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a b s t r a c t

In structural vector autoregressive (SVAR) analysis a Markov regime switching (MS) property can
be exploited to identify shocks if the reduced form error covariance matrix varies across regimes.
Unfortunately, these shocksmay not have ameaningful structural economic interpretation. It is discussed
how statistical and conventional identifying information can be combined. The discussion is based on a
VAR model for the US containing oil prices, output, consumer prices and a short-term interest rate. The
system has been used for studying the causes of the early millennium economic slowdown based on
traditional identification with zero and long-run restrictions and using sign restrictions. We find that
previously drawn conclusions are questionable in our framework.
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1. Introduction

Identifying structural shocks is amajor issue in structural vector
autoregressive (SVAR) analysis. A range of alternative proposals
have been made for this purpose. For example, recursive models
which impose a triangular structure on the instantaneous effects
of the shocks have been popular in the earlier SVAR literature (e.g.,
Sims, 1980, Amisano and Giannini, 1997, Lütkepohl, 2005, Chapter
9). Later restrictions on the long-run effects of shocks became
popular (Blanchard and Quah, 1989; King et al., 1991; Pagan and
Pesaran, 2008) as well as sign or shape restrictions for the shocks
(Uhlig, 2005; Canova and De Nicoló, 2002; Faust, 1998). Typically
these restrictions rely on potentially controversial economic or
institutional believes about the system of interest. Given that the
restrictions are often just-identifying, it is not possible to test them
against the data in a conventional SVAR analysis. The problem is
also present when identification relies on sign restrictions. In that
case only those impulse responses are retained which satisfy the
prior assumptions of the investigator. Thus, the assumptions are
satisfied by construction.

There are two main problems related to these kinds of identi-
fication restrictions which both result from the fact that the data

∗ Corresponding author.
E-mail addresses: hherwartz@uni-goettingen.de (H. Herwartz),

hluetkepohl@diw.de (H. Lütkepohl).

http://dx.doi.org/10.1016/j.jeconom.2014.06.012
0304-4076/© 2014 Elsevier B.V. All rights reserved.
are not informative on the validity of the restrictions. First, contro-
versial views on the underlying economic structures cannot be re-
solved by statistical tests. Second, assuming that the reduced form
is a valid description of the data generation process, the data have
no opportunity to reflect a general incompatibility of the identi-
fying restrictions and the model. For example, restrictions may be
valid within a larger model with additional variables but impose a
structure on the actual model under investigation which results in
unrealistic impulse responses. In this context it may be worth re-
membering that a number ofmodels produced a ‘price puzzle’, that
is, a price level increase in response to a contractionary monetary
policy shock, which disappeared in a larger model with forward-
looking variables capturing expectations.

For these reasons it is of interest that sometimes statistical
properties of the data may contain further information that is usu-
ally not accounted for in the identification of shocks in a con-
ventional SVAR analysis, as pointed out by Sentana and Fiorentini
(2001), Rigobon (2003), Normandin and Phaneuf (2004), Lanne and
Lütkepohl (2010) and others. In particular, in these articles residual
heteroskedasticity or conditional heteroskedasticity is used for ex-
tracting additional identifying information from the data. This ap-
proachwas also used by Lanne et al. (2010) who consider aMarkov
regime switching (MS) mechanism for modeling changes in the
volatility of the residuals.

We will build on the latter approach and consider the question
how this statistical information can be combined with conven-
tional identifying information in a meaningful way. An identi-
fication procedure which draws exclusively on statistical data
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propertiesmay end upwith structural shocks which are notmean-
ingful economically. That is, the shocks and corresponding impulse
responses may not be informative about the underlying economic
mechanisms. Moreover, the shocks obtained from our setup are
unique only up to permutation. Hence, even if economicallymean-
ingful shocks are found, economic properties of the shocks or the
associated impulse responses have to be used for labeling them.
In other words, economic information has to be used in addition
to the statistical properties. On the other hand, it is clear that the
economic assumptions have to be in line with the sample infor-
mation for using them in this context. This feature can be checked
given the statistical properties of the data.Wewill discuss how the
two types of identifying information can be combined beneficially.
To that end we will also discuss some technical extensions of the
basic approach set out in Lanne et al. (2010). More precisely, we
discuss how to overcome problems related to the optimization of
the log-likelihood function and bootstrap methods for impulse re-
sponses. Note that the latter methods were not proposed by Lanne
et al. (2010) because of the computational complexities involved.
We propose a bootstrap method which is feasible in practice.

The main issues will be illustrated with an empirical model
from Peersman (2005). He uses SVAR technology to investigate
the causes of the recession in major economies at the beginning
of the new millennium and attributes the economic slowdown to
a combination of shocks in oil prices, monetary policy, aggregate
supply and aggregate demand. The actual contribution of these
shocks depends on the identification strategy used for the shocks.
In particular, he compares a conventional identification scheme
using zero restrictions on the instantaneous and long-run effects
of shocks and a strategy based on sign restrictions.

As mentioned earlier, both of these identification approaches
have the drawback in the present context that they do not leave
room for the data to speak up against the restrictions. Therefore,
in this study we use an identification strategy which avoids this
shortcoming. It is assumed that there are changes in the volatility
which are driven by an MS mechanism. Distinct states of volatil-
ity provide an additional source of identifying information that is
utilized to check restrictions which are just-identifying in a con-
ventional SVAR analysis.

The structure of the paper is as follows. In the next section
we present the basic underlying SVAR model with conventional
identification based on instantaneous and long-run effects of the
shocks. In Section 3 the MS extension and some related technical
problems are discussed. From the outset we discuss the models
with the US example system in mind for which the detailed
empirical analysis is presented in Section 4. Conclusions follow
in Section 5. The Appendix contains details on the estimation
algorithm.

The following abbreviations are used throughout: VAR for
vector autoregressive or autoregression, SVAR for structural VAR,
VECM for vector error correction model, MS for Markov regime
switching, ML for maximum likelihood, LR for likelihood ratio,
AIC for Akaike information criterion, SC for Schwarz information
criterion and IR for impulse response.

2. The conventional SVAR model

We consider a vector error correction model (VECM) for a K -
dimensional vector yt ,

1yt = ν0 + ν1t + αβ ′yt−1 +

p
i=1

Γi1yt−i + Bεt , (1)

where ∆ signifies the differencing operator, αβ ′yt−1 is the error
correction term containing the cointegration relations β ′yt−1, ν0 +

ν1t is a linear trend term and εt is the vector of K structural
residuals which is assumed to have a diagonal covariance matrix.
The quantity B is a (K × K) matrix of instantaneous effects of the
shocks.

In the framework of this model restrictions for the instanta-
neous effects of the shocks are placed on B, whereas long-run re-
strictions are placed on the matrix of long-run effects,

Ξ = β⊥


α′

⊥


IK −

p
i=1

Γi


β⊥

−1

α′

⊥
B, (2)

where β⊥ and α⊥ denote (K × (K − r)) dimensional orthogonal
complements of the (K × r) dimensional matrices β and α,
respectively. Here r is the cointegrating rank (see, e.g., Lütkepohl,
2005, Chapter 9 for details).

In the empirical sectionwe consider a four-dimensional US sys-
tem yt = (oilt , qt , pt , st)′, where oilt is the price of oil, qt is output,
pt is a consumer price index and st is a short-term interest rate. The
first three variables are treated as integrated of order one and not
cointegrated whereas the interest rate is assumed to be stationary
on theoretical grounds although for the actual variable used in the
empirical study there is also some evidence for a unit root. Thus,
the only ‘cointegration vector’ in (1) is β = (0, 0, 0, 1)′ and, hence,
β⊥ = [I3 0]′, where I3 denotes a (3 × 3) identity matrix. Accord-
ingly, rk(Ξ) = 3 and the last row of Ξ consists of zeros. More-
over, B is a (4 × 4) matrix of instantaneous effects of the shocks
εt = (εoilt , ε

s
t , ε

d
t , ε

m
t )

′, where the components represent oil price
shocks, aggregate supply shocks, demand or spending shocks and
monetary policy shocks, respectively.

In his conventional identification scheme Peersman (2005) as-
sumes that aggregate supply, demand andmonetary policy shocks
have no instantaneous impact on oil prices and monetary policy
shocks also have no immediate impact on output. Moreover, he
assumes that demand and monetary shocks are neutral in the
long-run and, thus, have only transitory effects on output. These
assumptions translate into the following restrictions on the con-
temporaneous and long-run effects matrices:

B =

∗ 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 and Ξ =

∗ ∗ ∗ ∗

∗ ∗ 0 0
∗ ∗ ∗ ∗

0 0 0 0

 . (3)

Here unrestricted elements are denoted by asterisks. The zero re-
strictions imposed on B andΞ are just-identifying, and, hence, they
cannot be tested against the data in the conventional framework.

Peersman (2005) points out that these restrictions are not un-
controversial and therefore he also performs an analysis which re-
lies on sign restrictions only. For example, oil prices may react to
demand or supply shocks within the same quarter when they oc-
cur. Moreover, there are economic models which allow for instan-
taneous effects of monetary policy shocks on output. The long-run
restrictions may be problematic in this context because demand
and monetary policy shocks may affect the steady-state level of
capital (see, e.g., Gali, 1992). Other restrictions may be more ap-
propriate instead. For example, the Fed may not respond instan-
taneously to oil price shocks (e.g., Kilian and Lewis, 2011, Nakov
and Pescatori, 2010). Hence, it is useful to check these assump-
tions carefully. In the next section we discuss the formal frame-
work which will be used for this purpose.

3. A model with different volatility regimes

3.1. The model setup

Following Lanne et al. (2010)we assume that the distribution of
the reduced formerror termut = Bεt depends on aMarkov process
st such that
ut |st ∼ N (0,Σst ). (4)
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Here st (t = 0,±1,±2, . . .) is a discrete Markov process with
states 1, . . . ,M and transition probabilities

pij = Pr(st = j|st−1 = i), i, j = 1, . . . ,M.

The conditional normality assumption in (4) is not critical for our
analysis. It is just made for convenience to set up the likelihood
function for ML estimation. If conditional normality does not hold,
our estimators will just be pseudo ML estimators. Note, however,
that conditional normality of the residuals for each state implies
an unconditional nonnormal distribution in general. In fact, our
assumptions cover a rich distribution class for the residuals.

The crucial feature in (4) is that the covariances Σst can vary
across states. This fact is used by Lanne et al. (2010) to identify
structural shocks which are consistent with the statistical data
properties and to test restrictions which are just-identifying in the
conventional setup. To see how this can be done suppose first that
there are just two states (M = 2). Then there exists a decomposi-
tionΣ1 = BB′ andΣ2 = BΛ2B′, whereΛ2 = diag(λ21, . . . , λ2K ) is
a diagonalmatrixwith positive diagonal elements. If theλ2i’s are all
distinct, this decomposition is in fact unique apart from changes in
sign and permutations in the λ2i’s and the corresponding columns
of B. Thus, if we assume that the structural shocks are orthogo-
nal across states, have the same instantaneous effects in each state
and are normalized such that they have unit variance in the first
state, then they are uniquely determined by the transformation
εt = B−1ut . Hence, any restrictions imposed on B and Ξ are over-
identifying and can be tested against the data.

Notice that the assumptions for the effects of the structural
shocks do not go beyond what is typically assumed in a classical
framework. In particular, orthogonality across the sample is a stan-
dard assumption in structural VAR analysis. Also, if no distinction
between volatility states is made, a classical analysis has no reason
to allow for changes in the instantaneous effects during the sample
period. Hence, making the assumption in our framework as well is
plausible and not more restrictive than in a standard SVAR anal-
ysis. Moreover, the standardization of the variances of the struc-
tural residuals is common in the classical framework. It could be
replaced by imposing a unit diagonal on B and a diagonal covari-
ance matrix of the structural shocks in State 1. Notice that in our
setup the diagonal elements of thematrixΛ2 can be interpreted as
relative variances of the structural shocks in State 2 versus State 1.

It is important to note, however, that the ordering of the diago-
nal elements ofΛ2 can be changed freely. This will also change the
order of the shocks and the columns of B. Thus, although the shocks
and their instantaneous responses in B are unique, they can be per-
mutedwithout changing the products BB′ and BΛ2B′. This property
is important to rememberwhen it comes to labeling or interpreting
the shocks economically. The sequence inwhich the shocks appear
in the vector εt is arbitrary if an arbitrary ordering of theλ2j is used.
Attaching meaningful labels to the shocks usually requires taking
into account the underlying economic mechanisms. For example,
in a systemwith a demand and a supply shock only, one may label
the shock which is neutral in the long-run as demand shock and
the one with long-run effects as supply shock.

The critical assumption for uniqueness of the shocks is that the
diagonal elements of Λ2 all have to be distinct. This, however, is
a property which can be checked with statistical tests. If there are
equal elements on the diagonal ofΛ2, B will no longer be (locally)
unique. The elements of Λ2 are still identified if Σ1 ≠ Σ2. Thus,
we can test equality of the diagonal elements ofΛ2. In otherwords,
for identification purposes we can go much further with statistical
analysis than in a conventional framework which does not take
advantage of potential volatility changes during the sample period.

If there are more than two volatility states, the corresponding
covariance matrix decomposition

Σ1 = BB′, Σi = BΛiB′, i = 2, . . . ,M, (5)
with diagonal Λi’s becomes restrictive. In fact, in that case it can
be tested and thereby the assumption of invariant instantaneous
effects of the structural shocks across states can be checked. The
corresponding likelihood ratio (LR) test has an asymptotic χ2-
distribution with
1
2MK(K + 1)− K 2

− (M − 1)K (6)

degrees of freedom (Lanne et al., 2010).
Denoting the diagonal elements of Λj by λj1, . . . , λjK , unique-

ness of B up to sign is ensured for models with more than two
states if for any subscripts k, l ∈ {1, . . . , K}, k ≠ l, there is a
j ∈ {2, . . . ,M} such that λjk ≠ λjl (Lanne et al., 2010, Proposition
1). Again this condition can be checked by statistical tests.

The possible sign changes of the elements of B are another
source of nonuniqueness. The precise condition is that each col-
umn of B can be multiplied by −1 without affecting the decompo-
sition in (5). Hence, B is only locally unique which is sufficient for
asymptotic inference. From the point of viewof interpreting the re-
sults this nonuniqueness is also no problem because changing the
signs of all elements in a column of B just means to consider nega-
tive instead of positive shocks or vice versa. Hence, the economist
interpreting the impulse responses just needs to decide whether
s/he is interested in positive or negative shocks.

This discussion suggests that statistically identified shocks
may not have much meaning for economic analysis. In fact, the
shocks identified by the statistical properties of the model may
be mixtures of economically relevant shocks. However, there are
two basic devices whichmay be helpful for associating statistically
identified shocks with economic shocks of interest.

First, if the statistically identified shocks coincide with the eco-
nomic shocks, their interpretation is straightforward. To find out
whether we are in this lucky situation, we may test the identifying
restrictions of a conventional identification scheme by means of
statistical tests. If the restrictions are not rejected, we may impose
them and then attach the usual economic interpretation to them.
In case the economic identification is controversial, it is obviously
an advantage to be able to test it against the data. Rejecting the re-
strictions may be seen as a signal of a problem. For instance, the
underlying theory may simply be false. Of course, it may also be a
deficiency of the statistical model which leads to a rejection of the
restrictions. For example, there could be omitted variables, time-
varying parameters, nonlinearities or errors-in-variables problems
that do not allow certain shocks to be identified in the way as-
sumed by the analyst. We will return especially to this issue in the
empirical section. In any case, being able to test the economic iden-
tifying restrictions is an advantage because it can signal problems
related to the interpretation of the shocks.

The second device that may be helpful in associating statisti-
cally identified shocks with economics derives from the changes
in volatility in different periods during the sample. In some cases
economic background knowledge may suggest different volatility
of the shocks in different periods, which may be used for labeling
the shocks. Again, this issue will be illustrated in the empirical sec-
tion.

3.2. Estimation

We use classical ML estimation based on a log-likelihood de-
rived from the conditional normality assumed in (4). The likelihood
function is highly nonlinear which requires numerical optimiza-
tion techniques. The objective function has several local optima in
addition to those which follow from the identification issues dis-
cussed in the previous subsection. Moreover, the variances have to
be bounded away from zero. In fact, the covariance matrices in the
statesmust be nonsingularwith determinants bounded away from
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zero.We impose restrictions on the eigenvalues of the state covari-
ance matrices to ensure nonsingularity. Furthermore, the diagonal
elements of the Λi matrices are bounded away from zero. An EM
algorithm as described in Krolzig (1997) is used for the actual like-
lihood maximization task. Details are given in the Appendix.

Given the difficulties associated with the optimization of the
likelihood function, classical residual based bootstrapmethods are
problematic for generating confidence intervals for the impulse re-
sponses (IRs). It has to be ensured that only bootstrap replications
are considered in an area of the parameter space corresponding
to the same parameterization as in the original estimation step.
In particular, the same sign and ordering of the shocks has to be
ensured. Sign changes of the shocks can be prevented by enforc-
ing a particular instantaneous response of one of the variables. For
example, a monetary policy shock increases the interest rate on
impact. Finally, given that the MS model exploits patterns of vec-
tor heteroskedasticity, any potential resampling schememust pre-
serve second order features of the data. To account for these issues,
resampling of IRs is performed throughout in the spirit of a fixed
design wild bootstrap (Goncalves and Kilian, 2004). Conditionally
on ML parameter estimates, bootstrap samples are determined as

1y∗

t = ν̂0 + ν̂1t + α̂β ′yt−1 +

p
i=1

Γ̂i1yt−i + u∗

t . (7)

In (7) u∗
t = ψt ût , where ψt is a random variable which is in-

dependent of the yt and has a Rademacher distribution, that is,
it has values 1 and −1, each with probability 0.5. Apart from
preserving potential heteroskedasticity, multiplying the residual
vectors ût from the original estimation by a scalar quantity with
mean zero and unit variance imitates the pattern of contempora-
neous dependence of the data. Throughout, bootstrap parameter
estimates θ∗ of θ = vec[ν0, ν1, α,Γ1, . . . ,Γp] and B∗ of B are
determined conditionally on the initially estimated diagonal ele-
ments in Λ̂i, i = 2, . . . ,M , and transition probabilities p̂ij, i, j =

1, . . . , K , i.e., the relative variance parameters and transition prob-
abilities are not subjected to resampling. Bootstrap IRs are obtained
by nonlinear optimization of the log-likelihood with starting value
being the vector of ML estimates. Apart from these modifica-
tions, the bootstrap confidence intervals are standard percentile
intervals based on 1000 replications and using the 16th and 84th
quantiles of the bootstrap distribution. Hence, we consider 68%
confidence intervals in line with Peersman (2005).

3.3. Model selection

Choosing the number of volatility states is critical for this type
of analysis. Standard tests are problematic for this purpose because
some parameters are not identified under a null hypothesis of a
smaller number of states. Although tests for the number of states
have been proposed for this situation (e.g., Hansen, 1992, Garcia,
1998), we will rely on model selection criteria for choosing the
number of states. They were found to work reasonably well for MS
models in performance comparisons by Psaradakis and Spagnolo
(2003, 2006).

Model selection criteria are also useful for comparing models
with various types of restrictions even if some of the parameters
may not be identified. For under-identified SVAR models the like-
lihood is the same as for the corresponding reduced form model.
If two models with the same reduced form are compared, model
selection criteria choose the more restricted model due to their
penalty term for the number of parameters. This issue will be im-
portant in comparing different MS-SVAR models because at the
time of model selection the identification properties may not be
fully resolved (see Section 4.2 for further discussion).
4. Empirical analysis of a US system

4.1. The data

As mentioned earlier, we use the variables and quarterly US
data from Peersman (2005). The variables are an oil price index
(oilt ), a GDP index multiplied by 100 (qt ), a consumer expenditure
index multiplied by 100 (pt ) and a 3-months interest rate (st ).1
We use the variables considered by Peersman except that we have
multiplied output and prices by 100 to ensure a balanced scaling
of the residual covariance matrices. This scaling is helpful for the
nonlinear optimization of the log-likelihood. We also consider
Peersman’s sample period from 1980Q1–2002Q2 to ensure
comparability of the results although longer series are available.2

There has been some discussion in the literature about changes
in volatility of shocks during our sample period. In particular, it is
a well established empirical fact that the volatility was reduced
during the Great Moderation which started in the middle of the
1980s in the US (e.g., McConnell and Perez-Quiros, 2000, Mills and
Wang, 2003, Stock andWatson, 2005). Thus, onemay be able to use
this and possibly other changes in volatility for identifying shocks.

Peersman uses his models to examine the causes of the
economic downturn at the beginning of the newmillennium.With
this objective in mind one may consider other variables as well.
For example, monetary aggregates such as M1 or Divisia variables
(see Barnett, 1980) and other quantities related to the market for
crude oil such as oil inventories (Kilian and Murphy, 2014) come
to mind. Moreover, there has been some discussion of possible
nonlinearity of the effects of oil price shocks (Hamilton, 2003;
Kilian and Vigfusson, 2011). We do not consider such extensions
because the main objective of the present study is to illustrate
problems related to the interpretation of the shocks and to propose
solutions to these problems.

4.2. Statistical analysis

We start from a similar model as Peersman (2005), the VECM
in (1) with three lags. The model corresponds to Peersman’s who
considers aVARmodel in first differences of the first three variables
and the interest rate in levels. He also uses three lags. Regarding
the choice of the lag order, we have used the same as Peersman
although it is not difficult to find arguments for lower or higher
lag orders. Using Peersman’s choice seems reasonable because his
analysis serves as a benchmark.

Several questions have to be addressed at the model specifica-
tion stage in our setup. First, we have to decide on the number of
volatility states. Then we have to check whether a statistical iden-
tification of shocks is possible and whether all or some of the eco-
nomic identifying restrictions from Peersman are consistent with
the data. In other words, we have to check whether the identified
shocks can be given an economic interpretation.

In Table 1 the log-likelihood maxima and associated model se-
lection criteria (AIC and SC) are given for a range of models. Com-
paring only unrestricted models, AIC favors a 3-state MS model
while SC selects a 2-state MS model. None of the criteria goes for
the VECM without MS. Within the group of 3-state models both
AIC and SC reach their minima for a model with Peersman’s zero
restrictions imposed on the matrix of instantaneous effects, B. In
contrast, considering only 2-statemodels, the versionwith the four

1 The data are from the archive of the Journal of Applied Econometrics associated
with Peersman (2005).
2 We have also performed a similar analysis for an extended sample period with

data from 1970Q1–2002Q2. It turns out that the model selection results and our
main conclusions are remarkably robust.
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Table 1
Comparison of MS-SVAR models for yt = (oilt , qt , pt , st )′ with lag order p = 3, intercept and linear trend term (sample period: 1980Q1–2002Q2).

Model log LT AIC SC

VECM without MS −62.41 264.8 436.6

2-state MS, unrestricted −11.16 186.3 387.6
2-state MS, four zero restrictions on B −13.39 182.8 374.2
2-state MS, zero restr. on B and long-run demand shock restr. −14.03 182.1 371.0
2-state MS, zero restr. on B and long-run monetary shock restr. −23.28 200.5 389.5
2-state MS, all restrictions −27.39 206.8 393.3

3-state MS, unrestricted 7.46 177.1 412.7
3-state MS, state-invariant B 4.07 171.9 392.8
3-state MS, four zero restrictions on B 2.58 166.8 377.9
3-state MS, zero restr. on B and long-run demand shock restr. 0.06 169.9 378.5
3-state MS, zero restr. on B and long-run monetary shock restr. −9.21 188.4 397.0
3-state MS, all restrictions −12.13 192.3 398.4

Note: LT—likelihood function, AIC = −2 log LT + 2 × no of free parameters, SC = −2 log LT + log T × no of free parameters. Likelihood maximization subject to a bound of
0.01 for the λij ’s and 0.001 for the eigenvalues of the state covariance matrices.
Table 2
Estimates of structural parameters of 2-state MS-SVAR model for yt = (oilt , qt , pt , st )′ with lag order p = 3, intercept and linear trend term (sample period:
1980Q1–2002Q2).

Parameter Unrestricted model Demand neutrality + short-run restrictions Fully restricted model
Estimate Std. dev. Estimate Std. dev. Estimate Std. dev.

λ21 0.012 0.006 0.095 0.037 0.013 0.010
λ22 0.102 0.075 0.131 0.071 0.419 0.205
λ23 0.843 0.489 1.062 0.526 1.194 0.586
λ24 16.52 6.990 19.60 7.522 10.10 3.917

p11 1 na 0.972 0.083 1 na
p22 0.941 1.747 0.871 0.508 0.941 4.967

Note: Standard errors are obtained from the inverse of the outer product of numerical first order derivatives (gradp, Gauss 9.0). na stands for ‘not available’ due to an estimate
at the boundary of the parameter space.
zero restrictions on B and the long-run neutrality of a demand
shock (i.e., no permanent effect on output) is favored by both cri-
teria. Both AIC and SC prefer some of the 3-state models over an
unrestricted 2-state model. On the other hand, the overall mini-
mum SC value is obtained for a 2-state model with zero restric-
tions on B and long-run neutrality of the demand shock. The less
parsimonious AIC favors 3-state models, however. Thus, there is
evidence for both 2-state and 3-state models. Given the relatively
small sample size, estimation of these models was a challenge and
in that sense a 3-state model may be over-parameterized. On bal-
ance we decided that it may still be worthwhile to continue with
both types of MS models and compare the results.

Notice also that the evidence against a model without MS is
quite strong, that is, the likelihood improves substantially when
MS in volatility is allowed for. Moreover, it is reassuring that the
3-state model with unrestricted state covariance matrices does
not have a much better likelihood than a model which imposes
state invariant instantaneous effects. Neither AIC nor SC favor the
fully unrestricted model over one with a state-invariant B. Further
support for a state-invariant B is obtained from the LR test reported
in Table 6. The p-value is 0.746. Hence, the null hypothesis of a
state-invariant B cannot be rejected at common significance levels.
Thus, allowing for changing volatility during the sample period
and state-invariant instantaneous effects are both supported by
the data.

A more difficult question is, however, whether the fact that AIC
and SC select models with restrictions on B is evidence in favor of
the restrictions or a reflection of a lack of identification. As men-
tioned in Section 3.3, in an under-identified model, the model se-
lection criteria theoretically favor the one with fewer parameters.
To investigate the identification issue, it is necessary to look at the
λij variance parameters. The estimates and their standard errors for
some2- and 3-statemodels are presented in Tables 2 and 3, respec-
tively. Note that the order of the λij’s for the unrestricted models
is in principle arbitrary while for the restricted models the order
is the one that is optimal for accommodating the restrictions. Be-
cause the λ2i’s turn out to be ordered from smallest to largest in
the fully restricted model, we use the same ordering for the unre-
stricted model.

Apparently the estimated λ2i’s for the unrestricted 2-state
model in Table 2 are all different. Whether they are significantly
different is not clear, given the relatively large standard errors.
The question is further explored in Table 4, where Wald tests
are presented for null hypotheses of equality of the λ2i’s. Notice
that the λij’s are identified even if they are identical. The esti-
mated λ2i’s have asymptotic normal distributions under standard
assumptions. Hence, we use Wald tests based on that distribution.
Since the number of parameters in our models is quite large rela-
tive to the number of sample observations, the estimate of the co-
variance matrix may be poor, however, and Wald tests may have
poor small sample properties. Considering their p-values, theWald
tests leave open the possibility that the smallest λ2i’s are identical.
This outcome is not surprising given the relatively large standard
deviations of the estimated λ2i’s in Table 2. It reflects the limited
sample information on the one hand and the complexity of the
model on the other hand. In any case, overall there is at least weak
evidence that all λ2i’s may be distinct and, hence, the shocks are
identified by purely statistical means. However, it may be worth
keeping the problems related to these tests in mind.

If the model is fully identified, any restrictions on B reduce
the dimensionality of the parameter space. Hence, using the log-
likelihood maxima reported in Table 1, we can perform LR tests
of the different sets of restrictions. They are shown in Table 6 and
deliver the outcome suggested also by AIC and SC, namely that
the long-run restriction for the monetary policy shock is clearly
rejected and, hence, also the set of all restrictions jointly is not
supported. One may argue that the test results hinge on the as-
sumption of distinct λ2i’s. While this is true, it may be worth re-
membering that, if some of the λ2i’s were not distinct, the degrees
of freedom for the LR tests would be reduced so that the actual p-
values might actually be even smaller than stated in Table 6. Thus,
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Table 3
Estimates of structural parameters of 3-state MS-SVAR models for yt = (oilt , qt , pt , st )′ with lag order p = 3, intercept and linear trend term (sample period:
1980Q1–2002Q2).

Parameter Unrestricted, state-invariant B Model with short-run restrictions Demand neutrality + short-run restrictions Fully restricted model
Estimate Std. dev. Estimate Std. dev. Estimate Std. dev. Estimate Std. dev.

λ21 0.048 0.037 0.049 0.026 0.063 0.038 26.99 27.42
λ22 0.332 0.173 0.405 0.224 0.458 0.236 0.620 0.959
λ23 1.025 0.582 1.719 0.846 1.824 0.873 0.991 0.967
λ24 3.250 1.822 2.920 1.483 2.946 1.382 0.336 0.533

λ31 0.220 0.162 0.275 0.302 0.331 0.433 2.672 1.865
λ32 0.044 0.068 0.019 0.017 0.020 0.018 0.698 0.574
λ33 1.768 1.733 1.391 1.279 1.381 1.270 2.912 3.013
λ34 64.99 51.00 35.78 23.38 42.68 30.61 32.63 32.60

p11 0.920 0.256 0.933 0.344 0.933 0.382 0.928 0.095
p21 0.080 0.255 0.067 0.332 0.067 0.377 0.045 0.081
p12 0.102 0.258 0.085 0.383 0.084 0.469 0.387 0.569
p22 0.845 0.222 0.885 0.311 0.885 0.373 0.613 0.548
p23 0.239 0.759 0.192 0.863 0.197 0.894 0.000 0.126
p33 0.761 0.760 0.808 0.843 0.803 0.848 0.750 0.465

Note: By construction the columns of P̂ add to unity, hence, only six of the nine elements are reported. Standard errors are obtained from the inverse of the outer product of
numerical first order derivatives (gradp, Gauss 9.0).
Table 4
Wald tests for equality of λ2i ’s for the unrestricted 2-state MS-SVAR model from
Table 2.

H0 Test statistic p-value

λ21 = λ22 1.450 0.229
λ21 = λ23 2.284 0.131
λ21 = λ24 5.543 0.019
λ22 = λ23 2.893 0.089
λ22 = λ24 5.577 0.018
λ23 = λ24 5.228 0.022

null hypotheses that are rejected under the present assumptions
would also be rejected if some λ2i’s were actually equal. On the
other hand, the short-run restrictions (zero restrictions for B) and
the long-run neutrality restriction for the demand shock are not
rejected at conventional levels within the 2-state MS model class.
This conclusion may be affected by equal λ2i’s. It is, however, sup-
ported by the fact that the estimated λ2i’s in Table 2 do not change
much when the zero restrictions and the neutrality restriction of a
demand shock are imposed whereas a considerable change in the
estimated λ2i’s is observed when neutrality of the monetary shock
is imposed in addition. These results are in contrast with Peersman
(2005) who concludes from a comparison of conventional and sign
restricted SVARs that the zero restrictions on the instantaneous ef-
fects for the oil price may be too stringent while he finds evidence
for long-run neutrality of a monetary shock.

Turning now to themodels with three states, the estimated λij’s
for different versions can be found in Table 3 and tests for pair-
wise equality of the λij’s of the model with state-invariant B are
shown in Table 5. In the 3-state MS model we need for uniqueness
of B that for each pair i, j ∈ {1, . . . , K}, i ≠ j, either λ2i ≠ λ2j or
λ3i ≠ λ3j. Hence, we test joint null hypotheses H0 : λ2i = λ2j and
λ3i = λ3j, as shown in Table 5. The Wald tests do not reject these
null hypotheses at conventional significance levels but they do re-
ject that all diagonal elements of Λ2 are identical. The test is also
presented in Table 5 and has a p-value of 0.016. Obviously, such
a complex model is difficult to estimate from our limited sample
which is likely to undermine the power of our tests. Taking into
account the results of all the tests, there is evidence that at least
some λij’s are distinct. Hence, tests of restrictions on B can be per-
formed but have to be interpreted cautiously.

In the class of 3-state models in Table 1 AIC and SC both favor a
model with the four zero restrictions on B specified in (3). Some LR
tests of restrictions on B in the 3-state model are also presented
in Table 6. They support a model with the four short-run zero
restrictions on B but also do not reject the long-run neutrality
Table 5
Wald tests for equality of λij ’s for the 3-state MS-SVAR model with state-invariant,
unrestricted B from Table 3.

H0 Test statistic p-value

λ21 = λ22, λ31 = λ32 3.19 0.202
λ21 = λ23, λ31 = λ33 3.60 0.166
λ21 = λ24, λ31 = λ34 4.43 0.109
λ22 = λ23, λ32 = λ33 2.18 0.336
λ22 = λ24, λ32 = λ34 1.81 0.405
λ23 = λ24, λ33 = λ34 3.11 0.211
λ21 = λ22 = λ23 = λ24 10.4 0.016
λ31 = λ32 = λ33 = λ34 2.93 0.403

of the demand shock. They reject the long-run money neutrality
restriction, however.

These results are based on the degrees of freedom parame-
ters obtained for a fully identified model. Given that the results in
Table 5 provide weak support for such an assumption at best, the
p-values in Table 6 are better thought of as upper bounds for the ac-
tual asymptotic p-values, as explained earlier. Hence, the fully re-
strictedmodelwith all of Peersman’s restrictions is clearly rejected
and so is the model with the four short-run restrictions and the
long-runmoney neutrality restriction. The situation is less clear for
the model with all but the long-run money neutrality restriction.
The p-value obtained under the assumption of a χ2-distribution
with five degrees of freedom does not give rise to rejecting at con-
ventional significance levels, the p-value being 0.155. However,
this result may just reflect the lack of sufficient sample informa-
tion against the null hypothesis.

Overall we conclude from our statistical analysis that a model
without MS in the residual covariance is clearly inferior to models
withMS. Both a 2-state and a 3-stateMSmodel have some support
from the data. Within the class of 2-state models the one with the
four conventional zero restrictions from (3) on B and the long-run
restriction associatedwith the demand shock is the favoritemodel.
This model also has some support from the data in the 3-state
class but here the situation is more ambiguous. Still, we will pay
special attention to these models in the following. None of these
models would be fully identified in a conventional setting. Hence,
the interpretation of the resulting shocks is not obvious. In the next
subsection we will discuss whether and how the volatility of the
shocks can help in labeling them.

4.3. Analysis of states

In order to discuss the question how the MS structure can help
in labeling the shocks, it is useful to consider the estimated residual
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Table 6
LR tests of restrictions for MS-SVARmodels for yt = (oilt , qt , pt , st )′ with lag order p = 3, intercept and linear trend term (sample period:
1980Q1–2002Q2).

Model H0 H1 LR df p-value

2-state MS b12 = b13 = b14 = b24 = 0 Unrestricted 4.46 4 0.347
b12 = b13 = b14 = b24 = 0, ξ23 = 0 Unrestricted 5.74 5 0.332
b12 = b13 = b14 = b24 = 0, ξ24 = 0 Unrestricted 24.24 5 0.000
b12 = b13 = b14 = b24 = 0, ξ23 = ξ24 = 0 Unrestricted 32.46 6 0.000

3-state MS State-invariant B Unrestricted 6.78 10 0.746
b12 = b13 = b14 = b24 = 0 State-inv. B 2.98 4 0.561
b12 = b13 = b14 = b24 = 0, ξ23 = 0 State-inv. B 8.02 5 0.155
b12 = b13 = b14 = b24 = 0, ξ24 = 0 State-inv. B 26.56 5 0.000
b12 = b13 = b14 = b24 = 0, ξ23 = ξ24 = 0 State-inv. B 32.40 6 0.000

Note: LR = 2(log LT − log LrT ), where LrT denotes the maximum likelihood under H0 and LT denotes the maximum likelihood under H1
from Table 1.
Table 7
Estimated state covariance matrices (×100) of MS-SVAR models for yt = (oilt , qt , pt , st )′ with lag order p = 3, intercept and linear trend
term (sample period: 1980Q1–2002Q2).

Unrestricted 2-state MS-VAR 3-state MS-VAR with state invariant, unrestricted B

Σ1

6.973 −0.157 3.100 3.547
19.375 −1.294 8.916

3.911 1.680
16.039


8.928 1.621 3.811 5.440

22.739 −2.264 10.351
4.426 0.244

12.494



Σ2

0.186 0.378 −0.016 −1.325
7.357 2.184 1.954

1.085 3.901
163.250


0.461 0.202 0.091 −0.224

11.860 0.866 5.046
1.653 0.283

17.352



Σ3

2.406 −0.832 0.302 −10.664
13.999 5.492 29.569

2.899 15.869
313.366
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Fig. 1. Smoothed state probabilities of the unrestricted 2-state MS-SVAR model.

covariancematrices of 2- and 3-state MSmodels with unrestricted
B matrix presented in Table 7. In an unrestricted 2-state model a
substantially larger variance is observed for the interest rate equa-
tion. Thus, the second state is associated with high volatility in the
interest rate. The state probabilities are plotted in Fig. 1 where it
can be seen that State 2 is associatedwith the first half of the 1980s
while State 1 corresponds to the Great Moderation period after-
wards. Once reached, State 1 is never left during our sample period.
This explains the estimate p̂11 = 1 for the unrestricted model in
Table 2. In other words, the estimated State 1 is an absorbing state.

Considering the estimated λ2i’s, i.e., the relative variances in
State 2 in Table 2, it is apparent that the last shock is the one with
relatively high volatility in State 2 across all models, that is, ir-
respective of the restrictions which are imposed on B. Thus, the
volatility analysis suggests that the last shockmay be themonetary
policy shock even in models which are not fully identified by con-
ventional restrictions imposed on B. In particular, in the preferred
model where some of the conventional identifying restrictions are
imposed, one may suspect, taking into account the volatility of the
shocks, that the last shock is a monetary policy shock. Looking at
the associated state probabilities of the preferred model with all
but the monetary policy shock neutrality restriction in Fig. 2, they
are a bit different from those in Fig. 1. Again much of the first
half of the 1980s is associated with State 2, but also a short pe-
riod in 1988/89 and in 1992/93. The last period follows the Per-
sian Gulf War (late 1990) which was associated with turbulence in
the oil market and associated reactions of monetary policy (Kilian,
2008a,b). Hence, the high volatility shocks in State 2 in this model
may be a mixture of monetary policy and oil price shocks. In other
words, it is not obvious that the last shock can really be classified
as a monetary policy shock in our preferred model. We will return
to the issue of classifying the shockswhenwe discuss the IRs in the
next subsection.

For the 3-state MS model the situation is slightly different. The
state covariance matrices for the model with unrestricted, state-
invariant B are given in Table 7. The last state is again one with
a high volatility in the interest rate equation while in the first
state the oil price equation exhibits much higher volatility than in
the other states. The corresponding smoothed state probabilities
are depicted in Fig. 3. They show that the third state is confined
to the high volatility period in the first half of the 1980s but
now the remaining period is subdivided in two states. In other
words, the Great Moderation period during the 1980s and 1990s
is divided up among the first and second states. It is not obvious to
relate the periods assigned to a particular statewith specific events
associated with higher or lower volatility. In fact, in the covariance
matrices associated with the first two states there is no uniform
ordering of the variances. More precisely, the first three variances
are larger in State 1 while the fourth variance is larger in State 2.
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Fig. 3. Smoothed state probabilities of the 3-state MS-SVAR model with state-
invariant, unrestricted B.

The only markedly higher variance is the first one in State 1 which
is more than ten times the corresponding quantity in State 2.

Considering also the estimated λij’s of the rejected, fully re-
stricted 3-state MS model in Table 3 it can be seen that they are
quite different from those of models which are not rejected by the
data. Hence, the shocks in the latter models are likely to represent
different shocks from those based on Peersman’s restrictions. In
other words, the shocks in themodels not rejected by the datamay
not represent the same ones as in Peersman’s model. It has to be
seenwhether the IRsmay suggest appropriate labels for the shocks.
IR analysis is considered next.

4.4. Impulse response analysis

It may be instructive to start the IR analysis by looking at the
IRs obtained with the fully restricted 2-state MS model in Fig. 4.
These IRs are quite similar to Peersman’s when he uses conven-
tional restrictions although our model has an MS structure and is
hence different from his. An exception is the oil price reaction to
a demand shock which becomes negative after a couple of quar-
ters in Fig. 4 while it is significantly positive in Peersman’s Fig. 1
even after a few years. Another difference to Peersman is the oil
price response to a monetary policy shock. After an initial positive
response it becomes quickly insignificant in Fig. 4 whereas it is sig-
nificantly negative in Peersman’s study.

Generally, a main difference to Peersman’s results is that our
confidence intervals for the IRs appear to be partly wider and less
symmetric around the estimated IRs. There are a couple of factors
that contribute to this outcome. First, Peersman uses a Bayesian
approach to estimate IRs and construct confidence bounds, ignor-
ing changes in volatility. In contrast, our approach is purely clas-
sical. Given that his IRs are median responses drawn from some
posterior, their similarity to our classical IRs is a signal for the ro-
bustness of the results. Second, including the MS structure in the
models increases the dimension of the parameter space and, hence,
the estimation uncertainty. Moreover, ignoring volatility changes
may lead to biased confidence intervals for IRs. Therefore, some-
what wider confidence intervals for our IRs are not surprising. The
other difference to Peersman’s IRs is that some of our confidence
bands are much more asymmetric around the IRs. The median of
the posterior distribution used by Peersman for estimating the IRs
is within the confidence intervals by construction whereas the ac-
tual IRs of the system may in fact reach outside the confidence
bands. Fry and Pagan (2011) mention this problem in the context
of sign restricted IRs. Our confidence intervals may just reflect this
feature. They should just be interpreted as an indication of estima-
tion uncertainty in the IRs.

We emphasize that a contractionary monetary policy shock
brings down output and the price level after some time and, hence,
delivers plausible responses in our study as well as in Peersman’s.
While the effect on the price level is long lasting, the effect on
output tapers off after some years due to the neutrality restriction
imposed on the long-run effect.

In Fig. 5 we present the IRs from the unrestricted 2-state MS
model. They are largely similar to those in Fig. 4. Actually the
responses to the oil price shock (the first column in Fig. 5) are very
similar to those in the fully restricted model in Fig. 4. We associate
the second and third shocks with supply and demand on the basis
of the IRs. The IRs show somedifferences to the fully restricted ones
in Fig. 4 but they are qualitatively similar. Considering, for instance,
the response of prices, the second shock has characteristics of a
supply shock while the third one is recognized as a demand shock.
Of course, such an interpretation assumes that our statistically
identified shocks are actually supply and demand shocks.

Finally, the last shock in the unrestricted system, which was
identified as a candidate for amonetary policy shock on the basis of
the volatility analysis, has similar effects as in the restricted model
except that now we have a ‘price puzzle’. In other words, in the
unrestricted model an interest rate increase goes together with
a lasting increase in the price level which is in sharp contrast to
the corresponding IRs in Fig. 4. There are a number of alternative
explanations for this counter intuitive result. First, the fourth shock
is not truly a monetary policy shock in the unrestricted model but
perhaps a mixture of different economic shocks, as suggested by
the analysis of the states in the previous subsection. Second, there
may be important variables missing in themodel so that the IRs do
not properly reflect the actual responses to the shocks. The latter
explanation has prompted earlier researchers to include forward-
looking variables such as commodity prices in themodel and there
is no strong reason why the problem should not be present in the
current model. Third, there may be other reasons such as model
misspecification, errors-in-variables and the like. Such problems,
if they exist, are apparently covered up in Peersman’s models with
conventional and sign restrictions.

To explore the problem further we show the IRs of the pre-
ferred 2-state MS-SVAR model in Fig. 6 which is not rejected by
the data. The underlying model incorporates the short-run (zero)
restrictions on B and the demand shock long-run neutrality restric-
tion for output. Again all IRs are qualitatively similar to those of the
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Fig. 4. Impulse responses with 68% confidence bounds of the fully restricted 2-state MS-SVAR model, with oil, q, p, s (εoil, εs, εd, εm) referring to oil prices, output, price
level and short term interest rates (oil price, supply, demand and monetary shocks).
fully restricted model in Fig. 4 with one major exception. The price
response to a contractionary monetary policy shock is grossly dif-
ferent from that in the fully restricted model. In other words, the
‘price puzzle’ persists. Given that the long-run restriction of the
output response to a monetary policy shock is strongly rejected in
our framework, we conclude that themodelmay not be a good one
for studying the causes of the earlymillennium recession. Note that
monetary policy shockswere regarded as potentially important for
the slowdown. Hence, it is of particular concern that their impact
is not captured properly by the model.

In Table 8 we show the forecast error variance decompositions,
conditional on the states, associated with ‘monetary policy shocks’
obtained from the fully restricted and the preferred 2-state MS-
SVAR models. Not surprisingly, in both models the forecast error
variance components due to these shocks are quite different across
states. For instance, the shocks contribute a much larger share to
the forecast error variance of output and prices in State 2 than in
State 1. From the point of view of this study the more interesting
observation is, however, that the components differ substantially
across the two models. For example, in State 2 the ‘monetary pol-
icy shocks’ contribute less than 10% to the forecast error variance
of output for horizons of two or more years in the fully restricted
modelwhile their contribution in the preferredmodel ismore than
50%. Clearly, if the last shock in the preferred model was viewed
as a monetary policy shock and the associated forecast error vari-
ance components were interpreted accordingly, this could lead to
substantially different conclusions than those drawn from amodel
with Peersman’s restrictions.

To get further support for the result that misleading conclu-
sions may be drawn from a fully restricted model we take a look
at the preferred 3-state MS-SVAR model next. The IRs of the 3-
state model with the four zero restrictions on B and the long-run
demand shock neutrality, that is, our preferred 3-state MS-SVAR
model, are depicted in Fig. 7. They are largely in line with Peers-
man’s IRs except that there is again a positive response of the price
index to a monetary policy shock, that is, the ‘price puzzle’ per-
sists. We just mention that also in the 3-state MS model the ‘price
puzzle’ disappearswhenwe impose all of Peersman’s conventional
restrictions. Thus, these results are overall quite robust even across
rather different models.

Given that the long-run neutrality restriction of the monetary
policy shock for the output responses is strongly rejected by the
data, we conclude that a model with Peersman’s restrictions is
a questionable tool for IR analysis more generally. Our analysis
suggests that it may be necessary to include further variables
in the model or modify the model in some other way to obtain
reliable predictions of the reactions of the variables to the shocks
of interest. Such a conclusion is difficult to draw in a conventional
framework where the data cannot object to the just-identifying
restrictions or in a setup using sign restrictions. Hence, the analysis
demonstrates the virtues of our setup.

5. Conclusions

In this paper we consider the possibility of using changes in
the volatility of the residuals of a VAR model to get identifying
information for structural shocks. Volatility changes are modeled
bymeans of anMSprocess. It is shownhow this feature can be used
for evaluating the validity of conventional restrictions. It is argued,
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Fig. 5. Impulse responses with 68% confidence bounds of the unrestricted 2-state MS-SVAR model, with oil, q, p, s (εoil, εs, εd, εm) referring to oil prices, output, price level
and short term interest rates (oil price, supply, demand and monetary shocks).
Table 8
Conditional forecast error variance components due to ‘Monetary Policy Shocks’ for 2-state MS-SVAR models for yt = (oilt , qt , pt , st )′
with lag order p = 3, intercept and linear trend term (sample period: 1980Q1–2002Q2).

Model State Variable Forecast horizon
4 8 12 16 20 24

Fully restricted 1 oil 0.004 0.004 0.003 0.002 0.002 0.002
q 0.006 0.003 0.002 0.001 0.001 0.001
p 0.012 0.010 0.011 0.012 0.013 0.013
s 0.389 0.342 0.314 0.308 0.308 0.308

2 oil 0.557 0.528 0.441 0.375 0.329 0.295
q 0.106 0.057 0.043 0.033 0.027 0.022
p 0.240 0.215 0.230 0.249 0.262 0.270
s 0.889 0.882 0.874 0.872 0.872 0.872

Preferred 1 oil 0.000 0.000 0.000 0.000 0.000 0.000
q 0.005 0.016 0.021 0.023 0.024 0.024
p 0.012 0.015 0.016 0.015 0.015 0.015
s 0.220 0.144 0.133 0.131 0.131 0.131

2 oil 0.044 0.037 0.033 0.031 0.030 0.029
q 0.355 0.682 0.750 0.768 0.775 0.780
p 0.409 0.482 0.495 0.496 0.496 0.496
s 0.959 0.944 0.940 0.939 0.939 0.939
however, that shocks identified purely with statistical means may
not be meaningful for economic analysis and it is discussed how
identifying statistical information can be combinedwith economic
restrictions for a meaningful interpretation of the shocks.

The issues involved have been discussed in the framework of
a quarterly model for the US for oil prices, output, price level and
a short-term interest rate. The system has been used previously
for analyzing the causes of the early millennium slowdown of
the US economy using alternatively conventional just-identifying
and sign restrictions for the identification of the shocks. We
have argued that these approaches have the drawback of leaving
insufficient room for the data to object to the crucial assumptions
underlying the analysis. In contrast, taking into account the
statistical identifying information can disclose incompatibility of
the data with conventional identifying or sign restrictions. It is
shown that the US system is a questionable tool for analyzing the
economic issues of interest in the present context because the data
do not support the economic identifying assumptions.
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Fig. 6. Impulse responses with 68% confidence bounds of the 2-state MS-SVAR model with short-run restrictions and a long-run demand shock neutrality restriction, with
oil, q, p, s (εoil, εs, εd, εm) referring to oil prices, output, price level and short term interest rates (oil price, supply, demand and monetary shocks).
Omitted variables may be a potential reason for the incompat-
ibility of the conventional identifying restrictions and the data.
Hence, future research of business cycle fluctuations may want to
consider systems with additional or other variables which capture
the transmission ofmonetary policy ormay be of importance as ex-
planatory factors. For example, forward-looking variables such as
commodity prices ormonetary aggregatesmay be included.With a
viewon the earlymillennium slowdownonemay alsowant to con-
sider variables related to financialmarkets or thewealth effects as-
sociated with the financial market contraction. Alternatively, one
may consider adding a further shockwhich takes care of effects due
to omitted variables as in Rigobon and Sack (2003).

Of course, there could be other reasons for rejecting the previ-
ously used identification assumptions. For instance, there may be
errors-in-variables or model deficiencies such as nonlinearities or
varying parameters not captured by the present setup. Such fea-
tures may require using a different model class altogether.
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Appendix. The EM algorithm

The EM algorithm presented in Krolzig (1997) is used.We adapt
it to the case where the state covariances are parameterized as in
(5) and provide information on specific implementations. Compu-
tations are performed with Gauss 9.0.

Notation and definitions

Define

ξt =

 I(st = 1)
...

I(st = M)

 , thus, E(ξt) =

 Pr(st = 1)
...

Pr(st = M)

 ,
where I(·) is an indicator function which is one if the condition in
the argument holds and zero otherwise. Define

ξt|s = E(ξt |Ys) =

 Pr(st = 1|Ys)
...

Pr(st = M|Ys)

 ,
where Ys = (y1, . . . , ys). Note that

ξt+1|t = Pξt|t , t = 0, . . . , T − 1,

where

P =

 Pr(st+1 = 1|st = 1) · · · Pr(st+1 = 1|st = M)
...

. . .
...

Pr(st+1 = M|st = 1) · · · Pr(st+1 = M|st = M)
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Fig. 7. Impulse responses and 68% confidence bounds for the 3-state MS-SVAR model with short-run restrictions and long-run demand shock neutrality restriction, with
oil, q, p, s (εoil, εs, εd, εm) referring to oil prices, output, price level and short term interest rates (oil price, supply, demand and monetary shocks).
is the transition matrix. Moreover, define

ηt =

 f (yt |st = 1, Yt−1)
...

f (yt |st = M, Yt−1)

 ,
where

f (yt |st = m, Yt−1) = (2π)−K/2 det(Σm)
−1/2 exp


−

1
2
u′

tΣ
−1
m ut


,

with

Σ1 = BB′, Σm = BΛmB′, m = 2, . . . ,M.

Furthermore, the following notation is used:

⊙ elementwise multiplication,
⊘ elementwise division,
1M = (1, . . . , 1)′ is an (M × 1) vector of ones,
θ = vec[ν0, ν1, α,Γ1, . . . ,Γp],
Z ′

t−1 = [1, t, (β ′yt−1)
′,1y′

t−1, . . . ,1y′
t−p].

EM algorithm

Starting values

P = M−11M1′

M ,
θ̂ = vec[ν̂, α̂, Γ̂1, . . . , Γ̂p]

=


T

t=1

Zt−1Z ′

t−1 ⊗ IK

−1 T
t=1

(Zt−1 ⊗ IK )1yt ,

B =


T−1

T
t=1

ût û′

t

1/2

+ B0 with ût = 1yt − (Z ′

t−1 ⊗ IK )θ̂

and B0 a matrix of small random numbers,
Λm = IK , m = 2, . . . ,M,
ξ0|0 = 1M/M.

To ensure the detection of some ‘global’ maximum of the log-
likelihood we use at least 10000 distinct initial parameter choices
for the elements in B.

Expectation step
For given P, θ,Σm, m = 1, . . . ,M , and ξ0 = ξ0|0 compute

ηt , ξt|t−1 = Pξt−1|t−1, ξt|t =
ηt ⊙ ξt|t−1

1′

M(ηt ⊙ ξt|t−1)
,

t = 1, . . . , T ,

(choose ξiT |T ≤ ξjT |T for i < j to avoid label switching, that is,
the problem of iterating between likelihoods which correspond to
different orderings or labeling of the states)

ξt|T =

P ′(ξt+1|T ⊘ Pξt|t)


⊙ ξt|t , t = T − 1, . . . , 0,
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and
ξ
(2)
t|T = vec(P ′)⊙


(ξt+1|T ⊘ Pξt|t)⊗ ξt|t


, t = 0, 1, . . . , T − 1.

Maximization step
Estimate P

vec(P̂ ′) =


T−1
t=0

ξ
(2)
t|T


⊘


1M ⊗

T
t=1

ξt|T


.

Estimate B andΛm
Define ût = 1yt − (Z ′

t−1 ⊗ IK )θ̂ and Tm =
T

t=1 ξmt|T and
estimate B andΛm, m = 2, . . . ,M , by minimizing

l(B,Λ2, . . . ,ΛM) = T log | det(B)| +
1
2
tr


B′−1B−1

T
t=1

ξ1t|T ût û′

t



+

M
m=2


Tm
2

log det(Λm)+
1
2
tr


B′−1Λ−1

m B−1
T

t=1

ξmt|T ût û′

t


possibly subject to restrictions on B from (3) and impose a lower
bound of 0.01 for the diagonal elements ofΛm, m = 2, . . . ,M , to
avoid singularity of the covariance matrix. Then defineΣ1 =BB′, Σm =BΛ̂mB′ m = 2, . . . ,M.
Estimate θ

θ̂ =


M

m=1


T

t=1

ξmt|TZt−1Z ′

t−1


⊗ Σ−1

m

−1

×

T
t=1


M

m=1

ξmt|TZt−1 ⊗ Σ−1
m


1yt .

Iterate estimation of B,Λm and θ until convergence.
Estimate ξ0
ξ0|0 = ξ0|T .

The expectation and maximization steps are iterated until
convergence. We only consider models where all eigenvalues of
Σ̂1, . . . , Σ̂M are greater than 0.001.

Likelihood function and convergence criteria

We use relative changes in the value of the log-likelihood func-
tion and the parameter values as convergence criteria.

The log-likelihood is evaluated as follows. For given P , θ , Σm,
m = 1, . . . ,M , and ξ0|0 compute for t = 1, . . . , T ,

ηt , ξt|t−1 = Pξt−1|t−1, ξt|t =
ηt ⊙ ξt|t−1

1′

M(ηt ⊙ ξt|t−1)
.

Then

log LT =

T
t=1

log f (yt |Yt−1),

where

f (yt |Yt−1) =

M
j=1

Pr(st = j|Yt−1)f (yt |st = j, Yt−1) = ξ ′

t|t−1ηt .

Note that the ξt|t−1 are not the smoothed transition probabilities
but are obtained from the ones based on the given parameter val-
ues, that is, based on the parameter values obtained in a particular
step of the estimation algorithm with ξ0|0 = ξ0|T being typically
the smoothed estimate of the initial state.

Estimation of standard errors

Let γ1 be the vector of all parameters in θ . Moreover, γ2 consists
of vec(B), the diagonal elements of Λm, m = 2, . . . ,M , and all
M(M − 1)unrestricted parameters in P (recalling that the columns
of P sum to one). Let γ = (γ ′

1, γ
′

2)
′. We use the outer product of

numerical first order derivatives (&gradp, Gauss 9.0)

S =

T
t=1

∂ lt(γ )
∂γ

∂ lt(γ )
∂γ ′

.

Standard errors for parameter estimates are determined as square
roots of the diagonal elements of the inverse of this matrix under
the presumption that the matrix is blockdiagonal with respect to
γ1 and γ2.
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