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Abstract Each patient is assigned to a specific scanner in CT department of a

large-size hospital. Emergency patients have non-preemptive priority access to

service. The service time of each CT scanner follows an Erlang distribution by data

analysis from this hospital. We develop an M/Ek/1 queueing model with emergency

non-preemptive priority. Firstly, the expected waiting time of the jth phase regular

patient in the waiting queue is given by Laplace transform. Using this and gener-

ating function of the steady-state of phase distribution, the expected waiting time of

an arbitrary regular patient is obtained. A total cost function which includes the

penalty cost for unutilized medical resources and waiting cost of regular patients is

constructed. The optimal arrival rate of regular patients so as to minimize the total

cost is given by Kuhn–Tucker condition. Some numerical examples which are based

on real data are given.
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1 Introduction

Wherever queues exist, customer cutting in line may occur (Allon and Hanany

2012; He and Chavoushi 2013). Queueing system with priority clients has been

widely studied. Afeche and Mendelson (2004) develop a queueing model which

positions of customers in the waiting queue are determined by how much they pay

to the system. Israeli Queue model is introduced in Boxma et al. (2008). Perel and

Yechiali (2013) consider the Israeli Queue with priority. They provide an extensive

probabilistic analysis and calculate the key performance measures of this queueing

system. Queueing models with self generation of priorities are developed in the

works of Wang (2004), Gómez-Corral et al. (2005), Krishnamoorthy et al. (2005,

2008, 2009). Self generation of priorities is described as follows. All the customers

are homogeneous (in terms of priority) when they arrive in. Their conditions

subsequently change while waiting in the queue. Then waiting customers generate

into priority. Only one priority generated customer can wait at a time and a

customer generating into priority at that time will have to leave the system in search

for emergency service elsewhere (Gómez-Corral et al. 2005; Krishnamoorthy et al.

2005, 2009). Krishnamoorthy et al. (2008) consider a queueing system with a

waiting space of capacity c (as many as the number of servers) which is provided

exclusively for the priority generated customers. The matrix analytic method is

employed to analyze these queueing models. Zhang and Shi (2010) consider an M/

M/1 preemptive priority queueing model with two classes of customers. The

stationary queue length distribution is given by quasi-birth-and-death (QBD)

process with infinitely many phases. He and Chavoushi (2013) develop a queueing

model with customer interjections, where customers are distinguished into normal

and interjecting. All customers join a single queue. A normal customer joins the

queue at its end, while an interjecting customer tries to join the queue as close to

the head of the queue as possible. They use two parameters to describe the

interjection behavior: the percentage of customers interjecting and the tolerance

level of interjection by individual customers. The waiting times of normal

customers and of interjecting customers are given. Moreover, Wang and Huang

(1995) deal with the economic behavior of a removable server in the N policy M/Ek/

1 queueing system with finite capacity. A cost function is given. But no analytical

solution of the optimal N policy to minimize the cost function is given since the

structure of the cost function is complex.

This work was originally motivated by a problem faced by Sichuan Provincial

People’s Hospital (SCPH), which is a large-size hospital in China. After

interviewing the medical staff and manager in SCPH, CT scan is always a

bottleneck for providing patients timely service. Demands for CT scan come from

both regular patients, who make appointments in advanced, and emergency patients,

who come without appointments and get higher priority (Green et al. 2006; Luo

et al. 2012). CT scan items include plain scan, enhancement scan and other types of

scan. Enhancement scan and other types of scan will be assigned to the specific

scanner because of the different preparation work and operation process. Plain scan
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can be carried out on each scanner. Emergency patients only need plain scan

according to historical data.

One feature in this setting is the non-preemptive priority of emergency patients.

Emergency patients get non-preemptive priority over regular patients at the time of

their arrivals. All the emergency patients should be accommodated. The ability to

match fluctuating demand will increase the reputation of the hospital (Eric and

Thomas 2009). The random demand of emergency patient makes it necessary to

consider queue problem with emergency non-preemptive.

The hospital currently allocates one separate scanner for the exclusive use for

emergency patients. The utilization rate of the dedicated CT scanner is low. Two

scanners for regular patients are overcrowded, even though regular patients and

emergency patients are isolated. Therefore, there are two tasks that need to be done.

First, the dedicated scanner should be shared by regular patients (Green et al. 2006;

Luo et al. 2012). Meanwhile, emergency patients are given non-preemptive priority

access to service (Anderson et al. 2010). In other words, after completion of the

current patient, server must necessarily be attending to emergency patient if there is

any emergency patient waiting in the queue. Regular patients have to accept this

queue jumping. Second, the arrival rate of regular patients should be determined to

reduce overcrowding. This could be done by appointment scheduling since all the

patients except emergency patients should make appointments in advance.

The service time is not exponentially distributed but Erlang distributed since the

various items of scanning. We first model this queueing system. The expected

waiting time of an arbitrary regular patient is given. An optimal arrival rate of

regular patients is obtained by Kuhn–Tucker condition to achieve tradeoff between

the waiting cost of regular patients and the penalty cost for unutilized medical

resources. The penalty cost for unutilized medical resources in this paper is similar

to that described in Gupta and Wang (2008).

The rest of this paper is organized as follows. Section 2: model description. In

Sect. 3, we give performance measures of the queueing system. In Sect. 4,

numerical study is conducted on basis of real data in SCPH. A conclusion is given in

Sect. 5 with a discussion of our results and potential direction for future research.

2 Model description

A single queue is developed at each CT scanner since each patient will be assigned

to a specific scanner. This work is done by triage nurses who are in charge of the

main service desk. So we consider a single server queue with two types of

independent arrivals, regular patients and emergency patients. Regular patients join

the queue at its end. The new emergency arrival cuts in line in front of the first

regular patient in the waiting queue. Namely, emergency patients in the waiting

queue are served in a first-come, first-served (FCFS) manner.

There are total c minutes in one service session. We assume that the arrivals of

both emergency patients and regular patients are homogeneous Poisson process with

rate k1 and k2 per minute, respectively. k ¼ k1 þ k2. The service time is the time

from the patient going in to come out from CT room. The service time follows an
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Erlang distribution with mean 1
l and stage parameter k from data analysis of SCPH.

The Erlang type k distribution is made up of k independent and identical exponential

stages, each with mean 1
kl. A patient goes into the first stage of service (say stage k),

then progresses through the remaining stages and must complete the last stage (say

stage 1) before the next patient enters the first stage k.

The queueing system could be formulated as a continuous timeMarkov chain. The

number of phases increases k if there is a new arrival. The number of phases decreases

1 if the patient in service finishes one stage. LetN(t) denote the number of phases in the

system at time t and define pj (j > 0) by pj ¼ limt!1 PfNðtÞ ¼ jg, where we assume

the preceding limit exists. The steady-state of phase distribution exists if q ¼ k
l\1.

Meng (1989) gives the steady-state of phase distribution ofM/Ek/1 as follows.

p0 ¼ 1� q;

pj ¼ ð1� qÞ
Pk

i¼1 Ai

1

si

� � j

; j ¼ 1; 2; . . .;

8
<

:
ð1Þ

where Ai ¼
Qk

l¼1;l 6¼i
1

1�si
sl

. si ð1 6 i 6 kÞ is the different real root of polynomial

equation kðsþ s2 þ � � � þ skÞ � kl ¼ 0 of degree k and jsij[ 1. The generating

function UðsÞ of the phase distribution (1) is

UðsÞ ¼ klð1� qÞð1� sÞ
klþ kskþ1 � ðkþ klÞs : ð2Þ

3 Performance measures of the model

Emergency patient in the waiting queue will not be jumped since emergency

patients are served in a FCFS manner. It means that the position of each emergency

patient in the waiting queue is monotone decreasing. However, this is not the case

for regular patients. We focus on the waiting time of regular patients. Let the

position of a new arrival regular patient in the waiting queue be the jth phase

(j > 1). j ¼ 0 means waiting has ended. Let Wj (j > 1) denote the waiting time of

the jth phase regular patient in the waiting queue. Obviously,W0 ¼ 0. The first thing

is to give the waiting time of the jth phase regular patient in the waiting queue at

time t by Laplace transform. Then we give the expected waiting time of an arbitrary

regular patient based on the Poisson arrivals see time averages principle (PASTA)

and the fact that the steady-state of phase distribution is not influenced by

emergency cutting in line. At last, we obtain the optimal arrival rate of regular

patients so as to minimize the total cost function in Sect. 3.4.

3.1 Waiting time of the jth phase regular patient in the waiting queue

For the jth phase regular patient in the waiting queue at time t, his/her position will

be changed if one of the next two random events occurs.
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1. Remaining arriving time T1 of the next emergency patient is longer than

departure time T2 of the current stage in service, then the position of this regular

patient will goes from j to j� 1:
2. Remaining arriving time T1 of the next emergency patient is shorter than

departure time T2 of the current stage in service, then the position of this regular

patient will goes from j to jþ k:

The cumulative distribution of T1 and T2 are expressed by PðT1 6 tÞ ¼ 1� e�k1t

and PðT2 6 tÞ ¼ 1� e�klt, respectively. Obviously, PðT1 6 T2Þ ¼ k1
k1þkl. So T1 and

T2 are independent and exponentially distributed random variables with parameters

k1 and kl, respectively. Let Zj be the position’s changed time of the jth phase

regular patient in the waiting queue. Then Zj ¼ minðT1; T2Þ. The density function of

Zj is given by fZjðtÞ ¼ ðk1 þ klÞe�ðk1þklÞt.

Let w�
j ðsÞ ¼ E½e�sWj � ¼

R1
0

e�stfWj
ðtÞdt be the Laplace transform of Wj, where

fWj
ðtÞ is the density function of Wj. Then we give Theorem 1 as follows.

Theorem 1 For the jth ðj > 1Þ phase regular patient in the waiting queue, the

Laplace transform w�
j ðsÞ of waiting time Wj satisfies

w�
j ðsÞ ¼ 1� s

kl

Xj

m¼1

X1

l¼1

ql1
Xk

i1¼1

Xk

i2¼1

� � �
Xk

il¼1

w�
mþi1þi2þ���þil

ðsÞ
" #( )

� s

kl

Xj

m¼1

w�
mðsÞ;

ð3Þ

where q1 ¼ k1
kl.

Proof From the above discussion and property of conditional expectation, w�
j ðsÞ

could be written as follows.

w�
j ðsÞ ¼ E½e�sWj jT1\T2�PðT1\T2Þ þ E½e�sWj jT1 [ T2�PðT1 [ T2Þ

¼ E½e�sðZjþWjþkÞ�PðT1\T2Þ þ E½e�sðZjþWj�1Þ�PðT1 [ T2Þ

¼ E½e�sZj � k1
k1 þ kl

� w�
jþkðsÞ þ

kl
k1 þ kl

� w�
j�1ðsÞ

� �

¼ k1 þ kl
k1 þ klþ s

k1
k1 þ kl

� w�
jþkðsÞ þ

kl
k1 þ kl

� w�
j�1ðsÞ

� �

¼ k1
k1 þ klþ s

� w�
jþkðsÞ þ

kl
k1 þ klþ s

� w�
j�1ðsÞ:

ð4Þ

Multiplying both sides of (4) by k1þklþs
kl , (4) becomes
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w�
j ðsÞ � w�

j�1ðsÞ ¼ q1 w�
jþkðsÞ � w�

j ðsÞ
h i

� s

kl
w�
j ðsÞ

¼ q1
Xk

i¼1

w�
jþiðsÞ � w�

jþi�1ðsÞ
h i

( )

� s

kl
w�
j ðsÞ:

ð5Þ

Iterating the above equality by itself, we have

w�
j ðsÞ � w�

j�1ðsÞ

¼ q1
Xk

i1¼1

w�
jþi1

ðsÞ � w�
jþi1�1ðsÞ

h i
� s

kl
w�
j ðsÞ

¼ q1
Xk

i1¼1

q1
Xk

i2¼1

w�
jþi1þi2

ðsÞ � w�
jþi1þi2�1ðsÞ

h i
� s

kl
w�
jþi1

ðsÞ
( )

� s

kl
w�
j ðsÞ

¼ q21
Xk

i1¼1

Xk

i2¼1

w�
jþi1þi2

ðsÞ � w�
jþi1þi2�1ðsÞ

h i
� q1

Xk

i1¼1

s

kl
w�
jþi1

ðsÞ � s

kl
w�
j ðsÞ

¼ qn1
Xk

i1¼1

Xk

i2¼1

� � �
Xk

in¼1

w�
jþi1þi2þ���þin

ðsÞ � w�
jþi1þi2þ���þin�1ðsÞ

h i

� s

kl

Xn�1

l¼1

ql1
Xk

i1¼1

Xk

i2¼1

� � �
Xk

il¼1

w�
jþi1þi2þ���þil

ðsÞ
" #

� s

kl
w�
j ðsÞ

¼ qn1
Xk

i1¼1

Xk

i2¼1

� � �
Xk

in�1¼1

w�
jþi1þi2þ���þin�1þkðsÞ � w�

jþi1þi2þ���þin�1
ðsÞ

h i

� s

kl

Xn�1

l¼1

ql1
Xk

i1¼1

Xk

i2¼1

� � �
Xk

il¼1

w�
jþi1þi2þ���þil

ðsÞ
" #

� s

kl
w�
j ðsÞ:

ð6Þ

The last equality of (6) holds since

Xk

in¼1

w�
jþi1þi2þ���þin

ðsÞ � w�
jþi1þi2þ���þin�1ðsÞ

h i
¼ w�

jþi1þi2þ���þin�1þkðsÞ � w�
jþi1þi2þ���þin�1

ðsÞ:

The Laplace transform w�
j ðsÞ is always between 0 and 1 since Wj > 0 and s > 0

(Ross 2007). That is, �1 6 w�
j1
ðsÞ � w�

j2
ðsÞ 6 1 (8 j1, j2). Let

M ¼ maxfw�
j1
ðsÞ � w�

j2
ðsÞg. Then w�

j1
ðsÞ � w�

j2
ðsÞ 6 M holds, 8 j1, j2. There are at

most kn�1M from

Xk

i1¼1

Xk

i2¼1

� � �
Xk

in�1¼1

w�
jþi1þi2þ���þin�1þkðsÞ � w�

jþi1þi2þ���þin�1
ðsÞ

h i
:

So
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qn1
Xk

i1¼1

Xk

i2¼1

� � �
Xk

in�1¼1

w�
jþi1þi2þ���þin�1þkðsÞ � w�

jþi1þi2þ���þin�1
ðsÞ

h i

6 qn1k
n�1M ¼ qn � 1

kn
� kn�1M ¼ qn � 1

k
�M:

limn!1 qn � M
k
¼ 0 since q\1. As n ! 1, (6) becomes

w�
j ðsÞ � w�

j�1ðsÞ ¼ � s

kl

X1

l¼1

ql1
Xk

i1¼1

Xk

i2¼1

� � �
Xk

il¼1

w�
jþi1þi2þ���þil

ðsÞ
" #

� s

kl
w�
j ðsÞ: ð7Þ

Taking summation on both sides of the above equality from j ¼ 1 to j ¼ j and using

the fact that w�
0ðsÞ ¼ 1, we have

w�
j ðsÞ ¼ 1� s

kl

Xj

m¼1

X1

l¼1

ql1
Xk

i1¼1

Xk

i2¼1

� � �
Xk

il¼1

w�
mþi1þi2þ���þil

ðsÞ
" #( )

� s

kl

Xj

m¼1

w�
mðsÞ:

h

Theorem 2 The expected waiting time of the jth ðj > 1Þ phase regular patient in
the waiting queue E½Wj� satisfies

E½Wj� ¼
j

kðl� k1Þ
: ð8Þ

Proof By (3) and E½Wj� ¼ �ðw�
j ðsÞÞ

0 js¼0, we could obtain E½Wj�.

ðw�
j ðsÞÞ

0 js¼0 ¼� 1

kl

Xj

m¼1

X1

l¼1

ql1
Xk

i1¼1

Xk

i2¼1

� � �
Xk

il¼1

w�
mþi1þi2þ���þil

ð0Þ
" #( )

� 1

kl

Xj

m¼1

w�
mð0Þ

¼� 1

kl

Xj

m¼1

X1

l¼1

ql1 � kl
( )

� j

kl
¼� 1

kl

Xj

m¼1

X1

l¼1

k1
l

� �l
( )

� j

kl

¼� j

kl
� k1
l� k1

� j

kl
¼� j

kl
� l
l� k1

:

Then E½Wj� ¼ j
kl �

l
l�k1

¼ j
kðl�k1Þ. h

Theorem 2 shows that the average waiting time of the jth phase regular

patient in the waiting queue is closely related to the arrival rate of emergency

patients k1 and independent of the arrival rate of regular patients k2 since an new

arrival regular patient joins the queue at its end. So those regular patients who

have been in the waiting queue will not be influenced by the new arrival regular

patients.
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3.2 Expected waiting time of an arbitrary regular patient

An new arrival regular patient will occupy the ðxþ 1Þth to ðxþ kÞth phases in the

system if he/she sees x phases in the system at time t. His/her position in the waiting

queue is the xth phase. Let WR be the waiting time of an arbitrary regular patient.

w�
RðsÞ is the Laplace transform of WR. Theorem 3 could be obtained by PASTA

principle and steady-state of phase distribution (1)–(2).

Theorem 3 The expected waiting time of an arbitrary regular patient E½WR�
satisfies

E½WR� ¼
1

kðl� k1Þ
kðk þ 1Þ
2ðl� kÞ

� �

: ð9Þ

Proof The cumulative distribution function WRðtÞ of WR satisfies

WRðtÞ ¼ p0 þ
P1

j¼1 pjPrð0\Wj 6 tÞ. Then w�
RðsÞ ¼

P1
j¼1 pjw

�
j ðsÞ. According to

(2) and (8), we have

E½WR� ¼ �ðw�
RðsÞÞ

0 js¼0¼
X1

j¼1

pjE½Wj� ¼
X1

j¼1

pj
j

kðl� k1Þ
¼ 1

kðl� k1Þ
X1

j¼1

pj � j

¼ 1

kðl� k1Þ
dUðsÞ
ds

js¼1

� �

:

ð10Þ

Using L’ Hospital Law twice on
dUðsÞ
ds

js¼1, we have

E½WR� ¼
1

kðl� k1Þ
lð1� qÞkðk þ 1Þ

2ðk� lÞ2

" #

¼ 1

kðl� k1Þ
kðk þ 1Þ
2ðl� kÞ

� �

:

h

3.3 Expected idle time of the service system

p0 is the long-run probability that there will be exactly 0 patient in the system. It

usually turns out that p0 equals to the long-run proportion of time that the system

contains exactly 0 patient. So the expected idle time E(I) of medical resources is

p0 � c.

3.4 Optimal arrival rate of regular patients

All the emergency patients should be accommodated. Emergency arrival rate is

independent of the arrival rate of regular patients. CT department couldn’t further

decrease the waiting time of emergency patients except buying new scanners since

emergency patients get non-preemptive priority over regular patients. However,

adding new devices is impossible in the short-term because of the limitation of fund
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and space. Emergency arrival rate is not influenced by schedulers. How to reduce

overcrowded in CT department? One way is to modulate the arrival rate of regular

patients. This could be done by appointment scheduling in advance.

Intuitively, CT department wants to decrease regular patients’ waiting time and

idle time of medical resources. The expected waiting time of regular patients E(W)

is k2c � EðWRÞ. The expected idle time E(I) of medical resources is

p0 � c ¼ ð1� k1þk2
l Þ � c. Obviously, E(W) increases as k2 increases. E(I) decreases

as k2 increases. So a proper arrival rate of regular patients should be determined to

reduce overcrowding of regular patients, as well as to avoid too much idle time of

medical resources.

In what follows, a nonlinear programming is constructed to obtain the optimal

arrival rate of regular patients.

minGðk2Þ ¼ k2c �
1

kðl� k1Þ
ðk1 þ k2Þðk þ 1Þ
2ðl� k1 � k2Þ

� �

þ hc � 1� k1 þ k2
l

� �

0 6 k2\l� k1:

8
<

:
ð11Þ

The objective function is to minimize the total cost function Gðk2Þ which includes

penalty cost for unutilized medical resources and waiting cost of regular patients,

where the parameter h (h[ 0) is the unit penalty cost for unutilized medical

resources supposing that the unit waiting cost of a regular patient is 1. The con-

straint condition is obtained from q ¼ k
l\1. Waiting time of emergency patients is

not considered in (11) since emergency patients have been given non-preemptive

priority. This is an appropriate way to decrease their waiting time.

l� k1 is not the minimum point of Gðk2Þ since Gðk2Þ is a continuous function

with respect to k2 on ½0; l� k1Þ and Gðk2Þ ! 1 as k2 ! l� k1.

Proposition 1 There exists an unique optimal solution of the nonlinear

programming (11) on ½0;l� k1Þ:

Proof Taking second derivative of Gðk2Þ with respect to k2, the following

inequality

d2Gðk2Þ
dk22

¼ cðkþ 1Þ
kðl� k1Þ

� ðl� k1� k2Þ2þ ½ðk1þ 2k2Þðl� k1� k2Þþ k2ðk1þ k2Þ�
ðl� k1� k2Þ3

[0

holds for 06 k2\l� k1. Nonlinear programming (11) is a strictly convex pro-

gramming since the total cost function Gðk2Þ is a strictly convex function and the

constraint conditions are linear functions. From continuity and strictly convexity

with respect to k2, there exists an unique optimal solution of the programming (11)

on ½0;l� k1Þ. h

Obviously, Gðk2Þ is closely related to the parameter h. h is more subjective,

compared with the parameters k, l and k1. To compensate for the unreliability of h
as well as to represent a spectrum of possible actual operating situations across

hospitals, we will consider the total cost function with different h. The objective

function is denoted by Gðk2; hÞ if necessary.
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Theorem 4 Let k�2ðhÞ be the optimal regular patient’s arrival rate for 8 h[ 0;
then

(1) k�2ðhÞ ¼ 0; if lk1ðk þ 1Þ � 2hkðl� k1Þ2 > 0 holds;

(2) k�2ðhÞ should satisfy 0\k�2ðhÞ\l� k1 and

lðk þ 1Þ½ðk1 þ 2k�2ðhÞÞl� ðk1 þ k�2ðhÞÞ
2� � 2khðl� k1Þðl� k1 � k�2ðhÞÞ

2 ¼ 0;

ð12Þ

if lk1ðk þ 1Þ � 2hkðl� k1Þ2\0 holds.

Proof There is an unique Kuhn–Tucker point of (11) on ½0; l� k1Þ since (11) is a
strictly convex programming with respect to k2. Let the Kuhn–Tucker point of the

programming (11) be k�2ðhÞ. The Kuhn–Tucker condition is listed below.

dGðk2; hÞ
dk2

jk�2ðhÞ �c�1 þ c�2 ¼ 0;

c�1k
�
2ðhÞ ¼ 0;

c�2ðl� k1 � k�2ðhÞÞ ¼ 0;

c�1; c
�
2 > 0;

8
>>>>>>>><

>>>>>>>>:

ð13Þ

where c�1; c
�
2 are the generalized Lagrange multipliers and

dGðk2; hÞ
dk2

¼ cðk þ 1Þ
2kðl� k1Þ

� ðk1 þ 2k2Þl� ðk1 þ k2Þ2

ðl� k1 � k2Þ2
� ch

l
:

We look at four separate cases to solving the equation set (13).

• If c�1 6¼ 0, c�2 6¼ 0, there is no solution.

• If c�1 ¼ 0, c�2 6¼ 0, then k�2ðhÞ ¼ l� k1. It is impossible for our queueing system.

• If c�1 6¼ 0, c�2 ¼ 0, then k�2ðhÞ ¼ 0.
dGðk2;hÞ

dk2
jk�2ðhÞ �c�1 þ c�2 ¼

ck1ðkþ1Þ
2kðl�k1Þ2

� ch
l � c�1 ¼ 0:

1. If lk1ðk þ 1Þ � 2hkðl� k1Þ2 [ 0, namely, c�1 [ 0. k�2ðhÞ ¼ 0 is the Kuhn–

Tucker point. k�2ðhÞ ¼ 0 is the unique optimal solution since (11) is a strictly

convex programming.

2. If lk1ðk þ 1Þ � 2hkðl� k1Þ2 6 0, namely, c�1\0 (c�1 6¼ 0). k�2ðhÞ ¼ 0 is not

the Kuhn–Tucker point.

• If c�1 ¼ 0, c�2 ¼ 0, then
dGðk2;hÞ

dk2
jk�2ðhÞ �c�1 þ c�2 ¼

cðkþ1Þ
2kðl�k1Þ �

ðk1þ2k�2ðhÞÞl�ðk1þk�2ðhÞÞ
2

ðl�k1�k�2ðhÞÞ
2

� ch
l ¼ 0.

If lk1ðk þ 1Þ � 2hkðl� k1Þ2 ¼ 0, namely, k�2ðhÞ ¼ 0 is the Kuhn–Tucker point.

k�2ðhÞ ¼ 0 is the unique optimal solution since (11) is a strictly convex

programming. Otherwise, there is an unique Kuhn–Tucker point k�2ðhÞ which
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satisfies lðk þ 1Þ½ðk1 þ 2k�2ðhÞÞl� ðk1 þ k�2ðhÞÞ
2� � 2khðl� k1Þðl� k1 �

k�2ðhÞÞ
2 ¼ 0: The Kuhn–Tucker point k�2ðhÞ also should satisfy the constraint

condition.

The optimal arrival rate k�2ðhÞ of regular patients is obtained. h

It can be seen from Theorem 4 that k�2ðhÞ ¼ 0 if h 6
lk1ðkþ1Þ
2kðl�k1Þ2

. Namely, it is better

not to schedule any regular patient if the unit penalty cost for unutilized medical

resources is below a specified level. We will show this property of the total cost

function with respect to h and k2 in the next section.

4 Numerical analysis

Most of the regular patients in CT department make appointments in advance. The

scheduler will assign each patient to a specific scanner and a specific time on the

work time (the work time is 8:00–12:00, 14:00–18:00 except holidays). Scheduled

patient arrives according to the appointment time. It is always overcrowded on the

workday. The scheduler could modulate regular patient flow by appointment. We

will give the proper arrival rate of regular patients for different scenarios by

theoretical results in Sect. 3. Emergency arrival rate is objective and all the

emergency patients should be accommodated. So the first thing we should do is to

find out the emergency arrival rate k1.
We collect historical data from April 2011 to March 2012 in SCPH. The most

busy month is March 2012. Emergency patients in the morning session (8:00–12:00)

in March 2012 expect holidays (9 days) are selected. There are 840 emergency

patients in this period. The emergency arrival rate is 840
22�4�60 ¼ 0:15909 per minute.

So we take k1 ¼ 0:15909
3

¼ 0:05303 in each scanner since emergency patients are

equally assigned to each scanner and they can be carried out on each device.

Next, we find out the service time distribution. On the work time, No. 1 scanner (in

Room 1) carries out enhancement scanning and plain scanning. No. 2 scanner (in Room

2) carries out other types of scanning and plain scanning. No. 3 scanner (in Room 3)

carries out emergency scanning (plain scanning). The entry time of each patient going

into the room will be recorded by computer. But the departure time is not recorded. So

we select themost busymonth’s most busy period (9:00–10:00,March 2012) to find out

the service time because the scanner is busy in serving in this period. The service time is

between two entry time. Kolmogorov–Smirnov (KS) test statistic and Anderson–

Darling (AD) test statistic are used to conduct the test of goodness offit. The significance

level was set to 0.05. The service time distribution is presented in Table 1.

Reasons for the difference between two CT scanners’ service time are listed

below. The number of scanning parts per one patient and scanning items have an

impact on the service time. The more parts per one patient operates, the more time

he/she needs. Enhancement scanning and other types of scanning need more time

than plain scanning.
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There are 4 h in one service session (c ¼ 240min). We first give the expected

waiting time of an arbitrary regular patient E½WR� for Room 1 and Room 2,

respectively. They are showed by Fig. 1.

Both of the expected waiting time in Room 1 and 2 increase as k2 increases. The
expected waiting time of a regular patient will increase significantly if k2 ! l� k1.
The difference between two rooms is narrow when k2\0:08.

Theorem 4 tells us that k�2ðhÞ ¼ 0, if h 6
lk1ðkþ1Þ
2kðl�k1Þ2

. We show this aspect by

numerical calculation according to the parameters given above. For Room 1,

k�2ðhÞ ¼ 0 if h 6 0:4115. For Room 2, k�2ðhÞ ¼ 0 if h 6 0:5548. We list the results

of the total cost in Tables 2 and 3. Datum in Tables 2 and 3 show that k�2ðhÞ is

consistent with the theoretical result in Theorem 4 as well as the convexity of total

cost function with respect to k2. Moreover, k�2ðhÞ ! 0 if h ! ð lk1ðkþ1Þ
2kðl�k1Þ2

Þþ since the

total cost function Gðk2Þ is continuous with respect to k2. For example, for Room 1,

if h ¼ 0:5[ 0:4115, k�2ð0:5Þ ¼ 0:004 ! 0.

Next, we calculate Gðk2; hÞ and a rate
EðWÞ
Gðk2;hÞ. In what follows, h > 1 always

holds. Reasons are listed below. Unutilized of scarce capacity is specially

unreasonable. CT department would rather make a regular patient wait 1 min than

make medical resources idle 1 min. That is, managers will try to avoid resources’

idling under a reasonable waiting time of regular patients. So the value of h goes

from 1 to 20. The results are given in Figs. 2 and 3.

Both of the two Rooms show the same tendency on total cost. If k2 ! l� k1,
the total cost Gðk2; hÞ will increase significantly because of the sharp increase of

regular patients’ waiting time. Gðk2; hÞ monotonically increases as h increases.

Gðk2; hÞ decreases first and then increases as k2 increases since Gðk2; hÞ is a

strictly convex function with respect to k2. Convexity is apparent with a large h.
Reasons can be seen from Fig. 3. The major factor in total cost is penalty cost for

unutilized medical resources if k2 is small. So the total cost is greater with a

larger h. In the initial stage of growth process in k2, the idle time of medical

resources decreases while the waiting time of regular patients will not significantly

increase. So the total cost decreases more significantly with a large h. The waiting

cost of regular patients becomes the major factor in total cost as k2 increases.

Combining with the results in Tables 2, 3 and Fig. 2, Gðk2; hÞ is convex with

respect to k2 for h[ 0.

At last, the optimal arrival rate k�2ðhÞ (1 6 h 6 20) for two Rooms are obtained

by Theorem 4. Results are given in Fig. 4. The optimal k�2ðhÞ increases as h
increases. Namely, if the hospital is concerned about the penalty cost of unutilized

Table 1 The service time distribution of two rooms

Room no. Distribution (min.) Sample size P value of KS P value of AD

1 Erlang (4, 5.88) 134 0.249 0.255

2 Erlang (1, 5.36) 115 0.282 0.562
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medical resources more than the waiting time of regular patients, the scheduler

should accept more scheduled patients in advance to increase the regular arrival rate

so as to avoid idling of medical resources. It can be seen from Figs. 2 and 4 that

k�2ðhÞ achieves tradeoff between idle time of medical resources and waiting time of

regular patients.
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Fig. 1 The expected waiting time of a regular patient

Table 2 The trend of the total cost for Room 1

h k2

0.000 0.004 0.008 0.011 0.014 0.017 0.020 0.060 0.100

0.0 0.0 2.6 5.7 8.5 11.7 15.3 19.3 152.4 1151.1

0.1 16.5 18.5 21.1 23.5 26.2 29.4 33.0 160.4 1153.5

0.2 33.0 34.5 36.5 38.4 40.8 43.5 46.7 168.5 1155.9

0.3 49.5 50.4 51.9 53.4 55.3 57.6 60.4 176.5 1158.3

0.4 66.1 66.4 67.3 68.4 69.8 71.7 74.1 184.6 1160.7

0.5 82.6 82.3 82.7 83.3 84.4 85.8 87.8 192.6 1163.1

0.6 99.1 98.3 98.1 98.3 98.9 100.0 101.5 200.7 1165.5

0.7 115.6 114.2 113.5 113.3 113.5 114.1 115.1 208.7 1168.0

0.8 132.1 130.2 128.8 128.2 128.0 128.2 128.8 216.8 1170.4

0.9 148.6 146.2 144.2 143.2 142.5 142.3 142.5 224.8 1172.8

1.0 165.2 162.1 159.6 158.2 157.1 156.4 156.2 232.9 1175.2

An M/Ek/1 queues with emergency non-preemptive priority…

123



5 Conclusion

In this paper, we first describe a problem faced by CT department of SCPH. Two

ways to solve this problem are given. Let the dedicated scanner be shared by regular

patients and give emergency patients non-preemptive priority for access to service.

Then we analyze the queueing system to give the waiting time of regular patients.

The optimal arrival rate of regular patients which achieves tradeoff between the

Table 3 The trend of the total cost for Room 2

h k2

0.000 0.002 0.005 0.008 0.010 0.013 0.020 0.060 0.100

0.0 0.0 1.5 4.1 7.0 9.2 12.8 23.1 165.7 820.1

0.1 17.2 18.4 20.6 23.1 25.1 28.3 37.7 175.2 824.4

0.2 34.4 35.3 37.1 39.3 41.0 43.8 52.3 184.7 828.7

0.3 51.5 52.3 53.7 55.4 56.8 59.3 66.9 194.1 833.0

0.4 68.7 69.2 70.2 71.6 72.7 74.8 81.5 203.6 837.3

0.5 85.9 86.1 86.7 87.7 88.6 90.3 96.1 213.0 841.7

0.6 103.1 103.0 103.3 103.9 104.5 105.8 110.8 222.5 846.0

0.7 120.2 120.0 119.8 120.0 120.4 121.3 125.4 232.0 850.3

0.8 137.4 136.9 136.3 136.2 136.3 136.8 140.0 241.4 854.6

0.9 154.6 153.8 152.9 152.3 152.2 152.4 154.6 250.9 858.9

1.0 171.8 170.7 169.4 168.5 168.1 167.9 169.2 260.3 863.2

Fig. 2 The total cost of two rooms
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waiting cost of regular patients and the penalty cost for unutilized medical resources

is obtained.

The optimal arrival rate of regular patients is relatively small in this work. One

way to increase the number of regular patients been served in one session is

overtime working. In the future research, a queueing model with finite capacity

could be constructed to achieve tradeoff among overtime cost of medical resources,

waiting cost of regular patient and idling cost of medical resources.

Fig. 3 The ratio of waiting cost to total cost of two rooms
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Fig. 4 The optimal arrival rate of regular patients
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