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Matching theories about growth, development, and change to appropriate statistical mod-
els can present a challenge, which can result in misuse, misinterpretation, and underutiliza-
tion of different analytical approaches. We discuss the use of derivatives: the change of a
construct with respect to the change in another construct. Derivatives provide a common
language linking developmental theory and statistical methods. Conceptualizing change
in terms of derivatives allows precise translation of theory into method and highlights com-
monly overlooked models of change. A wide variety of models can be understood in terms
of the level, velocity, and acceleration of constructs: the zeroth, first, and second derivatives,
respectively. We introduce the language of derivatives, and highlight the conceptually differ-
ing questions that can be addressed in developmental studies. A substantive example is pre-
sented to demonstrate how common and unfamiliar statistical methodology can be

understood as addressing relations between differing pairs of derivatives.

Of great interest to developmental researchers is the
association between two or more changing constructs,
and whether and how they are related over time. To
examine these relations, methodological factors must
be considered, such as the type of statistical model
needed to investigate questions about growth, develop-
ment, and change, and the time scale over which change
is expected (Ferrer & McArdle, 2010; Little, 2013;
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Nesselroade, 1991; Sliwinski, 2011). Models exploring
the longitudinal relations between constructs can take
many forms (Little, 2013). For example, studies examin-
ing relations between mothers’ and children’s depressive
symptoms have used correlations of observed scores,
hierarchical linear models of change (e.g., Pilowsky
et al., 2008), models of latent growth curves with corre-
lated growth parameters (e.g., Garber & Cole, 2010;
Gross, Shaw, & Moilanen, 2008), latent change score
models (e.g., Kouros & Garber, 2010), and cross-lagged
panel designs (e.g., Ge, Conger, Lorenz, Shanahan, &
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Elder, 1995; Jaffee & Poulton, 2006). Each of these mod-
els is useful for describing developmental processes, but
rarely are the commonalities across the models explicitly
noted. This disconnect burdens researchers with the task
of figuring out how each analytic approach is or is not
appropriate for modeling different types of developmen-
tal processes and theories. This confusion also influences
the inferences that can or cannot be drawn from specific
models.

A bridge between theoretical rationale for develop-
ment and the appropriate model may be achieved
through a common language for statisticians and sub-
stantive researchers. In this article we present derivative
terminology, which can aid in the articulation of change
and thereby better link developmental theories, models,
and inferences. Derivative terminology overlaps with
both developmental and statistical concepts, and could
serve as a common vocabulary in modeling change. In
doing so, developmental psychologists may be able to
better understand a wide range of models as part of a
common framework, instead of as distinct options whose
overlap in commonalities and discrepancies are muddled,
at best. We begin by presenting a typical developmental
research question on the relation of change between
mothers’ and children’s behavior, after which we intro-
duce derivative vocabulary and apply this language to
substantive examples to discuss the inferences drawn
from differing statistical models.

DYNAMIC RELATION BETWEEN MOTHERS
AND CHILDREN

Developmentalists often are interested in the mother-
child dyad, and how change in one member of the dyad
could affect the other. The interest in this bidirectional
relation between members of a dyad is reflected in many
prominent theories and developmental perspectives
(dynamic systems; Thelen & Smith, 2006; family systems
theory; Cox & Paley, 1997; see also Sameroff, 1975). One
dynamic, bidirectional relation of this sort, the transac-
tional association between mothers’ and children’s
psychiatric symptoms, also has theoretical and empirical
justification (see Elgar, McGrath, Waschbusch, Stewart,
& Curtis, 2004; Gunlicks & Weissman, 2008). Theoreti-
cally, different mechanisms have been proposed to account
for the effect of maternal depression on children’s psycho-
logical symptoms (e.g., impairments in parenting and
quality of family environment, see Goodman & Gotlib,
1999), as well as the effect of children’s psychological
symptoms on maternal depression (e.g., stress of caring
for a child with psychological problems, see Elgar et al.).
Given strong theoretical support for bidirectional rela-
tions, research has focused on providing empirical support
for this link; this has been examined with several different

models. For example, Gross et al. (2008) and Garber and
Cole (2010) tested parallel process models, in which the
latent growth parameters representing linear change in
mothers’ and children’s symptoms were correlated.
Jaffee and Poulton (2006) tested an autoregressive,
cross-lag model to test for time-dependent bidirectional
relations. Kouros and Garber (2010) used a latent
change score model to test for transactional relations.
Finally, Nicholson, Deboeck, Farris, Boker, and
Borkowski (2011) used differential equation modeling
techniques to fit a coupled damped linear oscillator
model. These studies have attempted to assess the bidir-
ectional relation using a variety of statistical methods.
Notably, some of these methods ask very similar ques-
tions about the change processes, despite using different
models, whereas others make unique assumptions about
how the constructs are related. These different change
models may (and frequently do) yield different results
and conclusions, and the similarities between models
may not be readily apparent (e.g., Kouros, Quasem, &
Garber, 2013).

Which model should developmentalists use to test
such transactional relations? The difficulty, in part, is
that “transactional relation” is vaguely defined from a
mathematical perspective, and could imply many differ-
ent models. Figure 1 depicts hypothetical trajectories for
maternal depressive symptoms and child externalizing
behavior problems for two dyads. In both Figures 1A
and 1B, the mother’s trajectory of depressive symptoms
increases over time. Prior to the onset of maternal
depression, the child could have many possible initial
trajectories, corresponding to increasing or decreasing
rate of externalizing behaviors. Had there not been an
increase in mother’s depression, we might expect children

(A) Mother-Child Dyad 1 (B) Mother-Child Dyad 2

—— Mother's Trajectory
Child's Initial Trajectory
Child's Observed Trajectory

—— Mother's Trajectory
Child's Initial Trajectory
Child's Observed Trajectory

Score
Score

Time Time

FIGURE 1 Plots of hypothetical trajectories for two mother-child
dyads where the mother’s depression affects the child’s externalizing
behaviors. Note. In both figures the change in child’s behavior (solid
gray line) is coupled to the change in mother’s depression (solid black
line). The figures differ in the initial trajectories of the children (dashed
gray lines). Panel A shows a relation where the scores of the mother
and child would be highly correlated. In Panel B, whereas the mother’s
depression is leading to changes in the child’s trajectory from his/her
initial trajectory, the scores of the mother and child would have a
correlation near zero.
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to continue on these initial trajectories, corresponding to
the dashed, gray dotted lines in Figure 1. As mother’s
depressive symptoms increase, however, in both cases
the children may respond by showing an increase in the
number of behavioral problems relative to their expected
trajectory (solid gray line).

We expect that a child’s behaviors would change in
response to mother’s depression, but the word change
is mathematically vague and does not imply a specific
model that can be tested. In these examples, the children
in both dyads demonstrate changes in their trajectories in
response to the increase in their mother’s depression, but
they show very different changes over time despite their
starting at baseline with similar scores on externalizing
behaviors. The first child (Figure 1A) follows a pattern
that would be expected, as there is a positive correlation
between maternal depression and children’s externalizing
scores due to both variables having positive slopes. In
contrast, there would be a correlation of approximately
zero between the mother and the second child (Figure
1B), as depression shows a positive slope whereas the
child’s corresponding behavioral trajectory appears
neutral or slightly negative. A model focused on correlat-
ing scores or correlating linear slopes would suggest that
the second child’s behavior problems were not related to
the mother’s depression, as the change is masked by an
initially negative trajectory.

Herein are some of a few questions that can be raised
related to how change is defined. In saying that the chil-
dren have changed in relation to their mothers, are we
expecting an increase in the observed levels of their exter-
nalizing scores or an increasing slope as with the child in
the first dyad (Figure 1A), or a change in the trajectory of
the child (i.e., curvature) as seen in both children? More-
over, it must be considered if the child is responding to
the level of the mother’s depression, the steepness of her
slope, or changes in the steepness of her slope. The impre-
cise vernacular of using the word change fails to articulate
the forms of the relations depicted in Figure 1. Similarly,
the word trajectory does not convey a specific form of
change, and can be interpreted mathematically in mul-
tiple ways. Derivatives offer the potential of specifically
defining what is meant by change and the ability to specify
components of a trajectory.

Derivatives, being mathematically defined, also allow
for translation to and from mathematical models; that
is, they allow selection of models that more closely
match theory and provide more precise interpretations
of the inferences that can or cannot be made with a
specific model. Using derivatives as a precise common
denominator between theory and method would reduce
misunderstandings among developmental researchers
and mitigate translating theory into inappropriate stat-
istical models. Using derivative terms to represent
change easily identifies models that fit the theory and
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provides a framework for understanding whether
different models address similar questions about change.
Additionally, by identifying how current models fit in
this framework, new modeling possibilities may be
identified.

DERIVATIVES: THE VOCABULARY
OF CHANGE

In mathematics, the change in one construct with respect
to change in another construct is expressed using
derivatives. In this article we will specifically consider
the changes in constructs with respect to time. The value
of a construct at a specified point in time is the zeroth
derivative; the zeroth derivative is usually described by
the name of the substantive construct to which it is refer-
ring, but despite differing names in developmental
science the zeroth derivative can be generally considered
the level of a construct at a specific time. In a plot of a
construct (y-axis) versus time (x-axis), the zeroth deriva-
tive would be represented with a single point. Changes in
the level of a construct, with respect to time, are called
the first derivative; the first derivative is the velocity
(speed in a specific direction) at which a construct is
changing. In a plot of a construct versus time, the first
derivative would be the slope of a straight line, and can
also be referred to as the rate of change, the rise over
the run, and the change in a construct with respect to a
change in time. The rate of change in the velocity with
respect to time, that is how quickly the slope of a line
changes in a single direction, is the second derivative or
the acceleration. Acceleration in a construct plotted
versus time would appear as a curved line. While some
variation in terms occurs, the present article utilizes level,
velocity, and acceleration to refer to the zeroth, first and
second derivatives.

To gain familiarity with this vocabulary, consider
driving a car as a metaphor for a changing construct.
The zeroth derivative expresses the level of a construct
at a specific time, which in a car would correspond to
the position of the car at a specific time. How this pos-
ition changes with respect to time, or how much of a
change in position occurs divided by the elapsed amount
of time, is the velocity (first derivative) of the car if it is
assumed the car is traveling in a single direction along a
straight road. The velocity of the car, however, may not
be constant as there may be increases or decreases in velo-
city over some period of time. These changes in velocity
are represented in the acceleration of the car (second
derivative); the term acceleration is used to represent
both positive (acceleration) and negative (deceleration)
changes to velocity. Using this metaphor to describe
derivatives, we can articulate more clearly the property
or properties of any construct of interest to inform our
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FIGURE 2 Plot of a developmental trajectory (light gray line) with
the level (black circles), instantaneous velocity (black lines), and
instantaneous accelerations (dark grey lines) at three points in time.
Note. In this figure the straight black lines indicate a positive first
derivative (velocity) for the first and second points at which derivatives
are estimated, and a negative first derivative at the third point. The
upwards curved dark gray lines indicate a positive second derivative
(acceleration) at the first and last points at which derivatives are esti-
mated; the downward curve at the second point indicates a negative
second derivative.

decision of which analysis to choose to investigate how
constructs change over time.

Figure 2 presents another way to visualize level
(zeroth derivative), velocity (first derivative), and accel-
eration (second derivative). The light gray line repre-
sents a hypothetical developmental trajectory. The
black circles represent the zeroth derivative, or the level
of a construct at any given point in time along this
trajectory. The straight black lines tangential to the
trajectory represent the velocity of the construct at some
particular time. If we examine the slopes just before and
after a given point in time, we would see a change in
velocity (i.e., acceleration, curved dark gray lines) that
could be described using the second derivative. Table 1
presents a summary of several ways of expressing deri-
vatives. Although using derivative notation may be
unfamiliar, researchers who are comfortable thinking
in terms of the level of a construct at a specific time
(point), straight line change, and curved lines can begin
to identify derivatives that correspond to these same
concepts.

RELATING CONSTRUCTS

Considering levels, velocities, and accelerations on indi-
vidual constructs expands the possible ways in which
two or more constructs may be related. We return to
our example of maternal depression and child externaliz-
ing behavior problems. In the context of related con-
structs, the questions about correlated levels, velocities,
and accelerations would respectively address: (1) Are
high levels of maternal depression scores observed with
high levels of child behavioral problem scores? (2) Does
the rate at which maternal depression change (i.e., velo-
city) correlate with the rate at which child behavioral
problems are changing? (3) When the rate of change in
maternal depression is increasing or decreasing (i.e.,
accelerating), do child behavioral problems also show
increasing or decreasing rates of change? These three
questions each capture a uniquely different component
of change and the presence of any one relation does
not imply any other relation. For example, if high
maternal depression scores are correlated with high child
behavior problem scores, it does not necessarily mean
that the dyads’ slopes are also related. Figure 3 explores
two examples (Panels A and B) of how the presence of
correlated velocities or accelerations individually do
not necessarily imply other related derivatives: each
relation can occur independently of the other two. The
two examples each have trajectories for four participants
(upper row of each panel) that are used to produce the
plots of the relations between derivatives (lower row of
each panel). In Panel A, there is a clear velocity—velocity
relation, but level-level and acceleration—acceleration
relations are equal to zero. In Panel B, there is a signifi-
cant acceleration—acceleration relation, but level-level
and velocity—velocity relations are equal to zero. As
the significance of each relation can be independently
manipulated it becomes even more necessary to explicitly
express what is meant when saying that two constructs
show related change.

Thinking about level, velocity, and acceleration also
offers opportunities to examine relations that may
be underutilized. Table 2 presents possible relations
between two constructs and examples of possible

TABLE 1
Vocabulary for Describing Change With Respect to Time

Characteristic of a construct Name Graphical depiction Derivative Notation Dot notation
Value of the construct: The value of a construct at a Level Single point Zeroth (x) X

specific point in time
Slope of the construct: The directional speed at Velocity Straight line First (j%) X

which the level of a person’s construct is changing
(with respect to time)

Curvature of the construct: The rate at which a
person’s velocity is changing (with respect to time)

Acceleration

Curved line Second

<tsz) x
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FIGURE 3 Figures demonstrating that the presence of a relation between a pair of derivatives does not necessarily imply that other derivatives will
be related. Note. The top row of each panel shows trajectories of four hypothetical dyads; the bottom row of each panel plots the levels, velocities,
and accelerations of the dyads against each other. The symbols for the dyads in the top row correspond to the symbols plotted in the second row.
Panel A demonstrates trajectories with a significant velocity—velocity relation when level-level and acceleration—acceleration relations are equal to
zero. Panel B demonstrates trajectories with a significant acceleration—acceleration relation when level-level and velocity—velocity relations are equal
to zero. The presence of correlated velocities (Panel A) or correlated accelerations (Panel B) does not necessarily imply the levels of constructs will be
correlated. The same can be shown for correlated levels of constructs; the presence of correlated levels of constructs does not necessarily imply that
correlated velocities or accelerations occur.
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TABLE 2
Possible Relations Among Level, Velocity, and Acceleration of Two Constructs With Sample Questions Using the Example of Mother’s

Depression and Child Behavioral Problems

Construct 2

Level

Velocity

Acceleration

Level-Level: Are high levels of
maternal depression observed
with high levels of child behavior
problem?

Velocity-Level: Is a mother’s level
of depression, regardless of
whether her symptoms are
changing or not, related to the
rate at which her child’s behavior
problems increased or decreased
(velocity)?

Acceleration-Level: Does the
mother’s level of depression
predict increases or decreases in
the rate of change of her child’s
behavior problems (changes in
velocity, acceleration)?

Velocity—Velocity: Does the rate at

which mother’s depressive
symptoms increase or decrease
(velocity) predict the rate at
which her child’s behavior
problems increase or decrease
(velocity)?

Acceleration-Velocity: Does the

rate at which a mother’s
depression improves or worsens
(velocity) predict increases or
decreases in the rate of change of
her child’s behavior problems
(changes in velocity,
acceleration)?

Acceleration—Acceleration: Do

increasing or decreasing rates of
change in maternal depression
(changes in velocity, acceleration)
predict increases or decreases in the
rate of change of her child’s
behavior problems (changes in
velocity, acceleration)?

research questions regarding the relation between
maternal depression and child behavioral problems.
Those along the diagonal already have been discussed:
level-level, velocity—velocity, and acceleration—
acceleration. Relations between constructs, however,
also can occur between differing derivatives; three
opportunities presented in this table are level-velocity,
level-acceleration, and velocity—acceleration relations.
For example, a mother’s level of depression, regardless
of whether her symptoms are changing or not, might
be related to the rate at which a child’s behavior prob-
lems are changing (level-velocity). A mother’s level of
depression may also lead to an increase or decrease in
the rate at which the child’s behavioral problems are
changing, such that her child’s behavior shows a curvi-
linear relation (level-acceleration). Finally, the absolute
level of a mother’s depression could be inconsequential,
whereas the rate at which a mother’s depression is chan-
ging could precipitate an increase or decrease in the rate
at which the child’s behavior problems are changing
(velocity—acceleration). Such different relations between
derivatives can lead to important research questions that
are more in line with the need for appropriate models to
better explain the true nature of human behavior (Lewis,
2000; Richters, 1997; Sameroff, 2000; Sameroff &
MacKenzie, 2003). Theoretical approaches, like presen-
tations of dynamical systems by Thelen and Smith
(2006), encourage a way to conceptualize, operationa-
lize, and formalize complex patterns for how variables
may differ in their change relations.

SUBSTANTIVE EXAMPLE

Many models are available for the description of change;
models that are often presented as separate and different
entities. Derivatives can provide a framework for under-
standing the inferences that can be drawn from parti-
cular models and understanding how they relate to
concepts of change. We present here analyses to demon-
strate how both familiar and unfamiliar analyses can be
conceptualized as testing inferences about differing
derivative relations. The first examines a Hierarchical
Linear Model (HLM), a common analytic approach
for developmental researchers. The second examines
the same data, from the perspective of Latent Growth
Curve Modeling (LGCM). We re-express both of these
familiar models in terms of derivatives, and consequently
discuss the inferences of parameters in terms of level,
velocity, and acceleration. Finally, we introduce a more
novel methodology for estimating derivatives from
repeated intraindividual observations; while this method
will be less familiar to most readers, the inferences that
are being drawn can still be understood in terms of rela-
tions between pairs of derivatives. The present examples
are provided only for pedagogical value and any specific
results should be considered exploratory, if for no other
reason than we have selected to focus on unidirectional
relations using data where a bidirectional transactional
relation is certainly plausible. Additionally, readers
should use these examples to try to appreciate the differ-
ences in the derivative relations examined by differing
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models, and not draw conclusions about the value of
any one particular method based on the significance or
nonsignificance of the relations examined.

The examples are based on a sample of 240 youth
(M age=11.86 years, SD=.56; 54% female; 81.5%
European American) and their mothers followed annu-
ally from grade 6 through grade 12. A subset of these
children had a mother with a history of a mood disorder
(n=185), whereas the remaining mothers were life-time
free of psychopathology (7= 55). At each annual assess-
ment, mothers reported on their depressive symptoms
on the Beck Depression Inventory (BDI; Beck, Ward,
Mendelson, Mock, & Erbaugh, 1961; the term
depression is used here for the sake of brevity) and about
their child’s externalizing behavioral problems on the
Child Behavior Checklist (CBCL; Achenbach, 1991).
Externalizing behavioral problem ¢-scores were used in
the subsequent analyses.

Example 1: Hierarchical Linear Modeling

A hierarchical linear model (HLM) was fit to predict
changes in child behavior problems in relation to
mother’s depression. We begin with a level 1 model where
child behavioral problems (Y;,) are predicted by time:

Yit = Boi + P T+ByT? + errory (1)

where T represents time (Grade 6 =0), and the subscripts
i and ¢ indicate observations for each individual child
over several occasions of time. Although researchers
are familiar with the growth parameter terms of
intercept, linear slope, and quadratic slope modeled in
Equation 1, the relation between variables modeled in
Equation 1 also can be understood as an expression of
how the change in one variable is related to another
variable. Equation 1 can be re-written as:

2
Yii = Yo + <Z;ﬁ>i(T)+ <0.5 Cle};>i(T2) + errory; (2)
Notice, that the f-parameters from Equation 1 have
now been replaced with their corresponding derivatives
(i.e., the changes in Y with respect to time). Re-written
this way, Equation 2 shows that the observed score of
child behavior problems: Y;, for child i at some time ¢
is equal to the value of the level of the child’s behavior
problems when 7= 0 (Yyy), plus the velocity of the child’s
d

behavioral problems (4%) multiplied by the elapsed time

(T), plus one-half times' the rate at which the velocity is

"The multiplication by one-half is the result of taking the indefinite
integral of time with respect to time. Typically [7 dt is discussed in the
early sections of introductory calculus materials, although the ¢ and df
may be replaced with another set of symbols such as x and dx. It is
often easier to first understand differentiation of x* which is equal
to 2x. Integration is the reverse operation.
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changing (acceleration, Z%) multiplied by time squared
(T?). Whereas replacing the f-parameter notation to
which we are accustomed may seem unnecessarily com-
plicated, doing so allows us to see that the fy, ;, and
f» parameters respectively represent information about
the level when T =0, the velocity when T=0, and the
acceleration of a child’s behavior problems. Clearly
mapping the derivative associated with these commonly
tested growth parameters will ensure that the interpret-
ation of change is accurately articulated.

For the models that follow, all models were tested
using R (version 3.0.2; R Core Team, 2013), and the
package Ime4 (version 1.0-6; Bates, Maechler, Bolker,
& Walker, 2014). In any cases where more than one
random effect was estimated, the models allowed for
all covariances between random effects (i.e., unstruc-
tured covariance matrix). The lme4 package does not
allow for specification of the variance-covariance struc-
tures for the residuals. When available, the REML =
FALSE command was used, so that ML estimates were
produced for the likelihood ratio tests presented.

The effect of mothers’ depression (BDI score) was
considered in two ways. The first way (Model 1) tested
the initial BDI score as a level 2 predictor of the f’s
(intercept, linear slope, and quadratic slope). Incorpor-
ating mother’s initial depression into the model as a level
2 predictor of the f’s (Model 1) provides the following
level 2 equations:

Boi = Goo + Go1 (BDI) 4+ Uy (2.1)
b1 = Gio + G11(BDI) + U, (2.2)
Bri = Gao + G21(BDI) + U, (2.3)

where fo;, f1;, and f»; are equivalently seen as Yy, (Z,—;) i

and (0.5;’,27’2') 7, or read as level, velocity, and one-half
times acceleration. Full results are provided in Table 3.
A series of six models was tested, each which added an
additional component to the prior model; changes in
model fit due to additions to the model were evaluated
through the likelihood ratio test and AIC. The top-half
of the table provides model comparison results testing
whether including the random effect of time and the
random effect of time®> improved model fit (models
la—1c), and whether adding initial BDI scores as a Level
2 predictor of the three random effects improved model
fit (models 1d-1f).

Results of the model comparisons suggested a need
for incorporating both the random effects of time and
time”. Adding initial BDI as a predictor of differing
intercepts was significant (lc vs. 1d; »*(1)=117.2,
p<.0001), suggesting that the level of children’s
behavior problems at 7=0 (i.e., Grade 6) was related
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TABLE 3

Parameter Estimates and Model Fit Information for Hierarchical Linear Models Testing Mothers’ Initial Depression as a Predictor (Level 2) of

Children’s Behavioral Problems

Model fit information

Model Description Deviance df p values AIC
la Equation 1, with only random intercept 9639.52 5 - 9649.5
1b Equation 1, with random intercept and random effect of time 9571.84 7 la vs 1b: <.0001 9585.8
lc Equation 1, with random intercept, random effect of time, and 9563.55 10 1b vs Ic: 0.040 9583.6
random effect of time?
1d Initial BDI as level 2 predictor of intercept 9446.35 11 Ic vs 1d: <0.001 9468.4
le Initial BDI as level 2 predictor of intercept and time 9445.28 12 1d vs le: 0.301 9469.3
1f Initial BDI as level 2 predictor of intercept, time, and time” 9440.67 13 le vs 1f: 0.032 9466.7
1d vs 1f: 0.058
Child behavior problems
Fixed effects
b SE t
Level 1
Intercept 45.31 0.86 50.83
Time 1.07 0.48 2.21
Time? -0.15 0.07 1.97
Level 2
Initial BDI 0.25 0.08 3.04
Time x Initial BDI —0.11 0.05 2.39
Time” x Initial BDI  0.02 0.01 2.16
Level 2 random effects
Variance estimate SE
Intercept 63.72 8.00
Time 7.32 2.71
Time® 0.11 0.32

Note. Parameter estimates presented from Model 1f, which had the lowest deviance. BDI = Beck Depressive Inventory (mother self-report).

to their mothers’ initial level of depression. Including
initial BDI scores as a predictor of the linear slope did
not improve model fit (1d vs. le; ¥*(1)=1.07, p=.30),
suggesting that the velocity (linear change) at T=0 in
behavior problem scores was not related to mother’s
initial level of depression. Finally, adding initial BDI
scores as a predictor of the quadratic slope improved
model fit (1e vs. 1f; y*(1) = 4.6, p = .032), suggesting that
acceleration in children’s behavior problems (increases/
decreases in the rate of change) was related to mother’s
initial level of depression. Comparing model 1f to model
le means that the relation between BDI and the linear
slope was retained in the model, even though the com-
parison of models 1d and le suggested this was not a sig-
nificant parameter. This term was retained in model 1f
because when the 2-level equations are written as a single
equation, this term can be seen as a lower-order
regression term; such terms are typically retained in
regression models when examining interactions. It
should be noted that when the model with BDI as a pre-
dictor of the intercept, linear slope and quadratic slope is
compared to the model with BDI as a predictor of only

the intercept, the criterion of «=0.05 is not met (1d vs.
If; %*(2)=5.68, p=0.058); based on the closeness of
the p-value to the 0.05 criterion, and support for the
more complicated model by the AIC (AIC(1d) =9468.4;
9468.4; AIC(1f) =9466.7),
we decided to interpret parameter estimates from the
more complex model (model 1f). The parameter esti-
mates appear in the bottom half of Table 3.
Interpreting the parameter estimates of model 1f,
these results suggest that initial levels of mothers’
depression predict higher /evels of children’s behavioral
problems at T =0 (b =0.25). Children with higher veloci-
ties at T=0 tend to occur for mothers with lower initial
levels of depression (b= —0.11), although the compari-
son of models 1d and le suggest this relation is nonsigni-
ficant. Finally, children’s behavior problems positively
accelerate for mothers with higher initial levels of
depression (b =0.02), suggesting an increasing rate at
which behavioral problems are occurring when mothers
have higher rates of depression. Thus, all of the level 2
questions constitute ones where the level of mother’s
initial depression can alter some characteristic of the



Downloaded by [New Y ork University] at 03:48 01 June 2015

child’s behavior problem trajectory over time whether it
is their level, velocity, or acceleration. What HLM, as pre-
sented, cannot draw inferences about is how changes in
mother’s depression (velocity or acceleration) may pre-
dict child behavior problems.

In the second HLM model examined (Model 2), the
mother’s depression at each time was tested as a level
1 predictor (i.e., a time-varying covariate) to make use
of the repeated measurements of mother’s depression.
The Level 1 equation for Model 2 is:

Yio = Boi + BiiT+PoT> + Psi(depression)+errory  (3)

The results of this model are presented in Table 4.
Because in this model the level of depression is predicting
changes in Y; (i.e., f5;), Equation 3 allows for conclu-
sions on how the level of depression at different times is
related to the Jevel of child behavioral problems; this is
in contrast to the prior analyses which only used an initial
level of mother’s depression as a predictor. Although
there are different depression scores at each time, the
relation being examined is still a level-level relation.
Inferences that could be drawn would be able to state
whether concurrent levels of mother’s depression and
child behaviors are related, controlling for time. The
results in Table 4 support the suggestion that the
mothers’ level of depression predicts higher concurrent
levels of children’s behavior problems (b =.15, SE = .04,
t=23.80). This model does not, however, directly test
whether (for example) the rate of change in depression
was related to the rate of change in child behaviors
(velocity—velocity). As level-level relations do not neces-
sarily imply velocity—velocity relations, and vice versa,
we cannot confidently infer one from the other.

TABLE 4
Parameter Estimates From Hierarchical Linear Models Testing
Mothers’ Depression as a Time-varying (Level 1) Predictor of
Children’s Behavioral Problems

Child behavior problems

Fixed effects
b SE t

Level 1

Intercept 46.01 0.69 66.41

Time 0.19 0.37 0.50

Time? —0.02 0.06 —0.40

BDI 0.14 0.04 3.80
Level 2 random effects

Variance estimate SE

Intercept 63.93 8.00

Time 8.22 2.87

Time’ 0.14 0.37

Note. BDI = Beck Depressive Inventory (mother self-report). BDI
treated as fixed at Level 2.
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One modification to Model 2 not considered here
would be to allow an interaction between depression
and time at level 1. This would allow the relation between
level of depression and level of child behavior problems
to vary (become stronger or weaker) over time, but still
would not address questions as to whether changes
(i.e., velocity or acceleration) of depression were related
to changes (i.e., velocity or acceleration) in child beha-
vioral problems. HLM is very useful for addressing
specific questions about change. As we have seen here,
several differing questions about level-level relations
can be addressed, as well as level-velocity and level-
acceleration questions. These models, however, do not
address concordant rates of change in two constructs.

Example 2: Velocity—Velocity Relations

If one’s key question of interest is relating concordant
change, it may be necessary to consider methods other
than HLM. We focus on velocity—velocity relations,
although the following section applies equally to acceler-
ation—acceleration relations and velocity—acceleration
relations. Equation 2 showed that the parameter associa-
ted with the effect of time could be thought of as the velo-
city of child behavioral problems (4%). Consequently, to
relate changes in mother’s depression to changes in child
behavioral problems, it is necessary to identify a model
where a linear slope related to time (i.e., velocity) can
be estimated for both constructs. In searching for a model
where velocity can be related to velocity, one would come
across several models. By recalling that velocity and slope
are the same, one might select Latent Growth Curve
Models (LGCM; Bollen & Curran, 2006), as these models
allow for the slope (velocity) of two constructs to be
related to each other (i.e., the Parallel Process Model,
e.g., Garber & Cole, 2010). In such a model, the latent
intercept (level) and slope (velocity) are estimated for
each construct in structural equation modeling software,
and subsequently the latent growth parameters can be
correlated or regressed on each other.

Using the maternal depression-child behavioral prob-
lems data above, we explored a series of four models as
shown in Figure 4: (1) no relations between levels and
slopes (Model 3a), (2) depression level predicting the child
behavioral problems level (Model 3b), (3) depression
velocity predicting the child behavioral problems velocity
(Model 3c), and (4) a model that included both relations
from models 2 and 3 (Model 3d). All models were fit using
the R (version 3.0.2; R Core Team, 2013) structural
equation modeling package lavaan (version 1.5-16;
Rosseel, 2012). Latent variable paths to manifest vari-
ables were constrained to 1 or a sequence from 0 to 6
(i.e., Grade 6 =0) for the levels (intercepts) and velocities
(slopes), respectively. Manifest residuals were allowed to
vary across measurements, and no correlations between
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FIGURE 4 SEM tested in substantive example. Note. Four models were examined: (1) no relations between levels and slopes (no path A or B), (2)
depression level predicting the child behavior problems level (inclusion of path A), (3) depression velocity predicting the child behavior problems
velocity (inclusion of path B), and (4) a model that included both relations from models 2 and 3 (inclusion of both A and B).

manifest variables were included. The latent level and
velocity for each construct was allowed to correlate.
Table 5 provides results from fitting the aforemen-
tioned models. Based on the AIC, and support from the
likelihood ratio tests, the fourth model appeared to be
the best fitting model. The bottom of Table 5 provides
the information for specific parameters in this model.
The model indicated that the relation between intercepts
was significant (z=2.83, p=.01), and that the relation
between slopes was not significant (z=1.53, p=.13).
These parameters directly test level-level and velocity—

velocity questions. From these results, we can draw the
inference that the level of maternal depression and level
of child behavior problems at 7=0 appear to be related,
but we have no evidence with the current model that the
velocity in depression is related to the velocity of child
behavior problems. Whereas this may seem counter-
intuitive, Figure 1 shows that not all derivatives will
necessarily be correlated; this is elaborated upon in
Figure 3, which demonstrates that correlations between
the levels of variables do not necessarily imply correlated
velocities or accelerations in variables, nor vice-versa.



Downloaded by [New Y ork University] at 03:48 01 June 2015

INTERFACING THEORY AND METHOD

11

TABLE 5
Results From Latent Growth Curve Model (Parallel Process Model) Correlating Level and Velocity of Mothers’ Depression and Child Behavioral
Problems
Model fit information
Model Description 7 df p value AIC
3a No child-mother relations 157.0 85 18308.8
3b Child’s intercept predicted by mother’s intercept 149.9 84 3a vs. 3b: 0.008 18303.7
3c Child’s slope predicted by mother’s slope 155.4 84 3a vs. 3c: 0.21 18309.2
34d* Child’s intercept predicted by mother’s intercept 147.6 83 3b vs 3d: 0.13 18303.3
& child’s slope predicted by mother’s slope 3¢ vs 3d: 0.005
Model 3d parameter estimates
Parameter Estimate SE z P
Child’s intercept predicted by mother’s intercept 0.23 0.09 2.83 .01
child slope predicted by mother’s slope 0.31 0.20 1.53 13
Child intercept, slope covariance —4.76 1.40 —3.41 .001
Mother intercept, slope covariance —1.65 0.72 -2.29 .02
Child intercept variance 61.56 7.76
Child slope variance 2.12 0.38
Mother intercept variance 37.45 4.71
Mother slope variance 0.74 0.17

*Model 3d: Observed variable intercepts and variances not reported. CFI1=0.950. TLI=0.945. RMSEA =0.057.

The present example can also be used to highlight
one additional consideration that using derivative termin-
ology raises: In addition to considering the expected rela-
tions detailed in Table 2, derivatives can make one
acutely aware that estimates of change can depend on
the time over which the estimates are made.” The LGCM
example is based on slopes estimated over the entire 6
years of sampling. Although not explicitly stated, the
model tested examined whether linear slopes of
depression and behavior problems were related over a
relatively long period of time. Alternatively, one might
hypothesize that there is a velocity—velocity relation,
but that it occurs over periods of time shorter than 6
years. With the present data, one could test whether the
velocity of mother’s depression and child’s behavioral
problems are related over shorter spans (e.g., 3 years’);

21t should be noted that the estimation of derivatives will depend
on factors in addition to the time over which estimates are made. In
addition to the time over which derivatives are estimates, the method
of estimation and choices associated with each method of estimation
can impact the quality of the estimates. For example, in the application
of Generalized Local Linear Approximation (Boker, Deboeck, Edler,
& Keel, 2010), the estimates depend on the time over which derivatives
are estimated as well as the value of 7 a research-selected value that
affects the number and spacing (in time) of the observations that are
used to estimate derivatives.

3Spans shorter than 3 years were explored (1- and 2-year spans).
While shorter spans produced the same pattern of results in terms of
the significance and direction of the fixed effects, the models with
shorter spans produced estimates of zero for the random effect vari-
ance. As a zero random effect variance appeared untenable given the
data, a slightly larger span (3-years) is presented, as this span produced
reasonable estimates.

that is, one might need to examine differing types of
change over spans of time shorter than the entire time ser-
ies, as depicted in Figure 2.

This idea has led to a series of new methods in devel-
opmental psychology often titled differential equation
modeling, which are literally models that include deriva-
tives and can be understood in terms of the same deriva-
tive relations that the HLMs and LGCMs explored. One
key difference in these models is that derivatives are often
estimated over spans of time much shorter than the full
length of time over which samples were collected, and
these derivatives then can be used to build models that
allow for the analysis of dynamic systems (e.g., Boker
& Nesselroade, 2002; Boker, Neale, & Rausch, 2004;
Estabrook, 2015; Montpetit, Bergeman, Deboeck,
Tiberio, & Boker, 2010). In the examples presented, it
is possible that maternal depression and child externaliz-
ing behaviors are poorly described with the derivatives
used over the course of 6 years; rather these constructs
may be changing at a faster rate (over the course of
months or just a few years) and using estimates over
the course of 6 years may serve to average over interest-
ing variation in the constructs (Ferrer & McArdle, 2010;
Nesselroade, 1991). It is also unlikely that relations
between constructs are static, but rather that they take
some time for a detectable relation to occur, and over
longer periods of time the relation may cease to exist;
the dependency of relations on time is well known in
the mediation literature (Gollob & Reichardt, 1987,
1991) and is also being discussed in the developmental
literature (e.g., Kouros, Cummings, & Davies, 2010).
Derivatives can be estimated over differing spans of time,
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TABLE 6
Generalized Orthogonal Local Derivative Estimates of Relation Between Mothers’ Depression and Child Behavioral Problems, Over a Shorter
Time-Course

Model fit information

Model Description LL* df p value AIC
4a Random intercept model —1143.6 3 2293.2
4b Random intercept, mother’s velocity —1140.2 4 4a vs 4b: 0.009 2288.4
4c Random intercept, mother’s level & velocity —1139.9 5 4b vs 4c: 0.40 2289.7
Model 4b parameter estimates

Parameter Estimate SE t
Fixed effects

Intercept 0.29 0.18 1.59

Mother’s velocity 0.20 0.08 2.62

Random intercept 1.31 1.14

*LL = Log Likelihood.

with the current data velocities can be estimated using any-
where from 2 to 6 years. Derivative terminology further
highlights the fact that theory must also specify the time
over which specific relations are expected to occur. The
factors that affect a construct such as stress may differ
whether one is considering changes in stress over hours,
days, weeks, months, or years; that is, a construct that
affects daily stress may not affect stress over the course
of years (Deboeck, Montpetit, Bergeman, & Boker, 2009).

Using the previous data, we used the method of gen-
eralized orthogonal local derivative estimates (GOLD;
Deboeck, 2010) to estimate the velocity of depression
and the velocity of behavior problems over three year
intervals using the program R (version 3.0.2; R Core
Team, 2013). It should be noted that there are numerous
methods for fitting differential equations to data and for
estimating derivatives. We leave aside the specifics of this
method as the primary purpose in presenting GOLD is to
highlight how novel methodology can still be understood
in terms of relations between derivatives. The inferences
that can be made with this method can be discussed with-
out all the particulars of its strengths and weaknesses, if
one uses derivative terminology.

Using GOLD, level and velocity estimates were pro-
duced for each dyad’s depression and behavior scores.
Rather than using the data across all 6 years to estimate
these derivatives, as in the HLM and LGCM, series of
observations spanning 3 years were used (year 1-4,
2-5, 3-6, etc.). While fewer observations are used to
produce each estimate, they can still be understood as
conveying the level and velocity of mother’s depression
and child’s behavior over the course of 3 years; just as
the LGCM example estimated intercepts (levels) and
slopes (velocity) over the course of 6 years, the idea is
the same here that levels (intercepts) and velocities
(slopes) are being estimated over 3 years. As multiple

estimates are produced for each dyad, a mixed model
(model with random effects, similar to an HLM with
no level 2 predictors) was used to account for the nested
data; the R package Ime4 was used to fit this model
(version 1.0-16; Bates et al., 2014). In these models, the
velocity of child behaviors was predicted using a random
intercept model (Model 4a), the mother’s depression
velocity (Model 4b), and both mother’s depression velo-
city and depression level (Model 4c). Mother’s velocity
was included as a predictor first, as it was expected that
the rate of change in child’s externalizing behaviors is
likely to be related to the rate of change in mother’s
depression based on prior research introduced earlier,
even though the velocity—velocity relation was not
supported with the LGCM.

Table 6 provides more extensive results from fitting
these models. These models indicate a significant relation
between the velocity of depression and the velocity of
behavior problems, estimated over 3 years using adjacent,
annual evaluations (3a vs. 3b; z*(1)=6.73, p = .009). The
level of depression was not predictive of the velocity of
behavior problems estimated over 3 years, controlling
for the velocity of depression (3b vs. 3c; y*(1)=0.71,
p =.40). These results suggest a velocity—velocity relation
that is not explainable by a relation between depression
level on behavior problems velocity. Importantly, this
relation was only apparent at shorter time scales (3 years)
but not over longer periods of time (6 years).

CONCLUSIONS

The word derivative rarely makes an appearance when
learning about developmental theory or even in the
presentation of many statistical methods and models.
We have presented several equivalent ways to think of
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derivatives in Table 1. This table offers the opportunity
to more specifically state development theory. If statisti-
cal models are understood in terms of derivatives and the
relations being examined, as in the highlighted examples,
theories expressed in terms of level, velocity, and acceler-
ation translate more readily into mathematical models.
This direct correspondence will allow developmental
researchers to be both more assured that the statistical
models being used lend themselves to the desired infer-
ences, and more careful in reviewing the inferences
claimed by other researchers. Derivatives provide a com-
mon language for matching theoretical relations of vari-
ables to appropriate analytical approaches, mapping
new or less commonly used models onto a single existing
knowledge-base, and creating a commonality between
statisticians and substantive researchers.

In pursuing the question of whether change in child
behavioral problems is related to change in maternal
depression, the substantive examples demonstrated several
models using derivative terminology. In doing so, they high-
lighted the differences among models that test relations
such as level-level, level-velocity, and velocity—velocity.
The HLM example highlighted that not all theoretical ques-
tions can be addressed in every modeling framework. The
LGCM example showed how one could test a velocity—
velocity hypothesis, but that a level-level relation does
not necessarily imply a velocity—velocity relation. The final
example revealed that any conclusions about related change
are dependent on the timescale that these relations are
examined, and so using the common language of derivatives
will highlight the need to not only formulate specific the-
ories about change (i.e., Table 2), but also about the time-
scale over which these relations exist (Ferrer & McArdle,
2010; Little, 2013; Nesselroade, 1991; Sliwinski, 2011).

While the present article focused on highlighting dif-
ferences in the relations that HLM and SEM can be used
to examine, the example also allows for consideration of
when models may be testing similar hypotheses. In
Figure 4, aside from the Level-Level relation examined,
which the HLM also examined, one could also examine a
model where the latent level of mothers’ depression is
used to predict the latent velocity of children’s behavior.
This level-velocity relation would be similar to the earlier
HLM model where differences in the linear effect of time
(velocity) were predicted using depression. How close to
equivalent the models are will depend, in part, on how
the initial time (¢ =0) is defined in each of the models,
as the intercepts in models with higher order terms will
correspond to the level when time is equal to zero. But
this relation serves to highlight that seemingly different
modeling frameworks, HLM and SEM, can be used to
make similar inferences under some conditions.

As the number of available models for analyzing
change multiplies (Collins & Sayer, 2001), we anticipate
only increased burden on developmental researchers to
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learn about differing models and increased confusion
as to how models may or may not address similar
questions. Models are often presented as unique, which
makes it difficult for researchers to fully grasp the many
emerging options for characterizing change relations,
and how the models differ and overlap. By using the
derivative framework, a scaffold is provided into which
new models can be incorporated.

This framework requires that developmental research-
ers become much more precise in articulating theory. This
challenge, however, is not without significant benefit. Our
example in Figure 1 (maternal depression and child beha-
vioral problems) allowed us to address what it is about
mother’s depression that relates to her child’s behavioral
problems. In this example, the children’s behavior prob-
lems were such that their level and velocity might not
clearly relate to the mother’s depression, particularly
for the child in Figure 1B; yet, this child clearly is
responding to his mother in some way because of the
increase in the rate at which the child’s behavior is chan-
ging (acceleration). Because acceleration is often over-
looked, considerable data may exist in file drawers
because only one or a few of the relations in Table 2 were
examined. Adopting the language of derivatives will high-
light other change relations that could be considered.

Developmental psychology has often pushed the
methodological frontier forward in psychology (Laursen,
Little, & Card, 2012); in doing so, researchers who are
focused on developmental theory incur a burden because
speaking the languages of both developmental theory
and statistical methodology fluently can be a difficult
endeavor. This challenge is compounded with the contin-
ued expansion of the number and variety of statistical
models available. If developmental researchers regularly
use only the models with which they are familiar, and are
not careful about articulating the inferences provided by
such a model, a real danger presents itself. As the number
of statistical models continues to expand, it may become
difficult for developmental researchers to understand the
inferences and limitations of related methods. If metho-
dologists begin to describe the modeling of change in
terms of derivatives, and developmental researchers
precisely articulate their theories about change, these
dimensions of change (level, velocity, and acceleration)
can serve as the bridge between two complex languages.
In this manner, the language of derivatives may serve as a
common language to navigate intrapersonal and inter-
personal models of change, allowing for better descrip-
tion and modeling of the complexity of human nature.
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