilistic
cost made of preventive maintenance, corrective maintenance,
spare parts and personnel workload. The cost is ‘‘probabilistic’’
because it quantifies the so-called additional failure cost due to
unplanned failures and repair actions.

Along the machine down-time, the maintenance service opera-
tors are involved in repair actions, which are the tasks of the
scheduling problem. The proposed model assigns the available
bucket times to alternative types of operators, e.g., user’s operators
or service provider’s operators, in agreement with the capacity
constraints. In particular, the capacity of the generic bucket is finite
in time, and the generic maintenance action has a deterministic
duration partially consuming this capacity.

The basic assumption of the proposed model is that the generic
task can be executed after a variable time from the last execution
and/or the starting time of the machine. These values are oppor-
tunistic in agreement with the cost minimization and capacity con-
straints. The scheduler has to decide which task and when to
conduct it, in agreement with the time and capacity constraints.

This is a resource-constraints scheduling problem because of
the finite capacity constraints assignment problem (Pinedo,
2005). It is similar to a bin-packing problem with different size
bins, the so-called variable size bin-packing problem
(Bang-Jensen & Larsen, 2012). The generic bin corresponds to the
service order, and the related bucket time is subject to finite capac-
ity on the number and typology of operators involved.

The proposed model is mixed-integer and linear, even though
the failure probability function of the generic item is introduced.
To have a linear model and a realistic unplanned cost function,
we assumed the trend of the failure probability function as a
path-wise linear function illustrated in Fig. 1 and associated to a
generic task i. This trend assumes the as-good-as-new assumption
by the execution of the preventive maintenance action. Given a
generic task i, the failure function is the result of three parameters:

(1) Tfailure, the time from the last execution of task i to the unit of
time corresponding to ‘‘failure certainty’’, i.e., the failure
probability is assumed equal to 1. Obviously this is a model
assumption.

(2) the MTTF, named as the nominal frequency fi.
(3) %failure,i, the percentage of failure occurrence at the time

equal to the MTTF.

These parameters uniquely define the constant failure rates kbefore;i

and kafter;i, which refer to the period ‘‘before’’ and the period ‘‘after’’
the nominal frequency (see ‘‘nom. freq.’’ in Fig. 1).

Because many mechatronic devices compose complex machi-
nes, the manufacturer does not necessarily know the failure behav-
ior of such subsystems. Although it is not responsible for reliability
assessment and predictions, the manufacturer can quickly quantify
the aforementioned parameters (Tfailure, fi and %failure,i) through
on-field monitoring and interviews with maintenance operators.
We assume that the generic service order stops the machine during
the time bucket. Then, the number of service orders is established
in advanced by a contract. The provider of the maintenance service
tries to best plan and schedule the preventive actions to guarantee
the standard and nominal productivity of the systems, i.e., reduce
the total cost of maintenance, including the repair costs of
unplanned actions.

Other important assumptions at the basis of the proposed
model:

� the set of tasks to be scheduled is known;
� the number of time buckets is pre-defined;
� the duration of a specific task is constant;
� the unit costs (e.g. spare parts, personnel, additional failure

cost) are known and deterministic.

The proposed original mixed integer linear programming
(MILP) model for the assignment of preventive maintenance
actions to the available and capacity constraints time buckets is
following.

The objective function is:

min z ¼
X
i;j;k

aijkðCfi þ diClab;kÞ þ Criðkbefore iðf iaijk � qijkÞ þ kafter irijkÞ

ð1Þ
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subject toX
i

ðdi=techjkaijk þWuihijÞ 6 Cpjk 8j; k ð2Þ
X

k

yik ¼ 1 8i ð3Þ
X

j

aijk 6 yikM 8i; k ð4Þ

hij ¼
X

k

aijk 8i; j where Cpjk > 0 and Wui > 0 ð5Þ

X
s2fj�Tfailure;iþ1;jg

aisk P 1 � yik 8i; j; kandj P Tfailure;i ð6Þ
X

j

aijk P 1 � yik 8i; j; k and such that f i 6 n ð7Þ

bijk 6 bi;j�1;k þ 1 8i; j; k ð8Þ
bijk P bi;j�1;k þ 1�M � aijk 8i; j; k ð9Þ
bijk 6 Mð1� aijkÞ 8i; j; k ð10Þ
bi0k ¼ 0 8i; k ð11Þ

wijk 6 bi;j�1;k þ 1� f i 8i; j; k ð12Þ
wijk P bi;j�1;k þ 1� f i �Mð1� aijkÞ 8i; j; k ð13Þ
wijk 6 Maijk 8i; j; k ð14Þ

rijk � qijk � pijk ¼ wijk 8i; j; k ð15Þ
pijk 6 Mð1� aijkÞ 8i; j; k ð16Þ
rijk 6 M delijk 8i; j; k ð17Þ
qijk 6 M earijk 8i; j; k ð18Þ

earijk þ delijk ¼ aijk 8i; j; k ð19Þ

M is a constant subject to:

M � nand�maxðf iÞ ð20Þ

where
i ¼ 1; . . . ;m
 Tasks

j ¼ 1; . . . ;n
 Time buckets

k ¼ 1; . . . ;K
 Operators’ typologies

di
 Duration of task i

f i
 Nominal frequency of task i. It is valued in

number of time buckets.

Clab,k
 Labor cost of operator k per time unit, for

example (€/h)

Cpjk
 Capacity of service order j with operator k. This

capacity is the result of the number and the
typologies of the operators involved.
Cfi
 Fixed cost of task i. It includes the spare parts
contribution.
Cri
 Additional failure cost of task i. This is the
additional unplanned and probabilistic cost (in
case a failure occurs)
Tfailure;i
 The time to failure certainty for the task i
according with the previously defined Path-wise
linear failure probability function (see Fig. 1)
kbefore;i
 Constant failure rate before the nominal
frequency
kafter;i
 Constant failure rate after the nominal
frequency
techjk
 Number of operators assigned to the service
order j in case the task is executed by the
typology of operators k
Wui
 Warm-up time for the task i. This is the time
window after the execution of the task. It is a
warm-up time to have the system ready to
produce at nominal conditions. This time
reduces the available time to conduct preventive
maintenance actions during the generic time
bucket

 

The decisional variables are:

aijk ¼
1 if task i is executed in time bucket j by operators of typology k
0 otherwise

�

yik ¼
1 if task i is assigned to operators k of typology k

0 otherwise

�

bijk P 0
 the distance from the last execution of task i,
adopting the operators of typology k
wijk
 shift time from the unit time corresponding to the
nominal frequency execution of task i, given the
operators of typology k
rijk P 0
 delay time of task i from the nominal frequency,
given the operators of typology k
qijk P 0
 early time of task i from the nominal frequency,
given the operators of typology k
pijk P 0
 auxiliary variable, given the operators of typology k
earijk ¼
1 if task i is executed at the nominal frequency

or before it
0 otherwise

8><
>:

delijk ¼
1 if task i is exceuted with a delay considering the

nominal frequency

0 otherwise

8><
>:

hij ¼
1 if task i is executed in service order j

0 otherwise

�

Eq. (2) are the temporal capacity constraints given the generic
service order j. In Eq. (3) the task i is assigned uniquely to one oper-
ator k. Thanks to Eq. (4) that task i is definitely devoted to the oper-
ator k, through the whole taskplan of duration T units of time. This
assumption is common in real applications to facilitate the execu-
tion of tasks.

Eq. (5) introduces the previously defined variable hij to manage
the warm-up time not associated with a specific typology of oper-
ators k. Eq. (6) sets the range, after the nominal frequency, in which
the task can be scheduled. The basic assumption is that the task is
scheduled not later than Tfailure,i corresponding to the event ‘‘cer-
tainty of failure’’.

Eq. (7) forces the execution of tasks with nominal frequency fi

shorter than the total number of service order n selected for the
taskplan.

Eqs. 8–11 define the time spent from the last execution of a task
by the introduction of the variable bijk. In particular, Eq. (11) initial-
izes the variable bijk to 0, which is reasonable for parts and machi-
nes that are new at time 0.

Eqs. 12–14 define the time shift wijk between each execution
and the nominal frequency of task i.  
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Eqs. 15–19 quantify the early time qijk or the delay time rijk as
previously defined. In particular, Eq. (19) establishes that the two
binary variables earijk and delijk cannot be equal to 1 at the same
time and are both forced to 0 if aijk is 0.

Table 1 exemplifies the role of the main variables of the model
and the constraints from (8) to (18) involving those variables. A
planning period of 13 units of time is selected and illustrated, from
j = 3 to 15. This is the so-called ‘‘time line’’. Assume that the first
execution of a task i is placed in j equal to 4, which corresponds
to the nominal frequency of execution for the task i.

From Table 1:

� The task is executed at j equal to 4, 10, and 13. However, the
nominal frequency, after each execution, would be in j equal
to 4 (i.e., 4 periods from the beginning), 8 (i.e., 4 periods from
the unit time 4), and 14 (i.e., 4 periods from the unit time 10).
� The variable b counts the time that passes from the last execu-

tion. b is 0 when the task is executed (i.e., a assumes the value 1).
� The variable w defines the shift between each execution and the

nominal frequency based on the last execution. Therefore, if
the task is not executed (a = 0), w is null. In the other cases, if
the task is delayed, w is positive. If the task is anticipated, w is
negative. If the task is executed at its nominal frequency, w is 0.
Table 1
Variables a, b, w, r and q. An example.

Equations of the model

j
a1j

O = on-time execution; D = delay execution; E = early exec
From (8) to (11)

bij ¼
if aij ¼ 0; then bij�1 þ 1
else bij ¼ 0

�

From (12) to (14)
wij ¼

if aij ¼ 1; then wij ¼ bij�1 þ 1� f i
else wij ¼ 0

�

From (15) to (18)
rij ¼

if wij > 0; then rij ¼ wij
else rij ¼ 0

�

qij ¼
if wij < 0; then qij ¼ �wij
else qij ¼ 0

�

Table 2
Static analysis. Statistics before scheduling.

Instance Index

A Total number of task executed – no constraints
B Avg. number of tasks per service order
C Time ratio, i.e., (the total requested time)/(total available time – no cap
D Total cost of spare parts for the tasks executed without capacity constr
E Total unplanned cost due to failure risk before the nominal frequency a

with the failure rate kbefore (K€)
F Objective function without capacity constraints, i.e., the total cost (tota

spare parts + total unplanned cost) (K€)

Table 3
Instances 1–4. Comparison between the results generated by the solver and the static KPI

KPIs comparison Instance 1 (20 � 20) Instance 3

New KPI Static KPI New KPI

Time (sec) 24 600
O.F. (K€) 146.6 156.9 293.1
Gap% 0% 3.7%
Planned cost (K€) 143.3 154.7 286.6
% of planned cost over the total cost 97.7% 98.5% 97.8%
Number of executed tasks 84 92 168
� The variable r calculates the delay (if w is positive).
� The variable q calculates the anticipation (if w is negative).

4. Case study

This section presents a real case study of scheduling preventive
maintenance actions for complex packaging machines. We decided
to illustrate this case in a what-if environment in order to demon-
strate the effectiveness of the proposed model when subject to dif-
ferent system configurations and instance dimensions.

This case deals with the maintenance scheduling of mainte-
nance service provider of a leading company that manufactures
automatic packaging systems and machines located in different
countries worldwide. The provider has to minimize the global cost
of maintenance due to the preventive and corrective actions. More
precisely, this cost is due to spare parts use, which is necessary in
both preventive and corrective actions (see Cfi and Cri) and per-
sonnel use. In this case study, the cost of personnel is assumed
to be equal to zero because the model fits the aim of the provider
who defines the specifications of a maintenance plan for a future
planning period. The cost of local personnel use is not charged to
the provider. Finally, the cost of the provider’s personnel is equal
to zero because it is defined in advance in this case study; in the

 

Time buckets j

3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 1 0 0 1 0 0

ution O D E
3 0 1 2 3 4 5 0 1 2 0 1 2

0 0 0 0 0 0 0 2 0 0 �1 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

Instances (i.e., Tasks � Service Orders)

Instance 1 Instance 2 Instance 3 Instance 4
20 � 20 20 � 40 40 � 20 40 � 40

92 188 184 376
4.6 4.7 9.2 9.4

acity constraints) 76.1% 77.2% 76.1% 77.2%
aints (K€) 154.7 314.4 309.4 628.8
nd in agreement 2.285 5.72 4.57 11.44

l cost of 156.98 320.12 313.97 640.2

.

(40 � 20) Instance 2 (20 � 40) Instance 4 (40 � 40)

Static KPI New KPI Static KPI New KPI Static KPI

600 600
313.9 302.6 320.1 598.7 640.2

7% 8.3%
309.4 291.3 314.4 574.6 628.8
98.5% 96.2% 98.2% 95.9% 98.2%
184 174 188 346 376 
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generic service order, the involvement of the operators from the
provider is fixed and decided in advance in the contract between
the provider and the user.

The proposed model is solved by the Gurobi solver via the AMPL
(A Mathematical programming Language, � 2013 AMPL
Optimization Inc.) software using an Intel� Quad Core, 2.4 GHz
processors, with 8 GB RAM. We illustrate the results obtained by
the application to four different subsets of tasks and time buckets
belonging to the case study:

� Instance 1, made of 20 tasks and 20 time buckets.
� Instance 2, made of 20 tasks and 40 time buckets.
� Instance 3, made of 40 tasks and 20 time buckets.
� Instance 4, made of 40 tasks and 40 time buckets.

The duration of the generic task is deterministic and is from 15
to 120 min. The nominal frequency fi can be from 1 to 20, i.e., there
are tasks executed just once in the planning horizon and tasks exe-
cuted at every time bucket, that is, 20 times for Instance 1. The
number of typologies of operators is equal to two to distinguish
the ‘‘service provider personnel’’ from the ‘‘user personnel’’ but
without any costs.

Table 2 presents a few statistics and key performance indicators
– KPI, for the four selected instances. They measure the level of
complexity and feasibility of the proposed model when applied
before scheduling, i.e., before the execution of the MILP solver.
This is the reason we call this ‘‘static analysis’’. Index A quantifies
the number of scheduled tasks with respect to the nominal fre-
quency and in the absence of capacity constraints. Similarly, index
B quantifies the average number of tasks per time bucket, i.e., ser-
vice order. Index C measures the ratio of total requested time as a
result of the execution of tasks in agreement with the nominal fre-
quency and the total available time in the absence of capacity con-
straints. The higher this ratio is, the more difficult it is to find
admissible solutions to the capacity constraints problem. In partic-
ular, this KPI is more than 76% for the four selected instances.

The total cost of spare parts (index D) refers to the cost gener-
ated by the execution of preventive maintenance actions in the
absence of unplanned (corrective) and reliability-based actions.

Index E quantifies the unplanned cost due to Eq. (1) and the
existence of failure rate kbefore for each task i. Finally, index F quan-
tifies the total objective function (planned and unplanned
contributions).
Table 4
Distribution of scheduled tasks.

Instance Delay
tasks

On-time
tasks

Early scheduled
tasks

Total scheduled
tasks

1 (20 � 20) 3 69 12 84
2 (20 � 40) 12 148 14 174
3 (40 � 20) 15 145 25 185
4 (40 � 40) 25 289 32 346

Table 5.1
Instance 4. Input data for the 2 pairs of tasks.

Task Nominal
frequency (no. of
service orders)

Tfailure (no.
of service
orders)

Spares cost
(preventive
maintenance unit
cost)

Additional
failure cost
(unit cost)

a 16 24 1.8 0.2
b 16 24 0.3 3.3

c 8 12 0.4 1
d 8 12 2 0.2
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4.1. Results in a what-if environment

Given the NP-hard complexity of the decision problem, the
computation time to achieve the optimal solution depends on
the considered instances. Table 3 reports the percentage gap
between the obtained feasible solution and the best lower bound
computed by the solver.

For Instance 1, the illustrated solution is the optimal (Gap is 0%).
It is generated in 24 s. The objective function, O.F. (K€) in Table 3,
performs better than the one quantified before scheduling by the
previously defined static analysis (see Table 2). The number of
tasks executed is 84, which differs from the 92 estimated by the
static analysis. Similar results are obtained for different solving
times when applied to the other selected and more complex
instances.

Table 4 presents the distribution of the scheduled tasks in ‘‘de-
lay tasks’’ (1), ‘‘on-time tasks’’ (2), i.e., tasks scheduled in the time
bucket corresponding to the nominal frequency, and ‘‘early sched-
uled tasks’’ (3), i.e., scheduled before the nominal frequency. This
demonstrates that the adoption of the nominal frequency of
scheduling does not reveal the optimal solution, even if a large
amount of tasks are executed on time with respect to the nominal
frequency (e.g., 289 tasks of 349 scheduled for the Instance 4).
Given a task, sometimes it is scheduled on time and sometimes
Table 6
Results generated by the solver for the pairs of tasks (a and b) and (c and d).

Task Number of
executions in the
planning period T

Avg. distance
between
executions

Cost paid
along task
plan

Planned
cost

Failure
cost

a 1 20 1.93 1.8 0.13
b 2 16 0.6 0.6 0

c 4 7.5 1.79 1.6 0.19
d 3 11 6.4 6 0.4

Table 7
Objective function for different available solving times. Instance 4 (40 � 40).

Solving time (sec) Taskplan objective function (K€)
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Table 8
Sensitivity analysis. Results from different solving times. Instance 1.

Static KPI Instance 1

Index C (%) 131 114
Objective function (K€) 156.98 Infeasible 152.3
Solving time to find the optimal solution (sec) 2220
Gap (%) 0
Planned cost (K€) 15.98 139.7
% of planned cost above the total cost (%) 100 91.7
Number of executed tasks 92 81
it is scheduled before or after the nominal frequency, owing to
the effects of cost data, failure rates and capacity constraints.

Focusing on the case of Instance 4, Table 5 reports a selection of
tasks for a better comprehension of the proposed model and the
generated solutions. Table 5.1 presents the input data for two pairs
of tasks selected from the group of 40. In particular, considering
the pair of tasks (a, b), the cost of preventive (i.e., planned) main-
tenance for task a is lower than that cost for b and vice versa, given
the additional failure (i.e., unplanned) cost. Table 5.2 illustrates the
executions for the selected pairs of tasks in the planned task plan.
The timeline reported in Table 5.2 is [1, 40] (i.e., T = 40 time
buckets).

Table 6 presents the summary results for the selected pairs of
tasks. In particular, given the pair of tasks (a, b), b is executed more
frequently because of its higher ‘‘unplanned’’ unit cost. The execu-
tion of task a is expensive each time it is executed, but the cost for
the delay due to the failure rate is not relevant. This is the reason it
is executed in time bucket 20 with a delay.

Similarly, considering the pair couple of tasks (c, d), task c has a
higher failure cost, so delays are avoided. Task d presents low fail-
ure cost but significant preventive costs, mainly due to the cost of
the expensive spare parts. As a result, c is executed more fre-
quently than d.

Table 7 shows the values of the objective function for Instance 4
(i.e., 40 � 40) and different available solving times, demonstrating
that sub-optimal solutions are evidently effective for real industry
applications. The renouncing of the optimum solution is necessary
in the presence of large and complex instances. A feasible but not
optimal solution drives the decision-maker toward the opportunity
to plan the preventive actions, the use of personnel and the use of
spare parts, quantifying the global expected cost. The assessment
of the expected cost drives the discussion on the targets and costs
of a service of maintenance between the supplier and the user of a
production system.

 

0 1000 1500 2000 2500 3000 3500
Solving Time (s)

97.9 85.6 76.1 45.7 38.1 32.6 11.4
146.7 146.6 146.6 146.6 142.4 142.2 142.2
75 50 24 40 180 70 13
0 0 0 0 0 0 0
143.3 143.3 143.3 143.3 139.9 139.8 139.8
97.7 97.7 97.7 97.7 98.2 98.3 98.3
84 84 84 84 82 81 81 
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The analysis conducted in this section is not a validation but a
discussion of the results obtained by the application of the pro-
posed model to a set of realistic case studies searching for (and
renouncing to) optimal solutions.

4.2. Sensitivity analysis for different solving times

Table 8 presents the results of the proposed scheduling model
applied to the tasks and time buckets of the Instance 1, for different
values of the aforementioned index C (i.e., the ratio between the
requested theoretical time and the available time) defined in the
static analysis. The original value of C in Instance 1 was 76.1%
(see the bold numbers in Table 8). This analysis demonstrates that
the more constrained the instance (e.g., C = 114%), the higher the
number of tasks to be delayed.

5. Conclusions and further research

This paper presents an original cost-based and reliability-based
MILP model for scheduling preventive tasks on complex machines
subject to failure. In particular, a set of tasks are available, and for
each task, there is a nominal frequency of execution according to
the MTTF of the parts and components involved. The aim is to
define the best schedule that minimizes the global cost of mainte-
nance due to the planned, i.e., preventive, and corrective mainte-
nance cost, in agreement with the capacity constraints. A failure
probability is introduced in the model with an important role in
the objective function to quantify the additional cost of mainte-
nance due to the events of failure. The proposed model differs from
the existing contributions illustrated by the literature because it is
cost-based and reliability-based with respect to the capacity con-
straints, as necessary in real applications.

This model can support the production planner and the
machine vendor in designing the task plan of a complex production
system subject to failure for mid- to long-term periods and in opti-
mizing the plan to minimize the maintenance expected costs, max-
imize benefits and control failure events. In particular, the
proposed economic evaluation addresses the maintenance service
provider as well as the clients in finding the best schedule that sat-
isfies the goals of both stakeholders. This is an ex-ante and strate-
gic maintenance service planning.

Furthermore, the proposed model can be applied by a company
to plan the short-term (e.g., weekly) preventive actions and the use
of resources, e.g., spare parts, equipment and personnel, necessary
to conduct maintenance actions. This is further ex-ante but opera-
tional planning.

Finally, this model can support the ex-post analysis of the his-
torical preventive and corrective maintenance plans to plan and
conduct reliability evaluations on the most critical parts and com-
ponents. This is ex-post planning.

The model has been applied to a complex case study that
demonstrates how effective it is in reducing the total cost and
improving the quality of service, even in the presence of a large
number of tasks and time buckets.

Further developments will focus on the impacts of adopting
multi-criteria and multi-objective optimization in task plan man-
agement and scheduling. Reliability-based and cost-based criteria
can be assessed compared with other criteria, for example, the bal-
ancing of the expected saturation of the time buckets (i.e., service
orders).

Further research is also expected on the development and appli-
cation of new reliability-based scheduling models and methods,
including the assessment of logistic issues, e.g., the management
of spare parts, personnel (crew teams), and equipment, in a
multi-location environment made up of different locations world-
wide and in agreement with the customer service level and cost
reduction.
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