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Reliability evaluation of a multistate flight network under time and 

stopover constraints 

Abstract 

From the management perspective, network reliability is a crucial indicator to evaluate the 

service performance of many real-life networks. This research, therefore, focused on 

investigating network reliability in the airline industry and proposed an algorithm of evaluating 

flight network reliability of a multistate flight network (MSFN) considering the time and the 

number of stopovers. An MSFN is composed of nodes and arcs, in which each node denotes an 

airport and each arc represents a flight which connects a pair of nodes at fixed departure and 

arrival time. Flight network reliability is defined as the probability of successfully carrying a 

certain number of passengers from the origin to the final destination under the constraints of time 

and the number of stopovers. We first model the flight system into an MSFN and then generate 

all minimal capacity vectors that can satisfy demand under the time and stopovers constraints. 

Significantly, this study developed a searching method instead of giving all minimal flightpaths 

in advance and computed flight network reliability efficiently based on all the minimal capacity 

vectors. A case study from Ho Chi Minh City to Taipei is presented to demonstrate the solution 

procedure. The findings from this study are convinced to contribute equivalent information to 

policymakers and airlines executives for their strategic decision-making regarding flight network 

and thereby contribute to advancement towards sustainability. 

Keywords: flight network reliability; time constraint; stopovers constraint; minimal flightpaths; 

backtracking.  
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1. Introduction  

In recent decades, along with rapid industrialization and economic growth, individual 

spending power has increased noticeably. In addition, people prefer travelling by air to save time 

(Strategyand, 2015), leading to a much faster increase in demand for air transport services than 

most other goods and services in the world economy. Indeed, the total revenue of the aviation 

industry has doubled from US$369 billion in 2004 to US$746 billion in 2014, and since 1970, air 

travel demand measured by revenue passenger kilometers flown has risen tenfold, compared to a 

three-to-fourfold expansion of the world economy (IATA, 2014). With such significant growth of 

the global aviation industry, airlines tend to design more efficient operations with a high level of 

reliability. To support for management in the aviation sector, scholars have proposed efforts for 

answering the following questions: “Is the total cost minimized?”, “How long has the aircraft 

rotation been delayed?” and “Has the passenger’s satisfaction been guaranteed?”. Particularly, 

these scholars have mainly focused on optimizing the flight scheduling problem (Ovacikt & 

Uzsoy, 1994; Wu, 2006; Atkin Jason, 2007; Papadakos 2009, Clare & Richards 2011; Lee et al., 

2011; Bae et al., 2013; Dong et al., 2016), fleet assignment problem (Sandhu & Klabjan, 2007; 

Bae et al., 2013; Dong et al., 2016), aircraft routing problem (Wu and Caves, 2002; Weideet al., 

2010; Awasthi et al., 2013; Tjahjono et al., 2014; Zhang et al., 2015), and crew management 

(Sandhu & Klabjan, 2007; Weide et al., 2010; Hu et al., 2015; Zhang et al., 2015). Especially, 

apart from providing new optimal solutions, Wu and Caves (2002), Wu (2006) and Sohoni et al. 

(2011) evaluated airline performance based on the reliability of flight scheduling and aircraft 

routing; however, these studies did not take meeting specific demands of a flight network with 

constrained conditions into performance consideration.  

Since network reliability is usually employed as an important index to evaluate the service 

performance of many real-life systems such as transportation, logistics, and distribution systems 
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(Niu, 2012), this research investigates network reliability in the airline industry. Furthermore, to 

complete the research of Wu and Caves (2002), Wu (2006) and Sohoni et al. (2011), this study 

concentrates on how a flight system can carry a specific number d of passengers with constraints 

of time T and number o of stopovers through the concept of network reliability which is called 

flight network reliability Rd,o,T herein. In general, a flight system includes a range of airports and 

flights, in which a flight transports passengers between a pair of airports with scheduled departure 

time to arrival times. Such a flight system can be modeled as a flow network consisting of arcs 

representing flights and nodes representing airports. In fact, most flights are set up to transfer 

passengers from one place to another in a range of different time schedules, and travel demand 

will vary with season, destination’s attractions, lifestyle, and timing. Therefore, the number of 

empty seats on different flights will be different depending on the diversity of demand. The flow 

network characterized by such flights should be multistate owing to the various capacities of each 

flight. Such a network is a typical stochastic flow network and is called a multistate flight 

network (MSFN) herein. In general, network reliability is defined as the probability that a 

stochastic flow network can satisfy a specified demand under various constraints, namely, Lin et 

al. (2016) estimated the network reliability to meet the required orders composed with different 

types of products in a flow-shop manufacturing system under time constraint while Chang et al. 

(2017) focused on reliability evaluation for a multi-state manufacturing network with joint buffer 

stations and Niu and Xu (2012) defined the reliability of a multi-state system as the probability 

that amount of items can be transmitted under cost consideration. However, such existed 

algorithms cannot be applied to the MSFN with stopovers and time constraints. In particular, the 

MSFN is unique when several flights share only one non-stop route. Flight network reliability is 

defined as the probability that the MSFN can successfully transport a requested number of 

passengers from the origin to the final destination under constraints of time and number of 
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stopovers. To evaluate flight network reliability, this work develops a new algorithm for 

generating all minimal capacity vectors that can satisfy demand under the time and stopovers 

constraints. These minimal capacity vectors are labeled (d,o,T)-LBs herein. With the recursive 

sum of disjoint products (RSDP) algorithm (Zuo et al., 2007), flight network reliability is 

computed based on (d,o,T)-LBs. Especially, this work proposes a method for searching all 

minimal flightpaths. The proposed algorithm in this study, consequently, can be applied even 

though all minimal flightpaths are not given in advance. Figure 1 summarizes the procedure for 

evaluating flight network reliability. Additionally, a case study is given to illuminate the solution 

procedure and a sensitivity analysis is accordingly adopted to discuss the management 

implication of flight network reliability.  

 

< Insert Figure 1 > 

 

The remainder of this study is organized as follows. In section 2, the terminologies, notation 

and the MSFN model are provided.  The MSFN model consists of assumptions, constraints, 

object functions and the backtracking method. Section 3 presents a complete description of the 

proposed algorithm to evaluate flight reliability network. An illustrative example built up from 

one real MSFN is presented in section 4. Finally, Section 5 states some concluding remarks.  

 

2. Multistate flight network model 

In this section, we define the notation, the research problem and assumptions used in this 

study, backtracking method, and present the MSFN model.  

2.1.  Notation 
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d demand  

N set of airports (nodes) 

s; t an origin; a final destination  

n number of non-stop route in the route network 

ai the i
th

 non-stop route connecting a pair of airports 

A {ai | i = 1, 2,..., n}: set of non-stop routes 

ti flying time on non-stop route ai 

L {ti | i = 1, 2,..., n}: set of flying time on non-stop routes 

(N, A, L): route network  

µ transit time 

o number of stopovers 

T limited time  

b number of minimal routes satisfying o and T in the route network 

P

 the th

 minimal route satisfying o and T in the route network  

T

 total time on P


  

e

 length of P


 

b number of minimal routes satisfying o and T in the route network 

w total number of flights 

k

i  k
th
 flight belonging to non-stop route ai in the flight network for 

  1,  2, , ; 1,  2,...,k w i n     

W { |k

i  k = 1, 2,…, w; i {1, 2,..., n}}: set of flights 

k

ig  departure time of flight 
k

i  

k

iv  arrival time of flight 
k

i  
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U { ( , ) |k k

i ig v  k = 1, 2,…, w; i {1, 2,..., n}}: set of departure and arrival time 

on flights 

m number of minimal flightpaths satisfying o and T 

Q
j 

j
th
 minimal flightpath satisfying o and T for j = 1, 2,…, m 

Tj travel time on j
th
 minimal flightpath, j = 1, 2,…, m 

fj flow capacity of j
th
 minimal flightpath, j = 1, 2,…, m 

F (f1, f2, …, fm): flow vector  

H = (N, W, U, M) multistate flight network  

k

iM  maximum capacity on the flight 
k

i  

k

ix  {0,1,..., }k k

i ix M : current capacity on the flight 
k

i  

X ( |k

ix k = 1, 2,…, w; i {1, 2,..., n}): capacity vector in the MSFN 

M ( |k

iM k = 1, 2,…, w; i {1, 2,..., n}): maximal capacity vector of the MSFN 

(d,o,T)-LB minimal capacity vector in the MSFN satisfying the demand d under limited 

number of stopovers o and limited time T  

Rd,o,T flight network reliability: the probability that the MSFN satisfies the 

demand d under limited number of stopovers o and limited time T 

 set of (d,o,T)-LB candidates  

φ number of (d,o,T)-LB 

min set of all minimal vectors in  

2.2.  Research problem description  

Basically, this study focuses on evaluating flight network reliability in terms of how a 

specific number d of passengers travel through an MSFN with constraints of time T and number o 

of stopovers. First, we model a flight system as an MSFN by building a route network and 
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transforming it into an MSFN. In this study, a route network is a network composed of airports, 

non-stop routes and flying times on such non-stop routes. The MSFN is the detailed format of the 

route network in which each non-stop route has several flights and each flight shares the same 

flying time but different departure and arrival times. Particularly, a non-stop route shows a pair of 

linked airports, while a flight is a journey by air providing carry service on that specific non-stop 

route. Figure 2 shows an example that indicates the difference between a route network and an 

MSFN. The route network consists of 3 nodes (1, 2, 3) and 3 non-stop routes (a1, a2, a3). 

Meanwhile, the MSFN shares the same 3 nodes (1, 2, 3) and 2 flights (
1 2

1 1,  ) sharing the same 

non-stop route a1; 3 flights (
3 4 5

2 2 2, ,   ) sharing the same non-stop route a2; and 3 flights 

(
6 7 8

2 2 2, ,   ) sharing the same non-stop route a3. 

 

< Insert Figure 2 > 

 

In the MSFN, the capacity of each flight is defined as the number of empty (available) seats 

in the flight and the probability of each capacity is calculated according to the history record. A 

stopover is defined as a short airport stay on a journey. In terms of time, flying time in this study 

is defined as the necessary time to fly between a pair of airports; in other words, flying time is the 

time to fly on the non-stop route (considered in the route network) and on the flight (considered 

in the MSFN). In addition, transit time µ is the period of time necessary to move from an arrival 

gate to a departure gate at a stopover (airport), and journey travel time is calculated from the 

departure time at the origin to the arrival time at the final destination.  

We then compute flight network reliability via all (d,o,T)-LBs which satisfy the given 

constraints. To obtain all (d,o,T)-LBs, it is necessary to search all minimal flightpaths satisfying 

given constraints. Referring to literature (Chang et al., 2017; Lin et al, 2016; Niu, 2012; Yeh, 
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2004; Yeh, 2005), the minimal path is defined as a sequence of arcs without cycles. In the route 

network, a minimal route is thus defined as a sequence of non-stop routes without any cycle. 

And, a minimal flightpath is defined as a sequence of flights without cycles, in which the 

departure time of the following flight is not earlier than the arrival time of the previous flight plus 

transit time in the MSFN. 

 

2.3. Route network, MSFN, and assumptions 

Let (N, A, L) denote a route network with N representing the set of airports, A = {ai|i = 1, 

2,..., n} representing the set of non-stop routes where n is the number of non-stop routes, and L = 

{ti| i = 1, 2, ..., n}is the set of flying times on the non-stop routes. The number ti is the flying time 

on the route ai and the flying time on all flights 
k

i on the route ai. Let H = (N, W, U, M) be an 

MSFN with W = { |k

i  k = 1, 2,…, w; i {1, 2,..., n}} representing the set of flight, where k is 

the order of flight and w is the total number of flights, U = { ( , ) |k k

i ig v  k = 1, 2,…, w; i {1, 2,..., 

n}} representing the set of departure time 
k

ig
 
and arrival time 

k

iv on flight
k

i , and M = ( |k

iM k = 

1, 2,..., w; i {1, 2,..., n}) denoting the maximal capacity vector. In the route network (N, A, L), 

each non-stop route ai links a pair of airports with no stop while in the MSFN H = (N, W, U, M) 

there are some flights 
k

i  linking the same pair of airports as non-stop route ai. With the maximal 

capacity vector M, the capacity vector X = ( |k

ix k = 1, 2,..., w; i {1, 2,..., n})is defined as the 

current capacity state of the MSFN H, where x
i

k
 represents the current capacity on the flight 

k

i  

with corresponding available capacity.  

In this study, the following assumptions are made: 

i. The flow satisfy the flow-conservation law (no lost or added passengers in the MSFN) 

ii. The capacities of different flights are statistically independent. 
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iii. There is no delay occurred in the MSFN. 

iv. All flights on the same non-stop route share the same flying time. 

Vector operation rules: 

X ≤ Y  1,  2,( , ; {1,2,..., }| )k

i k wx i n    ≤  1,  2,( , ; {1,2,..., }| )k

i k wy i n    if 
k

ix ≤ y
i

k
 for 

all i, k 

X < Y X ≤ Y and 
k

ix < y
i

k
 for at least one i, k 

X ≹ Y neither X  Y nor X < Y 

2.4. Flight time 

According to the assumption (iv), airline companies set the same flying time for different 

flights sharing the same non-stop route. Hence, the number ti is the flying time on the route ai and 

all flights 
k

i  on it as expressed in Eq. (1). 

k k

i i it v g  , for k = 1, 2,…, w; i {1, 2,..., n}. (1) 

Let P

 =     [{ 1 , 2 ,..., ] | [ ] }iP P P e P z a   be a minimal route in the route network, which 

means that all elements [ ] P z  A and    1  2  ... [ ]P P P e   . The minimal route P

, which 

contains no more than (o +1) non-stop routes, satisfies the o constraint.  

1.e o    (2) 

For the route network, there is no departure and arrival time on the route provided, and the 

total time T

 on minimal route P


 is therefore calculated as follows: 

{ | } ( 1)* .i ii
T t a P e        (3) 

To satisfy the time-limited T, constraint (4) below is a necessary condition. 

T

 ≤ T for any . (4) 
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Let    { 1 , 2 ,..., [ ] | [ ] }j k

iQ Q Q Q e Q z   be one of minimal flightpaths corresponding from 

the minimal route    { 1 , 2 ,..., [ ] | [ ] }iP P P P e P z a   , in which [ ]Q z is a flight belonging to

[ ]P z so that jQ meets the stopover o constraint. In the MSFN H, each flight has planned and 

fixed departure and arrival times, passengers can be transported successfully if only if the 

departure time of [ ]Q z is not earlier than the arrival time of [ ]1Q z  added transit time. If 

[ ]1 h

rQ z   and [ ] k

iQ z  then: 

.h k

r iv g   (5) 

In addition, journey travel time is calculated from the departure time at the origin to the 

arrival time at the final destination. Therefore, the travel time on minimal flightpath jQ  is 

counted from the departure time of the flight [ ]1Q  to the arrival time of the flight [ ]Q e . If 

[ ]1 l

uQ  and [ ] k

iQ e  then: 

.k l

j i uT v g    (6) 

The minimal flightpath Q
j 
meets the time constraint if only if the travel time on Q

j
 does not 

exceed stipulated time T: 

Tj ≤ T.  (7) 

 

2.5. Backtracking for searching all minimal routes and minimal flightpaths 

Based on the fact that computing the number of minimal paths between the two specified 

nodes in given graph or constrained shortest paths problem is NP-hard (Wu et al., 2017), 

generating all minimal flightpaths which connect two specified airports under given constraints 

belongs to the class of NP-hard problem. However, in the MSFN with the complexity given, we 

employ backtracking method to develop an algorithm generating all minimal flightpaths meeting 

given constraints. The backtracking algorithm enumerates a set of partial candidates that 
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generally could be completed in various ways to give all possible solutions to the given problem 

(Muniswamy, 2009). The underlying concept is that the partial candidates are represented as the 

branches of a potential search tree. Each partial candidate is the parent of the candidates that 

differ from it by a single extension step; the leaves of the tree are the partial candidates that 

cannot be extended any further. (Muniswamy, 2009). In short, backtracking is applied to find all 

solutions (or some) to some searching or sorting problems. Particularly, the concept of 

backtracking method is presented in Figure 3.  

 

<Insert Figure 3> 

 

The searching algorithm is divided into Step 1 and Step 2. In particular, Step 1 aims to search 

all minimal routes in (N, A, L), which meet o and T constraints, by utilizing the following 

backtracking method 1.  

The backtracking method 1: Search minimal routes meeting o and T constraints in (N, A, L)  

Step 1   Set  = 0, e

 = 0 ( is stock which stores the indexes of minimal route P


) 

Step 2  Algorithm Check (e

) 

For each P[e

]  P


 =    { 1 , 2 ,..., [ 1] | [ ] }iP P P e P z a   do  

Step 3  If    1  2  ... [ ]P P P e    then // without any cycle 

Step 4  If ( [1]) ( [1] [2]) ... ( [ 1] [ ]) ( [ ] )s P P P P e P e P e t            then  

Step 5  If T

≤ T where { | } ( 1)*i ii

T t a P e        // constraint (4) 

Then  =  + 1 write P

= {P[1], P[2],..., P[e


]} 

If 1e o    then Check (e

+1) // constraint (2) 

Step 6  Backtrack  
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Step 7   Backtrack 

Step 8  End  

 

Suppose that there are b minimal routes satisfying o and T which are 1 2, ,..., bP P P . From such 

minimal routes, Step 2 focuses on searching all minimal flightpath Q
j
 satisfying o and T 

constraints in the MSFN by applying backtracking method as follows: 

The backtracking method 2: Search minimal flightpaths satisfying o and T constraints in 

MSFN H 

 

Step 1  For  = 1, P

 =    { 1 , 2 ,... |}, [ ]P P P e

; j = 0 

Step 2 Algorithm Place (z) 

For each Q[z]     { 1 , 2 ,..., [ 1]}jQ Q Q Q z   for [ ]1 h

rQ z   and [ ]1 l

uQ  do 

Step 3 If [ ] iP z a then [ ] k

iQ z  //according to A and W 

Step 4 If .h k

r iv g   for [ ]1 h

rQ z   then    { 1 , 2 ,..., [ ]}jQ Q Q Q z // constraint (5) 

Step 5 If  z= e  

If ;jT T
j k l

i uT v g   

then    ( 1) ( { 1 , 2 ,. [. ]}. ),jj j Q Q Q Q z    // constraint (7)  

Step 6 If z< e then Place (z +1) 

Step 7 Backtrack 

Step 8 Backtrack 

Step 9 End 
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Let Q
1
, Q

2
,..., Q

m
 be all minimal flightpaths Q

j
 satisfying o and T. Obviously, such minimal 

flightpath Q
j
 meets constraint (5) and the travel time Tj calculated via Eq. (6) satisfies constraint 

(7).  

 

2.6. Flow vector and capacity vector  

Let F = (f1, f2,..., fm) be a flow vector in the MSFN H, where fj is the flow through the 

minimal flightpath Q
j
 =, j = 1, 2,..., m. When the minimal flightpath Q

j
 fulfills the constraints 

limited time T and number o of stopovers, the remaining problem is to consider how the flow 

vector satisfies the demand. Under the assumption (i), no flow is lost in the MSFN and the total 

flow-in must be equal to the total flow-out for any node (airport) except for the origin and 

destination airport. Therefore, any flow vector F that satisfies the constraint below meets the 

demand d. 

1
.

m

jj
f d


  (8) 

Moreover, any flow vector F satisfying the following constraint is said to be feasible under M. 

,z{ | } .k j k

j i ij
f Q M    (9) 

Let F = {F| F satisfies constraints (8) and (9)}. Any capacity vector X = (
k

ix  | k = 1, 2, …, w; 

i  {1, 2, ..., n}) is said to fulfill the demand d, limited time T and number o of stopovers if there 

exists at least one F F such that. 

, ,z{ | }.k k j

i z j ij
x f Q   (10) 

Let X be the set of such X fulfilling (d, o, T). Flight network reliability , ,d o TR , defined as the 

probability that the MSFN sends   passengers under the number   of stopovers and limited time 

T constraints, is thus , , Pr{ | } d o TR X X X . Finding all capacity vectors X X , then calculating 
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the corresponding probability of these vectors, and summing up them will yield the flight 

network reliability.  

 

2.7. Flight network reliability and (d,o,T)-LB 

However, it is inefficient to enumerate all of such X. Instead, we employ the concept of 

minimal capacity vectors. Let (d,o,T)-LB denote a minimal capacity vector from X then flight 

network reliability becomes  , , Pr{ , , LBs}:d o T X XR d o T  . 

Definition 1: A (d,o,T)-LB X is a minimal capacity vector in X if any capacity vector Y such that 

Y < X does not belong to X. 

Therefore, X = {X | X is greater than or equal to at least one (d,o,T)-LB} and the flight 

network reliability is revised to become Pr{X | X is greater than or equal to at least one (d,o,T)-

LB}. We have the following Lemma describing the relationship between a flow vector F F and 

a (d,o,T)-LB. 

Lemma 1: Let X be a (d,o,T)-LB then there exists an F F such that  

, ,z{ | }.k k j

i z j ij
x f Q   (11) 

Proof: Let X =   1,  2, ,( | ; 1,  2 ., ),..k

i k wx i n   be a (d,o,T)-LB. Suppose that X has at least 

one component 
k

ix  such that { | }k k j

i j ij
x f Q  . Set Y =   1,  2, ,( | ; 1,  2 ., ),..k

i k wy i n     

with { | }k k j

i j ij
y f Q  , then Y  X. Base on the vector operation rule X > Y, which 

contradicts to the definition of (d,o,T)-LB.  

According to Lemma 1, with any given F F, we can transform a capacity vector X via Eq. 

(11) then the set  contains all of them. Each such X may be a (d,o,T)-LB - in other words, such 

X is taken as a (d,o,T)-LB candidate,  is thus the set of (d,o,T)-LB candidates. Let min denote 
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the set of all minimal vectors in . The following two critical results further prove that min is 

exactly the set of (d,o,T)-LBs. 

Corollary 1: Any (d,o,T)-LB X belongs to  

Proof: It is trivial from Lemma 1.  

 

Theorem 1: min is exactly the set of (d,o,T)-LBs. 

Proof: Suppose that X is a (d,o,T)-LB but X ∉ min, then X   according to Corollary 1 and 

there will exist a Y  min such that Y < X. Then Y  X which contradicts to the fact that a 

(d,o,T)-LB is the minimal vector from X. On the other hand, suppose X  min but is not a 

(d,o,T)-LB, then X  X and there exists a (d,o,T)-LB Y such that Y < X. That implies Y    

according to Corollary 1 and thus conflicts that X  min. Therefore, min is exactly the set of

  B, L, sd o T  .  

Suppose that min contains φ capacity vectors in total: X
1
, X

2
,..., X

φ
. Since min is exactly 

the set of (d,o,T)-LBs based on Theorem 1, such capacity vectors X
1
, X

2
,..., X

φ
 are (d,o,T)-LBs. 

Flight network reliability, thus, becomes
, 1,  P { { : }}rd o T

j

j
X XR X




 . In order to derive 

1
{ { : }Pr }j

j
X X X




 , there are several methods such as state-space decomposition 

(Alexopoulos, 1995), inclusion-exclusion (Huisheng & Jingyu, 2012) and RSDP (Zuo et al., 

2007) can be utilized, in which the RSDP has higher efficiency for large multistate networks 

(Zuo et al., 2007). Hence, this paper adopts RSDP to calculate
, 1,  P { { : }}rd o T

j

j
X XR X




 . 

 

3. Algorithm to evaluate flight network reliability  
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The following algorithm is developed to generate all (d,o,T)-LBs and then evaluate flight 

network reliability.  

Input: (N, A), H = (N, W, U, M), d, o, and T. 

Step 1: (To satisfy o and T constraints) Search all minimal routes P

 in the route network. 

According to the set of non-stop routes A in the route network, we find all possible minimal 

routes by utilizing the backtracking method 1. Minimal routes P

 will be accepted if and only if 

the following constraints are fulfilled. 

( 1),e o    (12) 

T

 ≤ T for any . (13) 

Suppose that there are b minimal routes P

 satisfying o and T constraints in this step. 

Step 2: (To satisfy o and T constraints) Search all minimal flightpath Q
j
 in the MSFN. 

Accepted minimal flightpath Q
j
 must satisfy constraint (15) and qualify flow rule (14). 

.h k

r iv g   (14) 

Tj ≤ T where .k l

j i uT v g    (15) 

Conduct the backtracking method 2 for each minimal route in turn to gain all m satisfied 

minimal flightpaths in the MSFN. 

Step 3: (To satisfy demand d) Find all feasible flow vectors F. 

Find all F = (f1, f2,..., fm) satisfying demand constraint (16) 

1
.

m

jj
f d


  (16) 

and check whether each F is a feasible or not based on constraint (17) below: 

,z ,{ | } .k j k

j i i zj
f Q M    (17) 

Step 4: Transform each feasible flow vector   into capacity vector   via the following equation. 

, ,z{ | }.k k j

i z j ij
x f Q   (18) 



  

18 
 

Capacity vector X is called a (d,o,T)-LB candidate. 

Step 5:  = {X
1
, X

2
,..., X

α
 } Use the following comparison procedure to fitter out the set min 

from the set . 

(5.1) Set ψ = ∅  (ψ is the stock which stores the indexes of (d,o,T)-LBs, initially, ψ 

is empty) 

(5.2) For i=1 to α ∉ ψ 

(5.3) For j=i+1 to α ∉ ψ 

(5.4) If X
i
 ≤ X

j
 then X

j
 is not a lower capacity vector, ψ = ψ { }j   

Else X
i
 > X

j
 then X

i
 is a lower capacity vector, ψ = ψ { }i and go to 

(5.7). 

(5.5)  Next j 

(5.6)  min  min { }iX  

(5.7) Next i 

Step 6: min = {X
1
, X

2
,..., X

φ
} is the set of all (d,o,T)-LBs. Use RSDP method to calculate flight 

network reliability
, 1, { { : }Pr }d o

j

jT X X XR



  . 

Output: Rd,o,T 

 

4. Case study of flight network between Vietnam and Taiwan  

To illustrate the solution process, a real flight case from Ho Chi Minh (SGN) to Taipei 

(TPE) is demonstrated. Figure 4 shows the route network with a range of stopovers including 

Hanoi (HAN), Da Nang (DAN), Nha Trang (CRX), Hong Kong (HKG), Kaohsiung (KHH) and 

Taichung (RMQ). Figure 5 is the transformed MSFN, in which there exist various flights sharing 

the same non-stop route. For instance, there are two flights 
6

4  and 
7

4  on the non-stop route a4 
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from the airport HAN to HKG. The data on capacity with probability, departure time and arrival 

time of each flight are presented in Table 1. For the case in which the demand of traveling is d = 

4 under stopover o = 3 and limited time T = 8, flight network reliability R4,3,8 can be obtained by 

the following steps. 

 

< Insert Figure 4 > 

< Insert Figure 5 > 

< Insert Table 1 > 

 

4.1.  Solution procedure 

Input: (N, A, L), H = (N, W, L, M), d = 4, o = 3, T = 8, µ = 0.5 hour. 

Step 1: Search all minimal routes P

 which meet o and T constraints in the route network. 

We utilize the backtracking method 1 to search all minimal routes such that the total time 

and the number of routes satisfy the following requirements. Figure 6 and Table 2 illustrate such 

generation process. 

(3 1),e    (19) 

T

 ≤ 8 for any where { | } ( 1)*0.5.i ii

T t a P e       (20) 

 

< Insert Figure 6 > 

< Insert Table 2 > 

 

After skimming, we obtain all qualified minimal routes
1 2 3 4 5 6 7, , , , , ,P P P P P P P  . 

Step 2: Search all minimal flightpath Q
j
 satisfying o and T constraints in the MSFN. 
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In this step, the backtracking method 2 is applied to find all minimal flightpaths satisfying o 

and T constraints. Figure 7 indicates a backtracking tree for minimal flightpaths on the minimal 

route P
7
. When any minimal flightpath conflicts with the rule (21) or constraint (22) or is 

accepted, we will backtrack. 

0.5 ,k h

i zv g   (21) 

Tj ≤ 8 where .k l

j i uT v g   (22) 

Particularly, we have 5

3 0.5 10 : 00v    and 11

8 9 :30g  , hence, 5 11

3 80.5 ,v g  which conflicts 

the flow rule (21) therefore reject and backtrack at 11

8 . With the minimal flightpath 1 12 20

3 8 13{ , , }  

, we obtain Tj = 20 4

13 3 17 :00 7 :00 10v g    (hours) then Tj 8, resulting in the rejection and 

backtracking. After accepting Q
8
, we backtrack to find the remaining minimal flightpaths (Q

9
 and 

Q
10

). 

 

< Insert Figure 7 > 

 

Repeat the same procedure for the remaining minimal routes; we obtain ten minimal 

flightpaths satisfying o and T in total: 

1 1 6 14

1 4 10{ ; ; }Q    ; 2 2 7 15

1 4 10{ ; ; }Q    ;  

3 1 6 13 17

1 4 9 12{ ; ; ; }Q     ; 4 3 8 14

2 5 10{ ; ; }Q    ;  

5 3 8 13 17

2 5 9 12{ ; ; ; }Q     ; 6 3 9 17

2 6 12{ ; ; }Q    ;  

7 3 10 18

2 7 13{ ; ; } Q    ; 8 4 11 18

3 8 13{ ; ; } Q     

9 4 12 18

3 8 13{ ; ; } Q    ; 10 5 12 18

3 8 13{ ; ; }Q    . 

Step 3: All flow vectors F need to satisfy the following constraints: 
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10

1
4.jj

f


  (23) 

1

1 1 3{ | } 2j

jj
f Q f f     , 

10

7 7{ | } 2j

jj
f Q f    , 

2

1 2{ | } 2j

jj
f Q f    , 

11

8 8{ | } 2j

jj
f Q f    , 

3

2 4 5 6 7{ | } 4j

jj
f Q f f f f       , 

12

8 9 10{ | } 2j

jj
f Q f f     , 

4

3 8 9{ | } 2j

jj
f Q f f     , 

13

9 3 5{ | } 2j

jj
f Q f f     , 

5

3 10{ | } 2j

jj
f Q f    , 

14

10 1 4{ | } 2j

jj
f Q f f     , 

6

4 1 3{ | } 2j

jj
f Q f f     , 

15

10 2{ | } 2j

jj
f Q f    , 

7

4 2{ | } 2j

jj
f Q f    , 

17

12 3 5 6{ | } 2j

jj
f Q f f f      , 

8

5 4 5{ | } 2j

jj
f Q f f     , 

18

13 7 8 9 10{ | } 3j

jj
f Q f f f f       , 

9

6 6{ | } 2j

jj
f Q f    . (24) 

We thus obtain 466 flow vectors: F
1
, F

2
,…, F

466
. 

Step 4: Transform all 466 feasible flow vectors F into capacity vectors via the following 

equations to obtain 466 (d,o,T)-LB candidates presented as X
1
, X

2
,…, X

466
 in Table 3. 

1 1

1 1 1 3{ | }jjj
x f Q f f    , 

10 10

7 7 7{ | }jjj
x f Q f   , 

2 2

1 1 2{ | }jjj
x f Q f   , 

11 11

8 8 8{ | }jjj
x f Q f   , 

3 3

2 2 4 5 6 7{ | }jjj
x f Q f f f f      , 

12 12

8 8 9 10{ | }jjj
x f Q f f    , 

4 4

3 3 8 9{ | }jjj
x f Q f f    , 

13 13

9 9 3 5{ | }jjj
x f Q f f    , 

5 5

3 3 10{ | }jjj
x f Q f   , 

14 14

10 10 1 4{ | }jjj
x f Q f f    , 

6 6

4 4 1 3{ | }jjj
x f Q f f    , 

15 15

10 10 2{ | }jjj
x f Q f   , 

7 7

4 4 2{ | }jjj
x f Q f   , 

17 17

12 12 3 5 6{ | }jjj
x f Q f f f     , 

8 8

5 5 4 5{ | }jjj
x f Q f f    , 

18 18

13 13 7 8 9 10{ | }jjj
x f Q f f f f      , 

9 9

6 6 6{ | }jjj
x f Q f   . (25) 
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Step 5: Apply the comparison procedure, we eliminate 38 (d,o,T)-LB candidates. The set min 

consists of 428 (d,o,T)-LBs as shown in Table 3.  

 

< Insert Table 3 > 

 

Step 6: Utilize RSDP method to calculate flight network reliability from X
1
, X

2
,…, X

428
 

R4,3,8 = 
428

1
Pr{ { : }}j

j
X X X


 = 

1 2 428Pr{{ } { } { }}X X X X X X    = 0.989 

Output: R4,3,8 = 0.989 

 

4.2. Sensitivity analysis of flight network reliability 

By utilizing the proposed algorithm, airlines have an equivalent evidence to estimate their 

ability to provide services. For instance, with flight network reliability R4,3,8 = 0.989, the airline 

in the case study has high chance to successfully transport 8 passengers within 4 hours. 

Moreover, the proposed algorithm is a useful tool to assess flight network reliability by executing 

sensitivity analysis, which is also known as importance measure (Zhang et al., 2015), because the 

aim of that analysis is to identify the contribution of the uncertainty in model inputs to the 

uncertainty in the model output (Liu & Homma, 2010). A decision-maker can execute sensitivity 

analysis in serval approaches (Iooss & Lemaître, 2015) such as ranking the importance of a 

component which is measured by the relative network efficiency drop after removing that 

component from the network (Qiang & Nagurney, 2008); evaluating the influence of the external 

factors on network performance (Dui et al., 2017); figuring out the component maintenance 

priority based the extent of the change in the network reliability resulted from a change in the 

reliability of a component (Wu et al., 2016); quantifying the influence of making the component 

perfectly reliable on the network mean time to failure (Borgonovo et al., 2016) or identifying the 
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most important component state where the transaction rate of a component degrading from one 

state to another state is a time-dependent function under Weibull distribution (Dui et al., 2017). 

However, the sensitivity analysis provided in this study aims to evaluate the influence of given 

constraints on flight network reliability. In particular, the sensitivity analysis maps the flight 

network reliability Rd,o,T under various levels of demand and time limitation. First, given that 

passengers prefer two or fewer stopovers, we test flight network reliabilities Rd,2,T with several 

demands from 1 to 11 under four levels at limited-time. We also carry out that analysis to test all 

flight network reliabilities when passengers can accept up to three stopovers (Rd,3,T). The obtained 

flight network reliabilities (Rd,2,T and Rd,3,T) are shown in Table 4. The fluctuation under different 

levels of demand d and limited time T of such flight network reliabilities (Rd,2,T and Rd,3,T) are 

separately presented in Figure 8 and Figure 9. 

 

< Insert Table 4 > 

< Insert Figure 8 > 

< Insert Figure 9 > 

 

It is clear that with the limited time T = 7.5 hours, this MSFN can provide service for up to 

only 6 passengers, and flight network reliability declines markedly from the lowest to highest 

levels of demand. Additionally, there is no difference in flight network reliability between the 

cases of two and three stopovers. In addition, for every demand, the longer the travel times and 

the greater the number of stopovers on the journey passengers can accept, the higher the flight 

network reliability is; this is reasonable because increasing the number of stopovers and the time 

on the journey may increase the number of qualified minimal routes/minimal flightpaths and 

(d,o,T)-LB solutions. Another finding from this sensitivity analysis is that the longer the journey 
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is the more demand the flight network can satisfy at a high level of reliability. However, a long 

journey is normally at a low level of attractiveness. Therefore, to fulfill their supply capacity and 

increase their revenue, airline managers can consider launching promotion campaigns towards 

price-oriented customers who accept longer flying time and prefer services at a lower price. It is 

obvious that the proposed algorithm can be applied to sensitivity analysis, which helps airlines 

managers have an overview of their flight network, thereby develop adequate business 

campaigns. 

 

4.3.  Experiments of computational time complexity   

In this section, the results of several computational experiments are presented to verify the 

computational efficiency of the proposed algorithm. The proposed algorithm is run for three 

levels of demand d = 10, d = 15 and d = 20, respectively. Each case is executed under four 

different time constraints and stopover constraints o = 1 and o = 2. An experimental MSFN is a 

random case with a different number of airports and flights. The computational time of using the 

proposed algorithm is listed in Table 5. The CPU time of each combination is executed on a 

personal computer with Core
TM

 3.4 i7-4770M CPU 3.4 and 8GB of RAM with programmed in 

MATLAB programming algorithm.  

 

<Insert Table 5> 

 

As shown in the results, in the majority of experiments, the algorithm can be completed 

within 1 minute, especially, it takes only 0.01 second for the case (6, 30). The proposed algorithm 

can be applied to evaluate the flight network reliability in a reasonable time. Obviously, the time 

constraint has a significant effect on the efficiency of the algorithm. A few experiments take 
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longer time, approximately 5.6 mins, than the others because the limited time constraint on such 

experiments is quite close to the journey’s length that passengers are willing to accept, resulting 

in too many candidates for searching.  

 

5. Conclusions and future work 

In this work, we have studied a flight system with single origin and destination under travel 

time and the number of stopovers constraints. We first modeled the flight system as an MSFN 

consisting of nodes and arcs, in which each node represents an airport and each arc representing a 

flight which connects a pair of nodes at specified departure and arrival time and then computed 

flight network reliability. In contrast to most of the literature, network reliability is evaluated 

under the assumption that all minimal flightpaths are given in advance, this study develops the 

searching method to determine all minimal flightpaths. Thus, this study’s algorithm can extend to 

apply for flight networks without giving all minimal flightpaths in advance. The proposed 

algorithm requires to input only an original data of the MSFN and constraints to give results. 

Obviously, the provided algorithm in this study is more completed than previous ones and its 

utility is demonstrated by the case study and the experiments of computational time complexity.  

According to the flight network reliability gained from this study, managers can determine 

such a relevant service offer that it has high ability to meet specific constraints of time and the 

number of stopovers thereby can reach customer satisfaction. Moreover, the proposed algorithm 

can provide an overview of flight network reliability for decision-makers via sensitivity analysis 

which records the variation of flight network reliability in a range of demand, stopovers and time 

constraints. In short, this study provides a useful tool which supports for executives in observing 

and assessing their flight network and thereby contributes to the advancement towards 

sustainability.  
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In the future, for more realistic findings, we will attempt to factor in delay situations and 

extend research object from a flight network with single origin and destination to multiple ones. 

In other words, the future research may consider flight network with multiple origins – single 

destination or single origin – multiple destinations flight systems and evaluate flight network 

reliability using the algorithm proposed in this study. In addition, extending the proposed 

algorithm for importance measure of flight network reliability may be a potential and valuable 

study. 
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Tables: 

Table 1  

The probability distribution of each arc capacity.  

ai ti 
k

i  k

ig  k

iv  k

ix  Pr( k

ix ) ai ti 
k

i  k

ig  k

iv  k

ix  Pr( k

ix ) 

a1 2 1

1   7:00 9:00 0 0.05 a8 2.5 
11

8  9:30 12:00 0 0.05 

       1 0.1         1 0.1 

       2 0.85         2 0.85 

  2

1  8:30 10:30 0 0.05    
12

8  10:00 12:30 0 0.05 

       1 0.1         1 0.1 

       2 0.85         2 0.85 

a2 2 3

2  7:00 9:00 0 0.05 a9 1 
13

9  12:30 13:30 0 0.05 

       1 0.05         1 0.05 

       2 0.1         2 0.9 

       3 0.05 a10 2 
14

10  12:30 14:30 0 0.05 

       4 0.75         1 0.1 

a3 2 4

3  7:00 9:00 0 0.05         2 0.85 

       1 0.1    
15

10  14:00 16:00 0 0.05 

       2 0.85         1 0.1 

  5

3  7:30 9:30 0 0.05         2 0.85 

       1 0.1 a11 1 
16

11  12:30 13:30 0 0.05 

       2 0.85         1 0.05 
a4 2.5 6

4  9:30 12:00 0 0.05         2 0.9 

       1 0.1 a12 1 
17

12  14:00 15:00 0 0.05 

       2 0.85         1 0.1 

  7

4  11:00 13:30 0 0.05         2 0.85 

       1 0.1 a13 2 
18

13  13:00 15:00 0 0.05 

       2 0.85         1 0.05 

a5 2.5 8

5  9:30 12:00 0 0.05         2 0.05 

       1 0.1         3 0.85 
       2 0.85    

19

13  14:00 16:00 0 0.05 

a6 2.5 9

6  9:30 12:00 0 0.05         1 0.1 

       1 0.1         2 0.85 

       2 0.85    
20

13  15:00 17:00 0 0.05 

a7 2.5 10

7  9:30 12:00 0 0.05         1 0.1 

       1 0.1         2 0.85 

       2 0.85            
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Table 2 

List of all possible minimal routes.  

Minimal route  

(P) 

Total time  

(T) 

The length  

(e) 

Accepted minimal route 

{
1 4 10
; ;a a a } 2+2.5+2+(3-1)*0.5=7.5 3 P1 

{
1 4 9 12
; ; ;a a a a } 2+2.5+1+1+(4-1)*0.5=8 4 P2 

{
1 4 9 11
; ; ; ;...a a a a } 2+2.5+1+1+2+(5-1)*0.5=10.5 > 4 rejected 

{
2 5 10
; ;a a a } 2+2.5+2+(3-1)*0.5=7.5 3 P3 

{
2 5 9 11
; ; ; ;...a a a a } 2+2.5+1+1+2+(5-1)*0.5=10.5 > 4 rejected 

{
2 5 9 12
; ; ;a a a a } 2+2.5+1+1+(4-1)*0.5=8 4 P4 

{
2 6 11 13
; ; ;a a a a } 2+2.5+1+2+(4-1)*0.5=9 (T  > 8) 4 rejected 

{
2 6 12
; ;a a a } 2+2.5+1+(3-1)*0.5=6.5 3 P5 

{
2 7 13
; ;a a a } 2+2.5+2+(3-1)*0.5=7.5 3 P6 

{
3 8 13
; ;a a a } 2+2.5+2+(3-1)*0.5=7.5 3 P7 
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Table 3 

The (4,3,8)-LB candidates and (4,3,8)-LBs.  

Step 4 

(Xj) 

Step 5  

(Is Xj a (4,3,8)-LB?) 

X1=(0,0,2,0,2,0,0,2,0,0,0,2,2,0,0,0,2,2,0,0) Yes 

X2=(0,0,2,0,2,0,0,2,0,0,0,2,2,0,0,0,2,2,0,0) Yes 

… … 

X160=(1,0,2,0,1,1,0,2,0,0,0,1,1,2,0,0,1,1,0,0) Yes 

… … 

X378=(1,0,2,0,1,1,0,2,0,0,0,1,1,2,0,0,1,1,0,0) No, X378= X160 

… … 

X391=(2,0,2,0,0,2,0,1,0,1,0,0,1,2,0,0,1,1,0,0) Yes 

… … 
X431=(2,1,1,0,0,2,1,1,0,0,0,0,1,2,1,0,1,0,0,0) Yes 

… … 

X455=(2,0,2,0,0,2,0,1,0,1,0,0,1,2,0,0,1,1,0,0) No, X455= X391 

… … 

X
466

=(2,1,1,0,0,2,1,1,0,0,0,0,1,2,1,0,1,0,0,0) No, X
466

= X
431
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Table 4  

Flight network reliabilities Rd,2,T and Rd,3,T 

Rd,2,T  Rd,3,T 

 Time limited (T)  Time limited (T) 

Demand (d) T = 7.5 T = 8.0 T = 8.5 T = 9.0 Demand (d) T = 7.5 T = 8.0 T = 8.5 T = 9.0 

1 0.9988 0.9999 1 1 1 0.9988 0.9999 1 1 

2 0.9925 0.9993 0.9998 0.9999 2 0.9925 0.9995 0.9999 0.9999 

3 0.9542 0.9963 0.9989 0.9994 3 0.9542 0.9972 0.9992 0.9995 

4 0.856 0.9859 0.995 0.9973 4 0.856 0.989 0.9962 0.9977 

5 0.6085 0.9557 0.9819 0.9887 5 0.6085 0.9635 0.9854 0.9906 

6 0.3257 0.8834 0.9483 0.9652 6 0.3257 0.9006 0.9567 0.9709 

7 
 

0.7466 0.8742 0.9076 7 
 

0.7765 0.8903 0.9217 

8 

 

0.5085 0.7414 0.7988 8 

 

0.5467 0.7668 0.8266 

9 
 

0.2568 0.5432 0.6147 9 
 

0.2911 0.5746 0.6581 

10 

  

0.3079 0.374 10 

  

0.3362 0.4206 

11 
  

0.1118 0.1473 11 
  

0.1278 0.1782 
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Table 5 

The CPU time of using the proposed algorithm  
No. stopover (o = 1) T = 6.5 (hours) T = 7 (hours) T = 7.5 (hours) T = 8 (hours) 

(Airports, flights) Demand (passengers) CPU time (unit: seconds) 

(6, 30) d = 10 0.002440 0.002618 0.009773 0.010766 

 d = 15 0.001838 0.011046 0.003452 0.004645 

 d = 20 0.001784 0.002852 0.003097 0.015575 

(10, 45) d = 10 0.005209 0.059114 2.509691 2.610417 

 d = 15 0.005098 0.039788 3.207511 3.279391 

 d = 20 0.005912 0.033675 0.373143 0.463491 

(15, 60) d = 10 0.007759 48.005164 99.361902 189.617310 

 d = 15 0.045298 31.403715 227.016340 248.706134 

 d = 20 0.005105 84.164224 252.798275 305.434726 

No. stopover (o = 2) T = 6.5 (hours) T = 7 (hours) T = 7.5 (hours) T = 8 (hours) 
(Airports, flights) Demand (passengers) CPU time (unit: seconds) 

(6, 30) d = 10 0.004106 0.002882 0.003966 0.004373 

 d = 15 0.003552 0.001940 0.005211 0.006544 

 d = 20 0.002662 0.002890 0.004193 0.005826 

(10, 45) d = 10 0.015861 0.066925 2.466449 2.439209 

 d = 15 0.006514 0.036914 3.164539 3.093451 

 d = 20 0.005164 0.033591 0.372483 0.370426 

(15, 60) d = 10 0.010573 4.401048 109.630834 203.733962 

 d = 15 0.033840 13.214591 247.610095 262.844551 

 d = 20 0.006552 4.135587 299.540200 331.565498 
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Figures: 

 

 

Figure 1 Flight network reliability evaluation procedure 

 

 

Figure 2 An example of a route network and an MSFN 
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Figure 3 A sample of backtracking tree 

 

Figure 4 A route network 

 

Figure 5 An MSFN 
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Figure 6 A backtracking tree for minimal routes 
 

 

Figure 7 A backtracking tree for minimal flightpaths based on the minimal route    
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Figure 8 Flight network reliability under number of stopover o = 2 constraint 

 

 

Figure 9 Flight network reliability under number of stopover o = 3 constraint 
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Highlights 

 A flight system with multistate capacity is studied. 

 A multistate flight network (MSFN) is constructed to model the flight system.  

 Propose an index, flight network reliability, to measure the MSFN. 

 An algorithm with backtracking technique is proposed to evaluate flight network reliability. 

 An illustrative example demonstrates how flight network reliability is evaluated. 

 


