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Abstract Screening alcohol use disorder (AUD) patients

has been challenging due to the subjectivity involved in the

process. Hence, robust and objective methods are needed to

automate the screening of AUD patients. In this paper, a

machine learning method is proposed that utilized resting-

state electroencephalography (EEG)-derived features as

input data to classify the AUD patients and healthy controls

and to perform automatic screening of AUD patients. In

this context, the EEG data were recorded during 5 min of

eyes closed and 5 min of eyes open conditions. For this

purpose, 30 AUD patients and 15 aged-matched healthy

controls were recruited. After preprocessing the EEG data,

EEG features such as inter-hemispheric coherences and

spectral power for EEG delta, theta, alpha, beta and gamma

bands were computed involving 19 scalp locations. The

selection of most discriminant features was performed with

a rank-based feature selection method assigning a weight

value to each feature according to a criterion, i.e., receiver

operating characteristics curve. For example, a feature with

large weight was considered more relevant to the target

labels than a feature with less weight. Therefore, a reduced

set of most discriminant features was identified and further

be utilized during classification of AUD patients and

healthy controls. As results, the inter-hemispheric coher-

ences between the brain regions were found significantly

different between the study groups and provided high

classification efficiency (Accuracy = 80.8, sensitiv-

ity = 82.5, and specificity = 80, F-Measure = 0.78). In

addition, the power computed in different EEG bands were

found significant and provided an overall classification

efficiency as (Accuracy = 86.6, sensitivity = 95, speci-

ficity = 82.5, and F-Measure = 0.88). Further, the inte-

gration of these EEG feature resulted into even higher

results (Accuracy = 89.3 %, sensitivity = 88.5 %, speci-

ficity = 91 %, and F-Measure = 0.90). Based on the

results, it is concluded that the EEG data (integration of the

theta, beta, and gamma power and inter-hemispheric

coherence) could be utilized as objective markers to screen

the AUD patients and healthy controls.

Keywords Alcohol use disorder (AUD) � Alcohol abuse
(AA) � Alcohol dependence (AD) � Electroencephalography
(EEG) � Resting-state EEG (REEG) � Inter-hemispheric

coherence � Spectral powers of EEG data

Introduction

A severe alcohol intake is normally diagnosed as alcohol

use disorder (AUD) (Association 2013). According to the

Institute of Alcohol Abuse and Alcoholism (IAAA),

approximately 7.2 % or 17 million adults in United States

aged 18 and older had an AUD in 2012 (Alcoholism 2012).

According to the definition, alcohol consumption less than

48 grams per day or 144 grams per week is characterized as

safe (Parsons and Nixon 1998). In contrary, chronic heavy

drinking eventually leads to AUD, alcohol abuse (AA), or

alcohol dependence (AD). More specifically, the AD is a
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more severe form of AA. Unfortunately, heavy consump-

tion of alcohol and its cumulative toxic effects may lead to

medical, neurological, psychiatric and social problems.

According to the Diagnostic and Statistical Manual of

Mental Disorders V (DSM V), people with AA keep

drinking despite social and personal problems (Association

2013). In addition, people with AD not only fulfill the

criteria of AA, but also develop increased tolerance and

withdrawal symptoms once abandoned drinking, also ter-

med as alcoholics (Moss et al. 2007).

Conventionally, the screening and assessment of AUD

patients involves questionnaire-based techniques such as

AUDIT (alcohol use disorder identification test) (Maisto

and Saitz 2003). However, the subjective feedbacks

observed from AUD patients may confound the screen-

ing process. For example, a large number of AUD

patients are less candid and unable to quantify their

alcohol intake (Popham and Schmidt 1981; Solomon

et al. 1980; Watson et al. 1984). Hence, assessments

with questionnaire-based techniques could be confounded

due to misjudgments during screening and assessing

actual quantity of alcohol consumption unless supported

with neuroimaging modalities such as electroen-

cephalography (EEG) (Alhassoon et al. 2015; Son et al.

2015). The EEG is a standard modality and has been

utilized for various applications such as monitoring depth

of anesthesia (Shalbaf et al. 2015), assessment of spon-

taneous perceptual switching (Ozaki et al. 2012),

assessing learning processes (Gutiérrez and Ramı́rez-

Moreno 2016), and modeling purposes (Fründ et al.

2008; Kiebel et al. 2008).

In the literature, various EEG features are reported

showing clinical relevance with the AUD, e.g., inter-

hemispheric coherences, phase delay and synchronization

likelihood have been proposed to explore functional

influences among different brain regions (Herrera-Dı́az

et al. 2015). The inter-hemispheric coherence can quantify

the functional coupling between two spatially located EEG

sensors representing distinct brain regions. However, con-

tradictory findings have been reported regarding the

changes in the inter-hemispheric coherence. For example,

Tcheslavski and Gonen (2012) highlighted significant

reduction of EEG power, inter-hemispheric coherence and

phase synchronization in alcoholics as compared with

controls. In contrary, higher inter-hemispheric coherence in

first degree male relative (parents, full siblings, or children)

of alcoholics was found in the frontal and cento-parietal

regions than in controls without a family history of AUD

(Michael et al. 1993). Moreover, studies based on resting-

state EEG (REEG) data have identified differences of

neuronal activities among different brain regions in alco-

holics and healthy controls (Campanella et al. 2009; Parvaz

et al. 2011; Porjesz et al. 2005).

Spectral power analysis to discriminate alcoholics and

control groups has been the most popular EEG analysis

method. For example, higher theta power has been reported

in alcoholics when compared with healthy subjects (Bauer

2001; de Bruin et al. 2004; de Bruin et al. 2006; Ran-

gaswamy et al. 2003; Winterer et al. 1998). This abnormal

increase may inhibit the ability to encode new information

(Klimesch 1999). Similarly, an increase of theta power at

all scalp loci, prominent at central and parietal in males and

at the parietal for females was observed (Rangaswamy

et al. 2003). In addition, significant changes in theta power

were associated with cortical atrophy (Coutin-Churchman

et al. 2006; Saletu-Zyhlarz et al. 2004). A higher low-

voltage alpha (LVA) (\10 lV) has been reported in alco-

holics than healthy controls (Ehlers and Phillips 2007;

Ehlers et al. 2004). However, the observed difference was

not statistically significant. In a study, increased beta power

is reported as a primary characteristic feature found in

alcoholics and high risk subjects, and it was associated with

benzodiazepines intake, that were mainly used for alcohol

detoxification (Bauer 2001; Rangaswamy et al. 2002).

Therefore, beta power needs to be considered when used

for alcohol treatment. In contrary, theta and delta bands

were found significantly increased in alcoholics than con-

trols. In addition, these bands were not affected by medi-

cation or found in people with family history of AA.

However, the findings based on alpha and gamma bands

are not matured and yet considered as active research areas.

In the context of clinical applications of EEG-based

methods to solve issues related with screening alcoholic

subjects from healthy controls, machine learning (ML)

techniques have shown promising results (Acharya et al.

2012; Bajaj et al. 2016; Mumtaz et al. 2016; Sinha 2016).

However, the requirements for clinical application are

tougher and require more evidences that the EEG could be

utilized to classify the AUD patients and healthy controls

(Huys et al. 2016). As revealed in the literature, the EEG

bands such as delta, theta, alpha, and beta show relevance

with the AUD. Moreover, this study sought to perform

t test to investigate statistically significant differences

between the two groups, i.e., MDD patients and healthy

controls. Hence, most useful data that can be used as input

features for the classification purpose was identified.

Therefore, the inter-hemispheric coherences and power of

different bands were investigated to be suitable to dis-

criminate the MDD patients and healthy controls. In

addition, the secondary objective is to develop a less

complex ML method than the ones presented in the liter-

ature (Mumtaz et al. 2016) that show high efficiencies

based on the EEG data acquired from the AUD patients and

healthy controls. The proposed ML method involved a

general methodology of feature extraction, selection, and

classification validated with tenfold cross validation (10-
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CV). Finally, to validate the proposed method, it is com-

pared with the methods reported in the literature.

Method

Study participants

The study participants: thirty (30) AUD patients (mean

55.4 ± 12.87 years) and fifteen (15) healthy controls (mean

42.67 ± 15.90 years) were recruited from clinic Bingkor,

Sabah, EastMalaysia. The experimental data acquisitionwas

performed according to the experiment design that was

approved by the ethics committee of Universiti Malaya,

Malaysia. According to the inclusion criteria, only those

participants were recruited that were able to sign the consent

of participation andmet the diagnostic criteria defined by the

alcohol use disorders identification test (AUDIT) (Babor

et al. 2001). Moreover, the study participants with AUDIT

score greater than seven were categorized as AUD patients

(Bush et al. 1998). All participants were volunteers and had

signed the consent forms of participation and were well-

informed about the experimental procedure. The healthy

participants were assessed for any neurological disorder and

were found naı̈ve.

Electrophysiological data recordings

In this study, resting-state EEG recordings and clinical

assessment scores were used as experimental data. As

shown in Fig. 1, the EEG data were recorded with Dis-

covery 24E EEG system involving 19 EEG channels

located according to international 10–20 system (Klem

et al. 1999). The brain signals were digitized at a sampling

rate of 256 samples per second. Furthermore, the EEG data

were filtered at a frequency bandwidth of 0–70 Hz with an

additional 50 Hz notch filter to supress the line noises. The

resting-state EEG data were recorded during two physio-

logical conditions: (1) 5 min of eyes-closed (EC), and (2)

5 min of eyes-open (EO). During EEG recordings, the

participants were instructed to sit relaxed in a semi-re-

cumbent position. In addition, the EO session included

recordings with less eye movements to reduce the artifacts.

Finally, the EEG data were then transferred to a PC

through an optically and magnetically isolated USB cable.

REEG data are of composite nature and normally analyzed

by decomposing into frequency bands such as delta

(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta

(12–30 Hz) and gamma ([30 Hz).

EEG noise removal

Generally, the EEG data were confounded with different

types of noises due to eye movements, blinks, or muscle

activity and drowsiness. In this study, the noise from the

EEG data was removed by visual inspection, semi-auto-

matically, using specialized software named as Neuro-

Guide (R. Thatcher 2008). Semi-automatic means both

user-defined and machine selected the artifact in the

recorded EEG data. In order to improve the noise removal

process, the selected templates should be at-least of 60 s of

artifact free epochs from the raw data. In the software, the

selected EEG segments were estimated for reliability using

the Split-Half reliability score (SHR score). SHR is the

ratio of variance between the odd and even time points of

the time series from the selected EEG (Eisinga et al. 2013).

The selection was performed with SHR score [0.90.

Hence, the noise in the EEG data was removed and the

clean EEG data were used for data analysis and building

ML models.

The proposed ML method

Figure 2 shows a block level representation of the proposed

ML methodology including feature extraction, selection,

classification and tenfold cross validation (10-CV). In this

study, the extracted EEG features such as the power

computed from different bands and the inter-hemispheric

coherence values were saved in a data matrix termed as the

EEG data matrix. In the matrix, the rows correspond to the

study participants during eyes closed (EC) and eyes open

(EO) recordings, whereas the features were arranged col-

umn-wise. Further, the EEG data matrix was subjected to

feature reduction via selecting the most significant features.

The reduced set of most discriminant features were fed into

the classifier to classify the study participants into their

respective groups, i.e., either AUD patients or healthy

controls.
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Fig. 1 Topomap showing EEG sensors locations on the scalp
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The input data to the proposed ML method was seg-

mented into two groups (the train and test datasets)

according to the 10-CV which ensures the independence

between the test and train sets. The train dataset was

involved to train the classification model including the sub

processes such as the feature extraction, feature selection,

and classification. On the other hand, the test dataset was

included to compute the classifier performance such as

accuracy, sensitivity, specificity, and the F1 measure.

Feature extraction

The spectral powers and inter-hemispheric coherences

were computed from REEG data acquired to investigate the

differences of these quantities between the AUD patients

and controls. EEG-based features such as the spectral or

absolute power (AP) were computed for each of 19

electrodes with 7 frequency bands: delta (0–4 Hz), theta

(4–8 Hz), alpha (8–12 Hz), beta (12–25 Hz), high beta

(25–30 Hz), gamma (30–40 Hz) and high gamma

(40–50 Hz). Moreover, the relative power (RP) was com-

puted as a ratio of each frequency band power over the total

power (sum of AP of all frequency bands).

In addition to the power computations, the inter-hemi-

spheric coherences were computed during EC and EO

conditions. The associations between the brain regions

were also evaluated for the detection of alcohol-related

alterations in AUD using coherence. Inter-hemispheric

coherence was calculated for all intra-hemispheric and

inter-hemispheric pairwise combinations of electrodes. It

was calculated based on the coupling degree of frequency

spectral between two different time series (Thatcher et al.

2004). In this study, the inter-hemispheric coherence was

computed pair-wise between two different EEG electrodes

True Response
AUD Vs Controls

EEG Epochs (60 Seconds of 
Artifact-free EEG data per subject) 
from AUD patients and Controls

Division of EEG Epochs into Test 
and Train Data according to 10-fold 
cross validation 

Train Data Test Data  

Feature Extraction 
& Normalization 

Feature 
Selection

Selection of 
Reduced Features 

Classification on 
Training Data 

Classification Predictions
(AUDs Vs healthy controls)

Confusion Matrix-based computation of 
Classification Accuracy, Sensitivity, and 
Specificity 

Comparison

Indices of most 
discriminative 
features

Classifier Coefficients 
and parameters

Feature Extraction 
& Normalization 

10-fold Cross-
Validation

Fig. 2 Proposed ML method to

classify the AUD patients and

healthy controls
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and can be expressed by the following mathematical for-

mula mentioned in Eq. (1). According to the formula, the

magnitude squared of the cross spectrum of two EEG

sensors was computing and divided by a product of the

power spectral densities (PSD) of each of the signals:

Cxyðf Þ ¼
Sxy
�
�

�
�
2ðf Þ

Sxðf ÞSyðf Þ
ð1Þ

where f is the frequency, Sx is the PSD of x, Sy is the PSD

of y, and Sxy is the cross-spectral density of the two EEG

sensors of interest. The coherence was computed for each

channel pair involving frontal (Fp1, Fp2, F3, F4, F7, F8,

Fpz), temporal (T3, T4, T5, T6), parietal (P3, P4, P7, P8),

occipital (O1, O2), and central (C3, C4). For example, EEG

alpha asymmetry computed for Fp1 included channel pairs

such as Fp1-Fp2; Fp1-F4; Fp1-F8; Fp1-T4; Fp1-T6; Fp1-

P4; Fp1-P8; Fp1-O2; Fp1-C4. The extracted features were

subjected to z-score normalization for the train and test

matrices, separately.

Feature selection

To improve the classification accuracy and to reduce the

risk of over-fitting the learned classifier model, it was

mandatory to perform the feature selection (Guyon and

Elisseeff 2003). In this study, the selection of features was

performed based on the method of feature weighting

according to the ROC curves of individual features

(Mamitsuka 2006). According to the method, the Area

under the ROC curve (AUC) was computed for each fea-

ture that reflected its ability to discriminate the target

classes. The resulting values of AUC ranged from 0 to 0.5

that implicated bad to good classification ability. The fea-

tures were assigned with weights and were arranged in

descending order accordingly. For example, a features with

lager weight was top-listed than a feature with a lesser

weight. Now the top-listed features were considered as

most relevant to the target labels. Moreover, the ranked-

ordered features might be correlated with each other and

could be redundant. Hence, the correlated features were

identified and discarded. Hence, only the most relevant

features were selected and employed for classification

purposes.

The integration of features included concatenation of top

ranked features from each feature set such as spectral

powers of different bands and inter-hemispheric coher-

ences. More specifically, top 5 features from delta pow-

er ? top 5 features from theta power ? top 5 features from

alpha power ? top 5 features from beta power ? top 5

features from coherence. The integration of features was

performed to determine the best feature patterns that

corresponds highest classification of the AUD and healthy

controls.

Classification

In this study, the classification was performed after

selecting the most discriminant features. The feature

selection was based on individual features such as power in

different frequency bands and also based on their integra-

tion such as power and inter-hemispheric coherences. After

selection of most discriminant feature, they were employed

as input data to logistic regression (LR) classifier (Hosmer

Jr and Lemeshow 2004). In this study, the LR classifier was

used to model the relationship between the reduced set of

features and the corresponding treatment outcomes (AUD

patients and healthy controls) y = [AUD, Controls],

according to Eq. (4) (Hosmer Jr and Lemeshow 2004). The

LR classifier was utilized in various epidemiological

studies mainly for binary classification problems such as

classification of cancer cases as malignant or benign and

classification of microarray data (Liao and Chin 2007;

Timmerman et al. 2005; Zhu and Hastie 2004).

The LR model coefficients were estimated based on

maximum likelihood method and resulted into a likelihood

value l(x), where 0 B l(x) B 1, which was an indication of

a study participant’s association either to AUD patients

group or healthy controls group. If l(x) was greater than a

threshold = 0.5, the study participant was declared as

associated with AUD patients group, and otherwise

declared as associated with healthy control group, as

mentioned in Eq. (2):

FðzÞ ¼ EðY=xÞ ¼ 1

1þ e�z
ð2Þ

where Y indicates the class labels and assigned a value

either ‘ADU’ or ‘Controls’. In addition, x represents a

combination of different EEG features, i.e., the spectral

power of different frequency bands and inter-hemispheric

coherences. To obtain the LR model from the logistic

function, we used Eq. (3):

z ¼ aþ b1X1 þ b2X2 þ � � � þ bkXk ð3Þ

where z is a linear combination of a plus b1 multiplied with

X1, plus b2 multiplied with X2, and plus bk multiplied with

Xk, where the Xk are the independent variables and a, and bi
are constant terms representing unknown parameters. Fur-

thermore, by replacing the value of z from Eq. (3) to

Eq. (2), the following Eq. (4) represents the logistic

function:

FðzÞ ¼ EðY=xÞ ¼ 1

1þ e�ðaþ
P

biXiÞ
ð4Þ
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In terms of response and non-response, the risk of a

person to be non-responder or a responder is estimated and

represented by Y or l(x). The LR classifier resulted into a

likelihood value l(x), where 0 B l(x) B 1, which was an

indication of subjects, associated either with AUDs or

healthy controls. If l(x) was greater than the thresh-

old = 0.5, the subject was declared as AUD, and otherwise

as a healthy control. In summary, the LR classifier gener-

ated probability values to classify the study participants as

either AUD patients or healthy controls.

Validation

The validation of the proposed ML method was important

and based on computing values such as the classification

accuracies, sensitivities, and specificities and F-measures. In

this study, the values of classifier performances were com-

puted during iterations of the 10-CV and were finally aver-

aged. The true positive (TP) means the number of patients

that were identified as patients and directly proportional to

the classification sensitivity (Eq. 5). In addition, true nega-

tive (TN) means the number of healthy controls that were

identified by the proposed method as healthy and directly

proportional to the classification specificity (Eq. 6). The

classification accuracy was computed as a ratio of sum of TP

and TN divided by the sum of all possible cases during a

classification process (Eq. 7). On the other hand, the false

positives (FP) and negatives (FN) were considered as errors

during classification and erroneously identified as either

AUD patients or healthy controls.

F-scores as defined in Eq. (8), was applied to compare

two classification models. F-score could be interpreted as a

weighted harmonic average of precision and recall values

(Van Rijsbergen 2004). The precision was defined as the

probability that a (randomly selected) patient analyzed to

be AUD was really AUDs. On the other hand, the

recall was defined as the probability that an (randomly

selected) AUD patient was correctly identified as AUDs. F-

score was calculated using harmonic averaging because it

preferred the balance between precision and recall so it

would determine better for the optimal pair in highly

unbalanced datasets. Due to an absence of prior informa-

tion to either precision or recall, the beta value was set to 1

and the F-score was also named F1 score:

Sensitivity ¼ TP

TPþ FN
ð5Þ

Specificity ¼ TN

TN þ FP
ð6Þ

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð7Þ

F ¼ ð1þ b2Þ � precision� recall

b� precisionþ recall
ð8Þ

Results

Table 1 summarizes the alteration of brain activities based

on AP, RP, standard deviation (SD) and the group com-

parison p value. During EC condition, the group compar-

ison between AUD and controls exhibited an increase in

total AP involving whole brain of AUD as compared with

controls (53.90 vs. 106.88 lV2; APAUD & 1/2APcontrol).

The AP increase was observed in most of frequency bands

except for EC high beta and EO delta, which showed slight

decrease (p[ 0.05). Only theta and high gamma band

presented significant increase of AP in AUD as compared

with controls (p\ 0.01 and p\ 0.05 respectively). High

gamma also showed a significant increase (p\ 0.05) of AP

in occipital and left temporal region. To summarize, as

compared with controls, the AP of AUDs increased sig-

nificantly in Theta and High Gamma frequency bands, and

was larger but not significantly different in most other

frequency bands..

Table 2 provides classification results for the two study

groups involving the AUD patients and healthy controls.

As shown in the table, among the EEG frequency bands the

theta and delta, and high gamma bands showed highest

classification performance such as accuracy = *85 %.

Moreover, the integration of all power bands resulted into

an accuracy of 86.6 %. The inter-hemispheric coherence

has shown accuracy of 80.8 % and combined with theta

and hi-gamma features resulted into 89.3 %.

Discussion

In this paper, a ML method is proposed that utilizes EEG-

based features as input data to discriminate the AUD

patients from healthy controls. In this paper, the primary

finding is that the EEG features such as the EEG powers

and interhemispheric coherences computed from theta,

delta, and high gamma bands can be used as physiological

markers for the screening of AUD patients. In addition,

these features are used as input data for the proposed ML

models to classify the AUD patients and healthy controls.

In contrary, the conventional methods for screening require

subjective feedbacks from the AUD patients that may

confound the screening process due to the human errors

because quantification of the AUD intake is a tedious task.

In Table 1, the theta and high gamma bands show a

significant difference between the groups which is in

accordance with literatures (Porjesz and Begleiter 2003;
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Rangaswamy et al. 2002, 2003). These findings implicate

that the theta, beta and high gamma bands are most sig-

nificant while analyzing the AUD patients and healthy

controls. In Table 1, spectral power shows their ability in

analyzing and discriminating AUD patients from healthy

controls. Spectral power shows overall differences between

AUD patients and controls but show insignificance at every

electrode location. Using spectral power would help to

explain the alteration of brain activities of AUD patients. In

comparison, AP and RP show more discrimination between

the two groups. Especially, theta power has proved its

potential by outperforming other frequency bands with a

remarkable power increase exhibited in AUD patients.

Theta power changes, observed in alcoholics, were also

reported in literature as a consistent indication for alco-

holics screening. In addition, power of gamma band shows

significant differences between AUD patients and controls.

However, its potential has not received adequate attention.

On the other hand, the inter-hemispheric coherence exhi-

bits associations between different brain regions and their

variation under the effect of alcohol in AUD patients.

The classification results presented in Table 2 reveal the

significance of the theta, and high gamma bands and their

integration have revealed classification accuracy nearly

*87 %. This implicates the robustness of the proposed

method. Since the results are based on the logistic

Table 1 EEG’s mean AP in the

whole brain of different

frequency bands

Variable AUD Controls Group comparison

p value
Mean SD Mean SD

EC

Delta 9.88 (9 %) 1.64 8.73 (16 %) 1.5 0.480 (0.004)

Theta 52.53 (49 %) 18.7 18.45 (34 %) 4.7 0.003 (0.044)

Alpha 13.48 (13 %) 4.87 13.18 (24 %) 4.2 0.906 (0.001)

Beta 8.42 (8 %) 1.52 8.17 (15 %) 1.5 0.845 (0.000)

High beta 1.43 (1 %) 0.43 1.52 (3 %) 0.4 0.735 (0.001)

Gamma 2.99 (3 %) 0.96 2.02 (4 %) 0.9 0.055 (0.086)

High gamma 18.16 (17 %) 7.16 1.83 (3 %) 0.5 0.018 (0.005)

Total 106.88 (100 %) 53.90 (100 %)

EO

Delta 8.38 (9 %) 1.26 8.59 (18 %) 2.0 0.867 (0.001)

Theta 45.87 (51 %) 15.5 17.34 (36 %) 4.8 0.012 (0.046)

Alpha 6.89 (8 %) 1.41 6.32 (13 %) 1.2 0.586 (0.000)

Beta 8.91 (10 %) 2.32 8.28 (17 %) 1.5 0.679 (0.000)

High beta 2.28 (3 %) 1.22 2.58 (5 %) 1.7 0.677 (0.004)

Gamma 4.05 (5 %) 2.08 2.97 (6 %) 1.8 0.183 (0.037)

High gamma 13.44 (15 %) 5.41 2.25 (5 %) 0.9 0.010 (0.015)

Total 89.81 (100 %) 48.34 (100 %)

Numbers without parentheses refer to AP, numbers with parentheses refer to RP

Bold values indicates p\ 0.01

Table 2 Classifying AUD and healthy controls based on LR classification

QEEG feature Accuracy (%) Sensitivity (%) Specificity (%) F-measure

Delta power 79.1 82.5 80 0.80

Theta power 85 82.5 87.5 0.84

Alpha power 75.4 90 75 0.78

Beta power 85 85 87.5 0.84

Hi-gamma band 85.8 85 87.5 0.87

Integration of theta and hi-gamma 87.8 87 89.5 0.89

Integration of alpha, beta and delta 86 86 88.5 0.85

Inter-hemispheric coherence 80.8 82.5 80 0.78

Integration of theta, alpha, beta and hi-gamma bands 86.6 95 82.5 0.88

Integration of theta, high gamma and coherence 89.3 88.5 91 0.90

Bold values indicates p\ 0.01
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regression classifier which is considered as a simple clas-

sifier when compared with the SVM. Hence, the proposed

ML classifier model is simple in complexity. EEG may be

utilized to screen AUD patients, to predict relapse and to

evaluate medication effects. As summarized in Table 3, in

spite of the rapid development in physiological studies of

alcoholic brains, few reports discuss application of EEG for

early relapse detection and medication evaluation, because

low accuracy made it impossible for EEG clinical appli-

cability for AUD patients. Besides that, in review article

about clinical and neuropsychiatric application for alcohol

addiction treatment (Ritsner 2009; Tavakoli et al. 2011),

EEG was not mentioned in primary health care. In addition,

few studies have applied EEG for AUD treatment. For

relapse prediction, there are few studies using spectral

power and nonlinear features, e.g., extracting Hjorth fea-

tures from REEG. Unfortunately, their accuracy is not

efficient enough for clinical practice because of either low

sensitivity (Bauer 2001) or low specificity (Winterer et al.

1998).

Regarding AUD screening, various studies have utilized

different electrophysiological features and classification

algorithms with high accuracy ([90 %) for the classifica-

tion between alcoholics and controls. These results have

Table 3 Related studies about EEG application and their limitations

Objective EEG brain dynamics Algorithm Authors Results

(%)

Predicting

relapse

Spectral power Logistic regression Bauer (2001) 75

Spectral power with Hjorth’s

features

Discriminant analysis and

ANN

Winterer et al. (1998) 83–85

P300 Discriminant function analysis Wan et al. (2010) 63.9

Screening

alcoholics

Spectral power and coherence Locally weight regression Guntaka and Tcheslavski (2013) 66.45

ERP’s components ANN Lopes et al. (2004) 71

ERP’s components Learning vector quantization Lopes et al. (2005) 80

Gamma visual evoked potential

(VEP) power

Least square support vector

machine (SVM)

Shooshtari and Setarehdan (2010) 82.98

Raw EEG in F4 and P8 Hidden Markov model Zhong and Ghosh (2002) 90.50

Gamma VEP MLP–BP with elliptic filter Kanna et al. (2005) 91

Approximate entropy (ApEn),

Sample entropy (SampEn),

Largest Lyapunov exponent

(LLE), (high order spectra) HOS

SVM Acharya et al. (2012) 91.70

HOS Fuzzy Sugeno classifier Faust et al. (2013a) 92.40

ERP’s components Random forest Kuncheva and Rodrı́guez (2013) 94.50

Multi gamma band VEP MLP Palaniappan (2007) 94.55

Yule Walker coefficient Artificial NN Ek et al. (2013) 95.00

Wavelet relative power K-nearest neighbor Faust et al. (2013b) 95.80

Horizontal visibility graph entropy K-nearest neighbor Zhu et al. (2014) 95.80

Gamma VEP PCA Ong et al. (2005) 95.83

Gamma VEP MLP Palaniappan et al. (2002) 96.10

Gamma VEP LDA Palaniappan (2005) 97.40

Gamma VEP KNN Palaniappan (2003) 98.71

Spectral power using Haar wavelet Multilayer perceptron network

(MLP)

Kousarrizi et al. (2009) 98.83

Spectral entropy Probabilistic neural network Padmanabhapillai et al. (2006) 99.00

VEP energy in occipital KNN OR support vector data

description

Zúquete et al. (2010) 99.20

Mean and variance of signals Bayes with KNN and PCA

(claim to classify AA)

Yazdani and Setarehdan (2007) 100

Classify epileptic

and alcoholic

Recurrence quantification analysis

(RQA)

Gaussian mixture model

(GMM)

Ng et al. (2012) 98.6
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confirmed the difference between AUD and controls, and

provide evidence that EEG may be a potential screening

tool for AUD. However, there is no discussion or analysis

about the features and algorithms used in most of those

studies. In this study, integration of EEG features such as

theta power, high gamma power and inter-hemispheric

coherence are proposed as markers that can classify the

AUD patients with an accuracy of *89 %.

Studies based on EEG observation in patients with

alcoholism had resulted into seizures like patterns similar

to the ones happened during epilepsy. Ping et al. (Ng et al.

2012) has implemented an automatic method to differen-

tiate epileptic, controls and alcoholics using EEG with

accuracy of 98.6 %. However, the validity of data was

doubtful because the datasets were acquired from different

sources and experiment designs such as visual oddball

stimulus versus eye closed. The data were recorded with

different equipment having 64 and 128 channels, and ref-

erences systems (Cz vs. common average reference)

without any indication about the synchronization between

two datasets. Moreover, the dataset of alcoholism in the

study contained not only alcoholics but also control sub-

jects (Zhang et al. 1997). There were no standard proce-

dures to categorize study populations during clinical

evaluation. In addition, factors such as sociodemographic

characteristics and family drinking history need to be

considered and controlled.

There is a possibility that our proposed ML models are

confounded with some outliers other than the relevant

patterns extracted from the brain activities. We have ruled

out this concern by (1) properly adopting artifact removal

techniques, (2) standardizing preprocessed data based on

z-scores, (3) during classifier’s testing and training,

selecting random data points so that each data point in the

feature space can be used. Based on all these precautions,

we may conclude that the results shown here are un-biased

and true representation of the information from the recor-

ded pretreatment EEG data.

Conclusion

In this study, a ML method was proposed to classify the

AUD patients from healthy controls base on resting-state

EEG data. While comparing with the healthy controls, the

AUD patients have shown a significant increase in theta,

high gamma powers and inter-hemispheric coherences. The

classification results implicate that qEEG features such as

theta, gamma power and inter-hemispheric coherence

could be utilized as characteristic features to automatically

learn the disease-specific patterns in the resting-state EEG

data acquired from the study groups. In addition, it has

been concluded that the integration of qEEG features could

reach a highly accurate method. Furthermore, the proposed

ML method implicate that EEG-based CAD tool can be

developed and help in making the AUD screening an

automated and a standard procedure.
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(2009) Chronic alcoholism: insights from neurophysiology.

Neurophysiol Clin Clin Neurophysiol 39(4):191–207

Coutin-Churchman P, Moreno R, Añez Y, Vergara F (2006) Clinical
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