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Abstract: Most of modern cryptography primitives have no provably secure constructions. Their safety
is defined on the basis of well-known in the given time cryptanalytic attacks. Moreover, the asymptotic
nature of cryptographic definitions (and definitions of complexity theory in general) does not let us
say anything about how hard it is to break a given cryptographic primitive for keys of a certain fixed
length. Sponge constructions equipped with one ideal permutation and appropriate security param-
eters are suitable for building provably secure cryptographic primitives. The cryptographic primitives
based on sponge and duplex constructions cover most symmetric crypto operations.
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I. Introduction

Assured security is the desirable feature of modern cryptography. Sponge
constructions equipped with only one ideal permutation and appropriate security
parameters can be used to provably secure cryptographic primitives building.
The constructions because of its arbitrarily long input and output sizes allow
building various primitives such as a hash function, a stream cipher or a message
authentication code (MAC). In some implementations the input is short (e.g., a key
and a nonce) while the output is long (e.g., a key stream). In other applications,
the opposite occurs, where the input is long (e.g., a message to hash) and the output
is short (e.g., a digest or a MAC).

Another set of applications takes advantage of the duplex construction which
is closely related to the sponge construction and whose security can be shown to
be equivalent. The duplex construction permits the alternation of input and output
blocks at the same rate as the sponge construction. This allows one to implement
an eflicient reseedable pseudo random bit sequence generation and an one pass
authenticated encryption scheme free from patent limitations.
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II. The sponge construction

The sponge construction (Fig. 1) is a simple iterated construction for building
a function with variable-length input and arbitrary output length based on fixed-length
transformation or permutation f operating on a fixed number b of bits, and a sponge-
complaint padding rule “pad”. Here b is called the width. The sponge construction
operates on a state of b = r + ¢ bits. The value r is called the bitrate and the value ¢
the capacity. Difterent values for bitrate and capacity give the trade-off between speed
and security. The higher bitrate gives the faster cryptographic function that is less secure.

It is important that the last ¢ bits of the b-bit state are never directly affected
by the input blocks and are never output during the digest producing. The capacity
¢, the most important security parameter, determines the attainable security level
of the constructions, as proven in the chapter III.

First, all the bits of the state are initialized to zero. The input message is padded
and cut into blocks of r bits. The sponge construction has two-phase processing.
In the first phase (also called the absorbing phase), r-bit input message blocks are
xored with the first r bits of the state, interleaved with applications of the function f
(a random permutation or a random transformation). The absorbing phase is fin-
ished when all message blocks have been processed. In the second phase (also called
the squeezing phase), the first r bits of the state are returned as the part of the output
bits, interleaved with applications of the function f. The squeezing phase is finished
after the designed length of output digest has been produced.
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Figure 1. The sponge construction

IIL. Security of the sponge construction

The cryptanalytic attacks on the sponge construction can be divided into two
types. The first type is showing a non-random behavior, weakness in an internal
permutation or a random transformation. Such attack leads to built distinguish-
ers on such functions (permutations or transformations). The second type is the
attack on the core security properties of the whole cryptographic function based
on the sponge construction (a preimage attack and a collision attack). An attack
on a sponge function is a generic attack if it does not exploit specific properties
of f (an internal permutation or a random transformation).
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In the ideal model, a compressing function F (either on fixed or arbitrary input)
that uses one or more underlying building blocks is viewed insecure if there exist
a successful information-theoretic adversary that has query access to the idealized
underlying primitives of F. The complexity of the attack is measured by the num-
ber of queries g to the primitive made by an adversary. Let’s consider preimage,
second preimage and collision resistance. For each of these three notations, with
Advi*, where atk E{pre, sec, col}, ] denote the maximum advantage of an adver-
sary to break the function F under the security notation atk. The advantage is the
probability function taken over all random choices of the underlying primitives,
and the maximum is taken over all adversaries that make at most q queries to their
oracles. A random oracle is a function which provides a random output for each
new query. The indifferentiability of a compressing function F, Adv;"’, maximized
over all distinguishers making at most g queries of maximal length K > 0 blocks
to their oracles. An indifferentiability bound guarantees security of a compressing
function F against specific attacks. It has been shown by Bart Preneel that

Adv™ < PR + Adv" (1)

for any security notation atk, where PR:y denotes the success probability of a ge-
neric attack against F under attacks atk and RO is an ideal function with the same
domain and range as F. If a compressing function F outputs a bit string of length #,
one expects to find collisions with high probability after approximately 2™ queries
(due to the birthday attack). Similarly, (second) preimages can be founded with
high probability after approximately 2" queries. Moreover, finding second preimages
is provably harder than finding collisions, and similar for preimages (depending
on the definition of F). The advantage in differentiating that the sponge construc-
tion from a random oracle is upper bounded by
N2 . 2—(c+2), (2)
with N the number of calls to the underlying transformation or permutation and
the capacity ¢, resulting in an expected time complexity of N ~ 292, This implies
that with respect to generic attacks of complexity N, the sponge construction offers
the same level of security as a random oracle, as long as (2) is negligible. Once N
approaches 22 this is no longer the case and the indifferentiability does not give
any guarantees. This is due to the existence of inner collisions in a sponge function.
Guido Bertoni, Joan Deamen, Michael Peeters, Gilles Van Assche in [3] shown
the sponge type hash function Keccak, that was selected by NIST as the winner
of the SHA-3 competition in October 2012. The constructors adopted the sponge
construction and built an underlying permutation f that should not have any
structural distinguishers. The capacity ¢ determines the claimed level of secu-
rity, and one can trade claimed security for speed by increasing the capacity ¢
and decreasing the bitrate r accordingly, or vice-versa. Keccak is a member of the
sponge function family [2].
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The sponge type hash function Keccak is proven indifferentiable from a ran-
dom oracle up to bound

O((Kq)* /27") (3)

if the underlying permutation is assumed to be ideal. Using (1) and (3) this indif-
ferentiability bound renders an optimal collision resistance bound for Keccak,

Advz‘;lcwk = @(q2 /2"), (4)

as well optimal preimage and second preimage resistance
Advlli)'zcak = Adv;(?ecccak = ®(q / 2”) (5)

The most successful result (in terms of a number of rounds) on the sponge
type Keccak's permutation is the zero-sum distinguisher [10, 1]. However, the com-
plexity of the distinguishers is very high. For example, the zero-sum distinguisher
for all 24 rounds of Keccak has the complexity of 2> (instead of the theoretical
complexity 21999 110]. The result do not lead to any attacks on the Keccak hash
function. The second type generic attacks have academic complexity bounded up
to 8 rounds (8, 9, 14].

I'V. The duplex construction

The duplex construction (Fig. 2), like the sponge construction, uses a fixed
length transformation or permutation f, a padding rule “pad” to build a crypto-
graphic scheme. Unlike a sponge function that is stateless in between calls, the du-
plex constructions results in an object that accepts calls that take an input string
and return an output string that depends on all inputs received so far. We call
an instance of the duplex construction a duplex object denoted by D. The call to
a specific duplex object D is marked by its name D and a dot.
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Figure 2. The duplex construction

A duplex object D has a state of b bits. Upon initialization all the bits of the
state are set to zero. From then on one can send to it D.duplexing (o, ¢ ) calls, with o
an input string and ¢ the requested number of bits. The maximum number of bits
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¢ one can request is  and the input string should be short enough such that after
padding it results in a single r-bit block.

A fundamental property of the duplex construction (called duplexing-sponge
lemma) is that the output of a call to a duplex object can be obtained by evaluating
a sponge function with the same parameters to the input (r and ¢) constructed from
all previous inputs to the duplex object.

The lemma states that the output of a duplexing call is the output of a sponge
function with an input o, ||pad,||o,||pad,||-..|| o;||pad; and from this input that exact
sequence 0, 0 , ... , 0;. As such, the duplex construction is as secure as the sponge
construction with the same parameters. In particular, the duplex construction
inherits its upper bound on the random oracle differentiating advantage, where
the input to the random oracle is the sequence of inputs to the duplexing calls since
the initialization.

V. Usage of the sponge construction

The sponge construction covers:
« plain hashing;

o salted hashing;

 a mask generation function

« message authentication codes;
e stream encryption.

A. Salted hashing

A sponge function can be used as an n-bit hash function by simple truncation
of its output. If the hash function is to be used in the context of the randomized
hashing a random value (the salt) can be prepended to the message. Salted hashing
based on a sponge function is similar to plain hashing, but the salt is added as the first
block or blocks of the combined message. We know that for the sponge construction
there are no generic attack with complexity of order below 27*. The lower bound
for the expected complexity for generating a collision is

min(2"?, 27) (6)
and for generating a second preimage is
min(2", 29%). (7)

Therefore, if n < ¢/2, randomization based on the sponge construction in-
creases the strength against signature forgery due to generic attacks against the hash
function due to the attacks from 2% to 2", If the capacity c is between » and 2n,
the strength increases is from 2"/ to 22,

Salted hashing shown in Fig. 3 can be used for password storage and password
verification.
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| Salt | Padded message | | Hash |

Figure 3. Salted hashing

B. A mask generation function

A mask generation function (MGF) also called a key derivation function
is a pseudo-random function taking a bit string of any length as input and returning
a new bit string of desired bit length. In theoretical models, MGFs are treated as
random oracles. In practice mask generation functions are often based on a secure
cryptographic hash functions. The sponge construction because of its arbitrarily
long input and output sizes readily can serve a secure mask generation function
as shown in Fig. 4. Key derivation functions are usually used in cryptographic
protocols (e.g., SSL, TLS).
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Figure 4. Mask generation function

C. Message authenticated codes

A message authenticated code (MAC) takes as a input a key, an initial val-
ue (IV) and a message. The sponge construction because of its arbitrarily long input
and the output truncated to desired number 7 of bits (n < ¢/2) readily can serve
as a message authenticated code scheme shown in Fig. 5. The length of a generated
MAC code could be significantly longer than in the case of a MAC scheme based
on a block cipher.
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Figure 5. Message authenticated code scheme
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D. Stream encryption

A sponge function can also serve as a stream cipher. One can input the key
and some initial value and then get key stream in the squeezing phase. The stream
cipher can be used in two modes, when we need:

« along output stream per IV (similar to OFB mode);

o ashort output stream per IV (similar to CTR mode).

Stream encryption (Fig. 6) is an example of a sponge function turned into
a keyed function by including in the input a secret key. If the sponge function
behaves like a random oracle, the keyed sponge function conducts as a random
function to anyone not knowing the key but having access to the sponge function.
Let’s consider security of a sponge function used in conjunction with a key, for
example in the case of our stream cipher scheme (Fig. 6). The dependences also set
for message authentication codes, authenticated encryption, reseedable pseudo-
random sequence generators. It was shown in [4] that he advantage in distinguishing
a keyed sponge from a random oracle is upper bounded by

max{(M*/2+2M-N)-2, N-2 1Ky} (8)
where M is the data complexity, i.e. the amount of access to the keyed scheme,
N is the number of queries to the underlying transformation (or permutation),

and | K] is the length of the key. In typical case if M << 2°* time complexity is much
smaller and it carries out about

min(2°"/M, 21N). (9)
The key is related with the capacity with following dependence:
|K| + 1 + log,M < c. (10)

This allows decreasing the capacity ¢ (and thus the permutation width) for
a given security level or achieving a higher security level for a given capacity.
The shown bound for keyed applications allows usage of very fast lightweight
sponges, especially on platforms with limited resources.
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Figure 6. Stream encryption
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VI. Usage of the duplex construction

The duplex construction covers:

« one pass authenticated encryption;

 key wrapping;

« residable pseudo-random bit sequence generation.

A. One pass authenticated encryption

Authenticated encryption (AE) has been extensively studied in the last ten years.
Block cipher modes are a popular way to provide simultaneously both integrity and
confidentiality. One pass authenticated encryption schemes based on block ciphers
(OCB, IAPM, IACBC) are patent encumbered. The length of a authenticating tag
is bounded by a used block cipher in the schemes. The maximal length of the tag
in block cipher AE schemes is 128 bits.

The one pass AE scheme shown in Fig. 7 uses the duplex construction. Upon
initialization it loads the key K. From then on one can send request to it for wrap-
ping or unwrapping data. The key stream blocks used for encryption and the tags
depend on the key K and the data sent in all previous requests. Key stream sequences
give no information on tags and vice versa as they are obtained by call to different
duplex instances.

[Key | v| [ Padded message | Tag

3 0L

(+)
f £ Al Tl T
\J = g g

w w w
| Key stream |

b
w,
b
e

Figure 7. One pass authenticated encryption

The one pass AE scheme based on the duplex construction satisfies the se-
curity requirements of key recovery (probability of finding the key with tryinTg N
keys K is not above N-2_|K|), tag forgery (2_|T|) and plaintext recovery (N-Z_IK ) if
the used sponge is secure.

The authenticated encryption based on the duplex construction has some
advantages:

o it is one pass and requires only one fixed-length permutation;

o itsupports the alternation of strings that require authenticated encryption

and strings that only require authentication;

« it has a strong security bound against generic attacks with a simple proof,

that relies on the bound of the RO differentiating advantage of the sponge
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construction (or the security of a keyed sponge function) and on the
sponge-duplexing lemma;

o it is flexible as the bitrate r can be freely chosen as long as the capacity ¢
is larger than some lower bound;

o the length of the authenticating tag is bounded by ¢/2, considerably more
than in a block cipher AE case.

B. Key wrapping

Key wrapping is the example of the practical use of one pass authenticated
encryption shown in Fig. 7. In such scheme a payload key is wrapped with a key-
encrypting key (KEK). The Key is equal to the KEK and the data body is the payload
key value. If each key is associated to a unique identifier it is sufficient to include
the identifier of the payload key in the header and two different payload keys will
be enciphered with different streams.

Key wrapping is very important in key management systems [5]. It helps to
protect the secrecy and integrity of cryptographic keys in transport or storage.

C. A residable pseudo-random bit sequence generator

The duplex construction can readily be used as a residable pseudo random
bit sequence generator shown in Fig. 8. Seeding material can be fed via o inputs
in it D.duplexing () call and the responses can be used as a pseudo-random bits.
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Figure 8. Residasble pseudo-random bit sequence generator

The only limitation of this is that the user must split his seeding material
in strings of at most p bits and at most r bits can be requested in a single call.

Binary random sequences have numerous applications in many fields of science
and technology. The most important ones are applied in such fields as cryptography,
statistics, numerical computation, stochastic simulations using the Monte Carlo
method, and many others. Military Communication Institute (MCI) developed
a family of hardware random bit generators, the first in the nineties. The generators
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can generate random sequences with an output rate 115.2 kbit/s, 8 Mbit/s up to
100 Mbit/s and they were certified by the Polish national security authority according
to “The Protection of Classified Information Act” and can be used in cryptographic
systems up to “TOP SECRET” level [6]. As a scientific tool the SGCL-100M generator
(the generator with an output rate 100 Mbit/s) can be used in advanced researches
in many fields of science and technology. Since the generator is a quite complex
and costly device [10] with a very high output rate it can be assumed that it could
be used as a source for random sequence servers in R&D centers.

In 2012 MCI decided to built a cheap but very fast pseudo-random sequences
generator based on the duplex construction and our old and slow random bit
generator as a source of seeding material. The generator applies a sponge function
fto the sequences of values seed+1, seed+2, ... . The output sequence is f(seed+1),
f(seed+2), ... . Because of the property of forward security, it is necessary to keep
only a few bit of the output values f(seed+i) in order to remove possible correlation
between successive values. Ideally, secrets required in cryptographic algorithms and
protocols should be generated with a true random generator. A residable pseudo
random bit sequence generator, based on the Keccak-like sponge function and
a slow hardware random bit generator can pass the tests for randomness of the NIST
Statistical Test Suite and MCI battery tests [13, 12]. The generator is very efficient
and can produce binary random sequences with the potential throughput (amount
of data per unit time) higher than 150 Mbit/s in the relatively cheap way. It will be
able to produce a little more than 1.5T bytes per day and act as a practically “infi-
nite” source of such pseudo-random sequences with very good statistical quality.

VII. Summary

The cryptographic primitives based on the sponge and duplex constructions
can be used for protection classified and unclassified information. The primi-
tives are provably secure. The creation of the ideal permutation or the random
transformation is the key matter. Guido Bertoni with his team shown as such
safe permutations can be built. The effectiveness of the method was confirmed by
third-party cryptanalysis.

The cryptographic primitives based on sponge and duplex constructions
showed in the paper cover common applications of symmetric cryptography.
The constructions are very flexible and other applications can be readily built. It is
possible to first fix the capacity ¢ such that ¢/2 is at least the desired security level
and then choose the remaining parameters. It is very important that for the sponge
and duplex constructions there are no generic attacks with complexity of order
below 272,

The keyed sponge functions are used for MAC computation, stream encryp-
tion, one pass authenticated encryption schemes free from patent limitations and
reseedable pseudo-random sequence generators. Usage of the key in the applica-
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tions allow decreasing the capacity (and thus the permutation width) for a given
security level or achieving a higher security level for a given capacity. The bound
for keyed applications permits usage of very fast lightweight sponges, especially
on platforms with limited resources.
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