
Transportation Research Part B 63 (2014) 53–76
Contents lists available at ScienceDirect

Transportation Research Part B

journal homepage: www.elsevier .com/ locate/ t rb

 
 

 

Waiting for public transport services: Queueing analysis
with balking and reneging behaviors of impatient passengers
http://dx.doi.org/10.1016/j.trb.2014.02.004
0191-2615/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +972 50 5216084.
E-mail addresses: wangyibing@zju.edu.cn (Y. Wang), a.ceder@auckland.ac.nz (A.(A.) Ceder).

1 The major part of this work was conducted when the first author was with the Department of Civil Engineering at Monash University, Australi
Yibing Wang a,1, Jingqiu Guo b, Avishai (Avi) Ceder c,⇑, Graham Currie d, Wei Dong e, Hao Yuan f

a College of Civil Engineering and Architecture, Zhejiang University, PR China
b Business School, The University of Western Australia, Australia
c Department of Civil and Environmental Engineering, The University of Auckland, New Zealand
d Department of Civil Engineering, Monash University, Australia
e Faculty of Information & Communication Technologies, Swinburne University of Technology, Australia
f Faculty of Information Technologies, Monash University, Australia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 February 2013
Received in revised form 18 February 2014
Accepted 18 February 2014

Keywords:
Queues of batch arrival and bulk service
Balking
Reneging
Compound Poisson processes
Bus bridging
Public transport
Queues of batch arrivals and bulk service including balking and reneging behaviors of cus-
tomers are commonly observed in real life. This study formulates queues of this type using
compound Poisson processes and determines some key probabilistic measures. Analytical
investigation is undertaken yielding a range of mathematical results. The developed math-
ematical model and approaches apply to a variety of practical queueing processes that are
featured with bulk queues, balking, and reneging. A bus bridging response to rail disruption
is considered as an application example. And large-scale Monte-Carlo simulations are con-
ducted to demonstrate the mathematical results.
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1. Introduction

Queueing or waiting for services is one of the disagreeable but necessary experiences of life. To a large extent, queueing
theory originated and has grown from the study of such experiences. There is a vast amount of human-queueing phenomena
among which those associated with public transport services are commonly observed on a daily basis (Ceder, 2007; Higgins
and Kozan, 1998; Huisman and Boucherie, 2001; Marguier and Ceder, 1984; Trietsch, 1993;Vansteenwegen and Van Oudh-
eusden, 2007). This study addresses a special class of queueing problems with an orientation to public transport services.

Queueing theory characterizes queueing systems according to (see e.g. Allen, 1990; Gross et al., 2008; Kleinrock, 1975):
(a) arrival patterns of customers (e.g. Poisson/Erlang/general); (b) service patterns; (c) queue discipline (e.g. first-come-first-
served, priority-based); (d) the number of servers provided; (e) the maximum queue length allowed; (f) configuration of
servers (e.g. in series/in parallel/mixed). This paper is primarily concerned with the arrival and service patterns, the behavior
of impatient customers, and the impact of such behavior on queueing. More precisely, the focus is on queueing processes of
the following features:
a.
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(i) batch arrival: customers arrive in teams rather than individually;
(ii) bulk service: customers are served by the server (or each server in the case of multiple servers) in teams rather than

individually;
(iii) balking: some customers choose not to join a queue upon their arrivals, normally because of too long a queue

ahead;
(iv) reneging: some other customers first choose to join a queue, but gradually lose their patience, and eventually leave the

queue before receiving service in case of intolerable waiting.

Features (i) and (ii) fall in the categories of arrival and service patterns, while features (iii) and (iv) are mostly concerned
with the queueing psychology.2 Queueing of the above features are ubiquitous in the real world, and typically seen in the sec-
tors of public services, transportation, manufacturing, and telecommunication. Although this paper concentrates on queueing of
these features in public transport services, a brief survey is first presented on bulk queues with balking and reneging in a much
broader sense.

Queueing with batch arrivals and bulk service are common (Claeys et al., 2011; Powell, 1985; Sikdar and Gupta, 2008). A
server of a certain capacity becomes available after a random amount of time to serve a pool of customers. If the capacity is
less than the number of customers waiting, the server leaves behind some customers (Kahraman and Gosavi, 2011). Eleva-
tors in buildings form a common example for this type of systems. Other examples arise in various settings. In transport and
freight systems, queues of this type are found with airport buses/metros/taxis, urban buses/trains/metros/trams, people-
movers (e.g. cable cars in amusement parks), cargo-delivering airplanes/ships, etc. In the setting of manufacturing, machines
may serve several units at the same time. For instance, equipment for heat treatment can usually handle a number of parts
simultaneously. Automated guided vehicles to deliver jobs from one site to another, which are used in both freight (e.g. har-
bor-related) and manufacturing settings, often involve bulk queues.3 In the setting of information technologies, individual
information packets are grouped in larger entities for transmission. In addition, the operation of online reservation systems
is generally related to bulk queues. Besides the above examples concerning real-time operations, bulk queues may also be no-
ticed over a larger scale of time (e.g. days/months), e.g. the ordering of some special goods or service. Despite a body of literature
on bulk queueing systems, the classics of queueing theory (e.g. Allen, 1990; Gross et al., 2008; Kleinrock, 1975) focuses on
queueing systems of single arrivals and service, and takes bulk queues as a special case. Specifically for bulk queues in public
transportation systems, only limited work has been published (Powell, 1983, 1985; Rapoport et al., 2010; Sim and Templeton,
1982; Selvi, 1983).

Customers are often discouraged by long queues. They usually tend to join a queue only when a short wait is expected or
first join it but depart if a further wait would be intolerable. This leads to two actions: balking (the refusal of an arriving cus-
tomer to join a queue); reneging (the departure of a queueing customer before obtaining aimed service). Although the phe-
nomenon that customers are ‘‘lost’’ through balking and reneging are widespread in real life, the classical queueing theory is
primarily concerned with queues in which customers are all patient and eventually get served. The simplest balking phe-
nomenon is observed in the loss system where arrivals do not enter the system when all servers are found busy. The study
of the loss system can be traced back to 1917 when the Danish mathematician A. K. Erlang, a pioneer in queueing theory,
considered the calls lost by a busy telephone exchange and derived the renowned Erlang’s loss formula (Allen, 1990; Gross
et al., 2008; Kleinrock, 1975). A balking behavior may generally depend on the queue length, while the period that a cus-
tomer stays in line before reneging is usually modeled as a random variable. Readers are referred to (Al-Seedya et al.,
2009; Barrer, 1957; Blackburn, 1972; Rao, 1965; Stanford, 1979; Ziya et al., 2006) for queueing theory with balking and
reneging. The late renowned transport researcher Frank Haight was among the earliest group of researchers who studied
reneging (Haight, 1959).

It is not rare to see queues with features (i)–(iv) in practice, e.g. queueing at the entry of a popular restaurant, where cus-
tomers arrive by groups/families, served by tables, and balking and reneging certainly happen. Such queues relating to public
transport services are observed at:

� an outbound bus/metro/taxis station at an airport (where passengers arrive in teams from landed flights and may be
served in teams, involved with balking and reneging);
� an urban bus/train/tram/metro station;
� an entry to a people-mover (e.g. cable-car) in an amusement park.

 
 

 

2 Limited attention was given to this regard (Maister, 1985; Larson, 1987). More precisely, human factors and the psychology of queueing customers played
little role in queueing theory and therefore were not regarded as one specific aspect of queueing processes. Nevertheless, according to Allen (1990), Gross et al.
(2008), and Kleinrock (1975), the impacts of customer psychology such as balking and reneging are attributed to the category of arrival patterns. It should also
be pointed out that whenever an imposed maximum queue length is reached (see (e) in the proceeding text), balking happens to any subsequently arriving
customer until after the queue length becomes lower than the maximum permissible limit.

3 In this paper a bulk queue refers to a queue with batch arrivals and/or bulk service.
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Limited attention has been paid to such queueing systems (see e.g. El-Paoumy and Ismail, 2009). Specifically in transpor-
tation research and traffic engineering, queueing models with balking and reneging remain an important gap in knowledge.4

For instance, only one paper was found in this journal that mentions the balking and reneging behavior of customers (Rapoport
et al., 2010).

This paper addresses queueing systems of all features (i)–(iv) in the field of public transport services. Since the complete
treatment of this type of queueing problem is still an ongoing task of queueing theorists, this paper focuses on the proba-
bilistic nature of balking and reneging behavior of impatient passengers as well as the impact of such behavior on queueing.
To this end, the theory of compound Poisson processes is employed to establish a stochastic model that applies to a broad
class of bulk queueing systems with balking and reneging. Two key measures of queueing systems, the mean and variance of
queue lengths, as well as other indices of interest are analytically explored in this modeling framework. This study is of gen-
eral significance to the planning, allocation and management of resources in many fields including public transport services.
This can be elaborated with the following example. In cities like Melbourne, Australia, suburban public transport services are
provided by trains and buses in parallel. Time schedules for bus and train operations are often associated to facilitate pas-
senger transfers. As such, buses feed a primary portion of passenger demand for trains and vice versa; a train and a bus can
both serve a number of passengers at one time. In the case of rail/bus service disruptions, passengers arriving in consecutive
buses/trains can accumulate at affected railway/bus stations. Depending on the extent of delay, passenger balking and reneg-
ing may gradually take place, thus leading to a queueing process of features (i)–(iv). It is crucial to estimate the mean number
of possibly accumulated passengers and its variance as well as their temporal dynamics in this circumstance or other similar
situations so as to meet a number of needs, e.g. the determination of shelter size of a stop/station or waiting-plaza size of an
interchange/terminal. This will be further explained in Sections 2 and 3 based on a mathematical model, while a similar but
more comprehensive application example is presented in Section 4.

The contributions of this work are as follows.

(a) This is the first study to explore analytically the bulk queueing problem involving balking and reneging with special
orientation to public transport services.

(b) The theory of compound Poisson processes is introduced as a principal mathematical tool to deal with the targeted
queueing problem. This is a new analytical conceptualization of the problem for transportation research.

(c) The study solves a challenging task of determining the mean and variance of the length of a queue subject to the balk-
ing and reneging actions of impatient customers. The reached mathematical conclusions are of some general signifi-
cance for wider applications.

(d) Simulations are conducted to evaluate the obtained theoretical results. It is the first time to emulate compound Pois-
son processes with balking and reneging using large-scale Monte-Carlo simulations in the context of public transport
services.

The remainder of this paper is organized as follows. Section 2 introduces the theory of compound Poisson processes and
applies it to the mathematical modeling of a broad class of bulk queueing systems involving balking and reneging. Section 3
explores analytically the probabilistic nature of such systems and delivers a comprehensive set of mathematical results. Sec-
tion 4 presents a bus bridging example, its modeling in compound Poisson processes, and the numerical evaluation of the
modeling results in large-scale Monte-Carlo simulations. The theoretical exploration and simulation evaluation are supple-
mented with further discussions in Section 5. The paper is finalized in Section 6 with some conclusive remarks given.

 
 

 

2. Compound Poisson processes with balking and reneging

A stochastic process {S1(t), t P 0} is referred to as a compound Poisson process if it can be represented by
4 Som
queues
repetiti
to queu
address
(1975)
queuein
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address
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S1ðtÞ ¼
XNðtÞ
i¼1

Mi ð1Þ
where {N(t), t P 0} is a Poisson process of constant intensity k, and M1, M2, . . . are independent and identically distributed
non-negative random variables that are also independent of the process {N(t)}. As displayed in Fig. 1, Mi is the change in the
value of S1(t) at the ith occurrence instant ti of the Poisson process {N(t)}, 1 6 i 6 N(t). It is postulated for an ordinary Poisson
e explanation may be needed. Queues in many fields (e.g. information technologies) are highly stochastic with random arrivals and service. However,
in transportation often tend to be more deterministic and predictable. First, this is because travel of people and goods often generates demands of

ve patterns. Second, in transportation, queues caused by random variations in inter-arrival and service times are often deemed to be secondary relative
es caused by predictable demand patterns (Hall, 2003; May and Keller, 1967; Newell, 1982). Distinct mathematical models have been developed to
stochastic and deterministic queueing problems. More specifically, various methods presented in e.g. Allen (1990), Gross et al. (2008), and Kleinrock

are typically used to analyze stochastic queueing problem, while cumulative diagrams are used as a principal tool to analyze deterministic transport
g problems (Hall, 2003; May and Keller, 1967; Newell, 1982). Balking and reneging, which are of random nature, have been studied only along the

tic line. This could partially explain why the phenomena of balking and reneging, despite widespread in public transport services, have not been much
ed by transportation researchers. In this paper, balking and reneging arising in public transport services are studied along the stochastic line of
s.



Fig. 1. The stochastic process S1(t).
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process that at most one event can occur at any time. The compound Poisson process S1(t) can then be interpreted as follows:
a random number Mi of events occur simultaneously as one cluster at instant ti such that the total number of clusters in time
t constitutes an ordinary Poisson process {N(t)} while the total number of events having occurred up to t is described by S1(t).
Moreover, the independent property stated above indicates that:
5 Fig.
PrfS1ðt1Þ ¼ k1; S1ðt2Þ ¼ k2; . . . ; S1ðtnÞ ¼ kng ¼ PrfS1ðt1Þ ¼ k1gPrfS1ðt2 � t1Þ ¼ k2 � k1g � � � PrfS1ðtn � tn�1Þ ¼ kn � kn�1g:
An interested reader is referred to Prazen (1967), Tijms (2003) for further details. It is noted that Fig. 1 illustrates the com-
pound Poisson process S1(t) with only one specific realization (or sample path) of S1(t). Due to its stochastic nature, S1(t) can
have virtually an infinite number of realizations; and Fig. 2 illustrates the case of 30 realizations.

This compound Poisson process model applies to a broad class of bulk queueing processes. Some typical examples are as
follows:

� a number S1(t) of passengers arrive at a railway station over a period [0,t], by a random number N(t) of buses with a ran-
dom number Mi of passengers in the ith bus;
� an accumulative demand S1(t) have been placed by a random number N(t) of customers for a certain product up to time t,

with an random amount Mi of the product ordered by the ith customer;
� a number S1(t) of persons injured in a random number N(t) of accidents occurring over a period [0,t] in a metropolitan

city, with the ith accident yielding a random number Mi of injuries;
� a amount S1(t) of cash has been claimed by a random number N(t) of customers against one insurance company by time t,

with an random amount Mi claimed by the ith customer.

To incorporate the balking and reneging effects, more mathematical consideration is needed. Consider a number Mi of
customers arriving at instant ti and each customer may choose to balk in a probability of h. Denote by Mi1 the number of
balking customers; thus E[Mi1] = h �Mi. Denote also by Mi2 the number of remaining customers (i.e. Mi2 = Mi �Mi1). Further-
more, assume that any remaining customer stays in queue for an exponential time period of parameter c and the service
becomes available at t. Let Qi(t) represent the number of customers who are part of Mi2 and eventually get served at t. Thus,
Qi(t), t P ti, is a function of Mi, h, c, ti, and t, with the boundary conditions Qi(ti) = Mi2 (no reneging yet) and Qi(1) = 0 (full
reneging). Moreover, the number of reneging customers by t is represented by Mi2 � Qi (t). Denote by S2(t) the total number
of customers who are eventually served at t, we have,
S2ðtÞ ¼
XNðtÞ
i¼1

Q iðtÞ ¼
XNðtÞ
i¼1

f ðMi2; c; ti; tÞ ¼
XNðtÞ
i¼1

gðMi; h; c; ti; tÞ ð2Þ
Fig. 3 compares S1(t) and S2(t), where the thick curve represents S1(t) (same as that in Fig. 1), the dash curve represents
S2(t), and the thin curve displays their difference, which is the number of lost customers due to the effects of balking (taking
place at each arrival moment ti) and reneging (taking place continuously over time).5 Fig. 3 depicts the case of only one real-
ization. Like Fig. 2, multiple realizations can also be created, but omitted.

Both S1(t) and S2(t) are compound Poisson processes. More precisely, S1ðtÞ ¼ fMigNðtÞ
i¼1 contains a Poisson number N(t) of

independent and identically distributed random variables Mi, and S2ðtÞ ¼ fQiðtÞgNðtÞ
i¼1 is a sequence of independent and

semi-identically distributed random processes, {N(t), t P 0} is independent of {Qi(t)}. Table 1 summarizes the symbols
defined above. It should be pointed out that, in a normal setting of a compound Poisson process (Prazen, 1967; Tijms,
3 has two y axes pointing to the opposite directions, both with no-negative values.



Fig. 2. Thirty realizations of S1(t).

Fig. 3. S1(t), S2(t), and S1(t) � S2(t).

Table 1
The definitions and probability characteristics of key variables or processes.

Variables or
processes

Definitions Probability characteristics

t A time period of interest Exponentially distributed with parameter l
N(t) The number of batches (of customers) that have joined the queue by t A Poisson process of rate k
ti The time instant that the ith batch has arrived. 0 6 t1 < t2 < . . . < tN(t) 6 t. ti+1 � ti follows the exponential

distribution of parameter k
Mi The number of customers in the ith batch (Mi = Mi1 + Mi2) Subject to a Poisson distribution of parameter C
S1(t) The total number of customers that have arrived by t in a number N(t)

of batches
A compound Poisson process

S1ðtÞ ¼
PNðtÞ

i¼1 Mi

h The balking rate of any customer Constant
Mi1 The balking portion of Mi Subject to a Poisson distribution of parameter Cha

Mi2 The non-balking portion of Mi Subject to a Poisson distribution of parameter C(1-h)a

c The reneging rate concerning Mi2 Constant
Qi(t) The number of customers that have arrived in the ith batch and

remained in queue by t
Poisson distributed with parameter Cð1� hÞe�cðt�tiÞ ,
given ti and ta

Qi(t) = f(Mi,ti,h,c,t)
S2(t) The total number of customers that have arrived in a number N(t) of

batches and remained in queue by t
A compound Poisson process

S2ðtÞ ¼
PNðtÞ

i¼1 QiðtÞ

a Proved in Theorem 2.
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2003), only {N(t)} and Mi (1 6 i 6 N(t)) are stochastic or random while t is considered deterministic or given. This paper fo-
cuses however on the cases (with special orientation to public transport services), in which t is often found random. Since
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both S1(t) and S2(t) are stochastic processes, it is hardly possible to predict their exact values over time. Hence, of practical
interest are their probabilistic measures such as means and variances. As remarked in Section 1, the determination of these
probabilistic measures are crucial for needs in public transport services such as the estimation of shelter size of a stop/station
or waiting-plaza size of an interchange/terminal. In addition, only a few papers were published in this journal in past decade
concerning the compound Poisson process (Cetinkayaa and Bookbinderb, 2003; Ebbena et al., 2004; Gillen and Hasheminia,
2013).

3. Mathematical results

Three theorems are presented in this section and the proof is found in Appendices A, B, C, D. Throughout the paper, E[�]
and Var[�] denote mean and variance, respectively.

Theorem 1. The probabilistic characterization of S1 (without involving balking and reneging)
Given a fixed time period s,

(a)

 
 

 

E½NðsÞ� ¼ ks
Var½NðsÞ� ¼ ks
E½S1ðsÞ� ¼ kCs

Var½S1ðsÞ� ¼ kðC2 þ CÞs
For a random time period t,
(b)
E½NðtÞ� ¼ k
l

Var½NðtÞ� ¼ k
l
þ k2

l2

E½S1ðtÞ� ¼
kC
l

Var½S1ðtÞ� ¼
k
l
½C þ C2� þ k2C2

l2
The probability distribution of S1(t) is determined by
PrfS1ðtÞ ¼ kg ¼ l
kþ l

� �X1
n¼0

ðCnÞke�Cn

k!

k
kþ l

� �n
The proof is presented in Appendix B.

Remark 1. The results on E[S1(t)] and Var[S1(t)] in Theorem 1(b) are derived along the line of compound Poisson processes,
but may also be verified using Theorem 1(c), see Appendix B for the details.
Theorem 2. Effects of balking and reneging
Focus on the ith batch of Mi customers joining the queue at ti,

(a) Mi1 and Mi2 are Poisson distributed with parameters Ch and C(1 � h), respectively.
(b) Given s, Qi(s) = f(Mi, ti, h, c, s) is Poisson distributed with parameter Cð1� hÞe�cðs�tiÞ.
(c) Considering random t; E½Q iðtÞ� ¼ Cð1� hÞ l

cþl.
(d) Denote by T1 the moment the first customer loses his/her patience to quite from the queue. E½T1jMi2 > 0� > 1�e�Cð1�hÞ

cCð1�hÞ .
(e) In case the service cannot be provided in time, all remaining customers may eventually run off by a certain moment T2,

then E½T2jMi2 > 0� < 1
c ln Cð1�hÞ

1�e�Cð1�hÞ

h i
þu

h i
, where u is Euler’s constant.

The proof is presented in Appendix C.

Remark 2. Theorem 2(d) and (e) tell that the most impatient customer would on average wait at least for a period of 1�e�Cð1�hÞ

cCð1�hÞ

and the most patient customer would not on average wait longer than 1
c ln Cð1�hÞ

1�e�Cð1�hÞ

h i
þu

h i
.
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Theorem 3. The probabilistic characterization of S2 (involving balking and reneging)
Given a fixed time period s,

(a)

 
 

 

E½S2ðsÞ� ¼
kCð1� hÞ

c
½1� e�cs�

Var½S2ðsÞ� ¼
kCð1� hÞ

c
½1� e�cs� þ kC2ð1� hÞ2

2c
½1� e�2cs�
For a random time period t,
(b)
E½S2ðtÞ� ¼
kCð1� hÞ

lþ c

Var½S2ðtÞ� ¼
kCð1� hÞ

lþ c
þ kC2ð1� hÞ2

lþ 2c
þ lk2C2ð1� hÞ2

ðlþ 2cÞðlþ cÞ2
The proof is presented in Appendix D.

Remark 3. Theorem 3(a) and (b) can be compared with Theorem 1(a) and (b). Note that balking and reneging that happens
to Mi has no impact on N(t). Therefore, the conclusions of N(s) and N(t) presented in Theorem 1 still hold in the current case.
Remark 4. Theorem 3(b) states that the average total number of customers who are eventually served is kCð1�hÞ
lþc . Recall with

Theorem 2(c) that the average number of customers who arrive in one batch and are eventually served is Cð1� hÞ l
lþc. Based

on Theorem 1(b), on average k/l batches arrive over the period of t. Thus, kCð1�hÞ
lþc can be verified with the product of k/l and

Cð1� hÞ l
lþc, while a rigorous proof is presented in Appendix D.
4. An application example of bus bridging

4.1. A bus bridging issue

An application example is presented in this section to demonstrate the obtained analytical results. This example is con-
cerned with bus bridging. Urban rail networks constitute an important part of the overall transport network in many cities
(Ceder, 2007; De-Los-Santos et al., 2012). Railway operation is highly dependent on technology and infrastructure. Any infra-
structure failure, system malfunction, or incident can lead to major service disruptions (Kepaptsoglou and Karlaftis, 2009;
Pender et al., 2012, 2013). In response to rail service disruptions, it is of great significance to provide quick and efficient sub-
stitution of service so as to ensure network credibility. This includes, among other options, bridging the impacted and dis-
connected stations with temporary bus routes (Pender et al., 2012, 2013; Boyd et al., 1998) (see Fig. 4). The selection of
railway stations to provide bus bridging services depends on the availability of track crossovers (Fig. 5), which enable trains
to turn back to the incoming directions. As depicted in Fig. 4, an accident has occurred somewhere along a railway line;
Fig. 4. Railway disruption, crossovers, and bus bridging.
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stations A and B, both equipped with track crossovers, are selected as the bridging stations. During the disruption period, bus
bridging services are run to restore the connectivity between A and B, while the railway services remain operational between
O1 and D1 via A and O2 and D2 via B. Bus bridging can be handled by use of reserve buses located at depots, or buses re-
tracted from operational bus lines, or both (Kepaptsoglou and Karlaftis, 2009; Pender et al., 2013). As the capacity of a train
is much bigger than that of a bus, bridging services may need to be provided simultaneously by a platoon of buses. In addi-
tion, the headway between two bus platoons can be so substantial that several trains may arrive at a bridging station over
the headway period.

Bus bridging is commonly applied in developed countries in response to severe railway disruptions. For instance, 15,549
unplanned disruptions happened to the metropolitan rail services in Melbourne, Australia in the first half of 2011, which
range from small delays to full service closures. Among those disruptions, 47 disruptions were addressed through bus bridg-
ing, suggesting an average of 8 per month. Moreover, 1712 passengers and 42 separate trains were affected by those bus-
replacement incidents. More details can be found in Powell et al. (2012). Research on bus bridging is scarce. Operators
and authorities mainly rely on their experience to deliver bus bridging services in an ad hoc manner. Thus, there is a need
to develop more rigorous and comprehensive approaches to bus bridging planning and management.

4.2. The application of the theoretical results

Given a rail disruption, it is highly desirable to learn at an early stage the incident severity and to determine the scale of
bus bridging service that would be required to accommodate affected passengers. Thus, accurate demand modeling of af-
fected passengers is essential for the quick planning and management of bus bridging resources and for efficient provision
of bus replacement service. More precisely, the following issues are of much interest to passenger demand modeling:

(1) If bus bridging service can be managed so well that its starting time can be accurately predicted (e.g. assuming urban
traffic conditions are trivial), probabilistically how many affected passengers would need to be accommodated by
bridging service?

(2) In a less fortunate but more realistic case, the starting time of bridging service is uncertain. What is the answer to the
above question?

(3) Consider the balking and reneging of affected passengers and focus on those who initially choose to wait for bridging
services. Probabilistically, when would the first (i.e. the most impatient) passenger lose his or her patience, and in case
bridging service cannot be provided in time (due to e.g. traffic jams), when would all remaining passengers run off?

(4) Taking into account balking and reneging effects in (1) and (2) above, how many passengers would on average be
served eventually by bridging buses?

The bus bridging problem is exactly a queueing problem of batch arrivals and bulk service involving balking and reneging.
More precisely,

� Batch arrival: each affected train brings a random number of passengers to a bridging station at one time.
� Bulk service: each platoon of bridging buses can serve at one time a (random) number of affected passengers that is upper

bounded by the platoon size and bus capacity.

 
 

 

Fig. 5. Track crossovers.
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� Balking: some passengers, upon reaching a bridging station, may choose to leave immediately without waiting for bridg-
ing buses.
� Reneging: some of the remaining passengers may gradually lose their patience and eventually depart before bridging ser-

vice starts.

Therefore, the passenger demand can be modeled in a compound Poisson process, whereby the train arrivals are modeled
as a Poisson process {N(t), t P 0} and each train carries a number Mi (1 6 i 6 N(t)) of passengers. The probabilistic dynamics
of balking and reneging must be considered for impacted passengers in order to determine a more appropriate platoon size
of bridging buses. We specify t = 0 the instant the railway disruption occurs. Furthermore, the second column of Table 1 can
be specified as in Table 2. Fig. 6 displays 30 realizations of S1(t) in the context of bus bridging, and s represents the time
instant the bridging service starts.

Questions (1)–(4) previously proposed in the context of bus bridging can be addressed by Theorems 1–3 in Section 3 as
follows:

� Question (1): Assume that the time instant s is known or can be accurately predicted. Due to the stochastic nature of
S1(s), the value of S1(s) is uncertain (see e.g. Fig. 6). Thus, of primary interest in this case are the mean and variance of
S1(s), to which Theorem 1(a) gives the answer.
� Question (2): In case the start time of bridging services is uncertain; in other words, the dash vertical line in Fig. 6 may be

moved randomly and horizontally along the time axis. Thus, the mean and variance of S1(t) also depends on t.
Theorem 1(b) addresses this case exactly.
� Question (3): This is answered by Theorem 2(d) and (e).
� Question (4): Theorems 3(a) and (b) deal with this question, with balking and reneging taken into account.

4.3. Simulation evaluation

4.3.1. A numerical example
With reference to Fig. 1 and Table 2, consider the eastbound trains arriving at the bridging station A at a rate of 6 trains

per hour (k = 6). Every train has 5 carriages, each carrying 120 passengers on average (C = 600). Upon reaching A, every
affected passenger has a likelihood of 20% to leave the station immediately (h = 20%), and any remaining passenger may stay
on average for a period of 10 min (c = 6). The time duration t between the moment an incident occurs and that the platoon of
bridging buses arrives is on average 40 min (l = 1.5).

4.3.2. Algorithms for emulating compound Poisson processes
As shown in Table 2, S1(t) in (1) involves three random factors: t, N(t), and Mi, and S2(t) in (2) involves two more: ti and c.

The following algorithm is used to simulate S1(t):

� Step 1: A generator of the exponential distribution of parameter l generates a realization of period t.
� Step 2: A generator of the Poisson distribution with parameter k generates a number N of Poisson random points over a

long interval L of, say, 300 min, which is probabilistically certainly much bigger than t. Based on Lemma 4 in Appendix A,
this number N of points are uniformly distributed over L.
� Step 3: All points generated in Step 2 and falling into the range of t are regarded as the time instants of train arrivals. Steps

1–3 are shown in Fig. 7.
� Step 4: For each determined time instant ti of train arrival, a Poisson number Mi is generated with the mean C to simulate

the impacted passengers carried by a train arriving at ti (see Fig. 1).

 
 

 

Table 2
Key variables and parameters for the bus bridging problem.

Variables or
processes

Definitions

t The time period between the occurrence of a railway disruption and the start of bus bridging services
N(t) The number of trains that arrive at a bridging station over period t
ti The time instant that the ith train arrives at the station
Mi The number of passengers carried by the ith train (Mi = Mi1 + Mi2)
S1(t) The total number of impacted passengers (until bus bridging takes effect at t)

S1ðtÞ ¼
PNðtÞ

i¼1 Mi

h The balking rate of any impacted passenger
Mi1 The number of balking passengers, who arrive with the ith train and choose to leave the station immediately
Mi2 The number of non-balking passengers, who arrive in the ith train but decide to stay at the station waiting for bridging buses
c The reneging rate of the number Mi2 of passengers
Qi(t) The number of passengers who are part of Mi2 and still remain at the station until bridging service starts at t

Qi(t) = f(Mi, ti, h, c, t)
S2(t) The total number of passengers who are eventually picked up by bridging buses

S2ðtÞ ¼
PNðtÞ

i¼1 QiðtÞ
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Fig. 6. 30 realizations of S1(t).

Fig. 7. Simulation setup for creating stochastic scenarios: Algorithm 1.

Fig. 8. Theorem 1(a): E[S1(s)].
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Fig. 9. Theorem 1(a): Var[S1(s)].
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Fig. 10. Theorem 1(b): E[S1(t)].
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To simulate S2(t), two more steps are needed:

� Step 5: Each passenger in Mi may initially choose to leave the station with the probability of h. This is determined by a 0–1
sequence (0: leave; 1: stay) that is generated with a Bernoulli random variable with the mean likelihood of being ‘‘0’’
equal to h.
� Step 6: Each remaining passenger in Mi may stay at the bridging station for an exponential-distributed period of c�1 on

average. Assume a train arrives at ti and the first batch of bridging buses reaches at t. Then, only the passengers whose
waiting times are larger than t � ti are picked up by the bridging buses, and the corresponding probability is e�cðt�tiÞ.
To this end, a 0–1 sequence (1: picked up by bridging buses) is generated using a Bernoulli random variable with the
mean likelihood of being ‘‘1’’ equal to e�cðt�tiÞ.

Steps 1–3 can alternatively be performed with another algorithm. A realization of t is first generated with l, and a number
of exponentially distributed headways are generated with k. The headways are added up until the accumulative sum goes
beyond the range of t. Then, the starting points of all headways within t can be regarded as the instants of train arrivals. This
algorithm is equivalent to that in Fig. 7. In order to create an objective environment for evaluation, the simulation setup sta-
ted above is purely Monte-Carlo-based and independent of the conclusions of Theorems 1–3.

4.3.3. Evaluation results
Theorem 1(a) delivers the mean and variance of the number S1(s) of affected passengers accumulated until the first batch

of bridging buses reaches at a given time instant s. Figs. 8 and 9 evaluate Theorem 1(a) against simulation results. Either
figure covers 17 different values of s over a range of 80 min on the x-axis (with each s value corresponding to a pair of circle
and cross in the figures). More specifically, each run of Step 1 in Fig. 7 to generate a s value is followed by the continuous run
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of Steps 2–4 for 30 times, and the pursued mean and variance results at this s are produced from these 30 times of repetitive
simulations and displayed as a cross in Figs. 8 and 9, respectively. On the other hand, the theoretical results from
Theorem 1(a) are displayed as circles in the figures. The theoretical results in Fig. 8 are linear with the time axis. This can
be checked with Theorem 1(a), and specifically the slope of the line (made up of all circles) is equal to kC = 3600 persons/
h = 600 persons/10 min. For the convenience of comparison, Fig. 9 presents the results of standard deviation (SD) rather than

variance, and that is why the theoretical result in the figure shows a parabolic tendency (SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k½C þ C2�s

q
). Clearly, the sim-

ulation (numerical) results demonstrate the results of Theorem 1(a).
Figs. 10–13 evaluate Theorem 1(b) against simulation results for the mean and standard deviation of S1(t), where t is a

random variable. The horizontal lines in Figs. 10 and 11 represent the theoretical results, while each circle corresponds to
100 simulation samples. More precisely, each circle in Figs. 10 and 11 is delivered by running Steps 1–4 as a whole loop
for 100 times. The horizontal line in Fig. 11 corresponds to kC/l (= 2400 persons), and in Fig. 12 it does toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
l ½C þ C2� þ k2C2

l2

q
(= 2684 persons). Theorem 1(b) addresses the average results, and this is verified by the fact that the hor-

izontal lines in Figs. 10 and 11 stay in the middle of the simulation results. Figs. 12 and 13 present the relative error resulting
from Figs. 10 and 11, respectively. The absolute mean of the relative error with Fig. 12 is 8.5%, while it is 9.8% with Fig. 13.

Theorem 1 (a) delivers the mean and variance of S2(s). Figs. 14 and 15 evaluate Theorem 1 (a) against simulation results.
The shown simulations results are produced by further running Steps 4–6 (Section 4.3.2), on the basis of Steps 1–3 (see
Fig. 7). Again, repetitive simulations are conducted 30 times (for steps 2–6) at each time instant s to deliver the simulated
mean and variance (i.e. each cross in Figs. 14 and 15). It is noticed from Theorem 1 (a) that the impact of the exponential
terms decays. For the current simulation example, the theoretical mean value approaches 480 persons (kC(1 � h)/c = 480)

and the theoretical standard deviation tends to be 340 persons
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kCð1�hÞ

c þ kC2ð1�hÞ2
2c

q
¼ 340

� �
. Figs. 16–19 evaluate Theorem 1
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Fig. 11. Theorem 1(b): Var[S1(t)].
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Fig. 12. Theorem 1(b): the simulation error of E[S1(t)] against the theoretical result.
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Fig. 13. Theorem 1(b): the simulation error of Var[S1(t)] against the theoretical result.

Fig. 14. Theorem 3(a): E[S2(s)].

Fig. 15. Theorem 3(a): Var[S2(s)].
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Fig. 16. Theorem 3(b): E[S2(t)].
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Fig. 17. Theorem 3(b): Var[S2(t)].
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Fig. 18. Theorem 3(b): the simulation error of E[S2(t)] against the theoretical result.
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(b) against the simulation results. In Figs. 16 and 17, the horizontal lines represent the theoretical results (384 and 345); each
circle in either figure is delivered by running Steps 1–6 as a whole loop for 100 times. Figs. 18 and 19 present the relative
error. The absolute mean of the relative error is 7.6% with Fig. 18 and 6.9% with Fig. 19. Clearly, the simulation results dem-
onstrate the results of Theorem 3.
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Fig. 19. Theorem 3(b): the simulation error of Var[S2(t)] against the theoretical result.
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5. Further discussions

5.1. On stochastic assumptions involved

Theorems 1–3 involve three assumptions (Table 1):

(a) The arrival of batches of customers forms a Poisson process.
(b) Each batch contains a Poisson number of customers.
(c) Every non-balking customer stays in queue for an exponentially distributed period of time before reneging.

The bulk queueing problem with balking and reneging is of some general significance in practice (beyond the very scope
of public transport services). Assumptions (a)–(c) are commonly considered in queueing theory. Specifically for the bus
bridging problem, however, it is necessity to elaborate the consideration of these assumptions. First of all, (a) seems to be
inconsistent with the practice in railway operation, whereby train arrivals are pre-scheduled with constant or semi-constant
headways. Although the usage of (a) does facilitate the theoretical exploration as presented with Theorems 1–3, the replace-
ment of (a) with a constant headway condition does not invalidate the main theoretical results obtained, see Appendix F for
details.

As for the distribution of the number of passengers in a train carriage, very surprisingly, little information was found after
a relatively thorough literature review. Nevertheless, it was noticed in some papers (e.g. Hickman, 2001) that the number of
alighting passengers at a stop was assumed to follow a binomial distribution.6 However, this does not help much in identi-
fying the distribution of the number of passengers reaching each stop. We have proposed in the paper to use a Poisson distri-
bution to this end, which can be reasoned as follows. Without loss of generality, passengers arriving at a station are assumed to
follow a Poisson process or Poisson processes. Note that the sum of independent Poisson variables is still Poisson distributed.
When a train arrives at a station, the accumulated number of passengers at the platform is therefore Poisson.7 Assume each
passenger has a same probability of stepping onto any carriage of the train. The number of boarding passengers for any carriage
is Poisson distributed. Consider the train is empty before reaching the first station, and thus leave there with a Poisson number
of boarding passengers in each carriage. At the second station, assume each passenger on board has a same probability to alight.
Then, the number of alighting passenger is also Poisson. As such, the number of passengers carried by a carriage to any subse-
quent station is in fact the sum of a number of independent Bernoulli-sampled Poisson random variables, and hence is subject to
the Poisson distribution.8 As such, the total number of passengers carried by the whole train is also Poisson. It should also be
emphasized the exact distribution form is actually not required for the main conclusions (Theorems 1 and 3). What is really of
interest is the mean number C of passengers in the train (Table 1).

As stated in the introduction section, the balking and reneging behavior of passengers in public transport was not yet
much studied by transport researchers. In fact, such behavior was only mentioned in one paper published by this journal
6 Without tracing back to the origin of this proposal, we could understand it as follows. During a peak period, each carriage is supposed to be nearly full of
passengers. At each stop, every passenger has a same probability p to alight, then the number of alighting passengers is subject to a binomial distribution B(N,p),
where N is the carriage capacity. If a carriage is far less full, however, this proposal may not hold strongly.

7 The balking and reneging effects are negligible in this case.
8 Due to the constraint of the carriage capacity, strictly speaking, the number of passengers each carriage may be subject to a truncated Poisson distribution;

or when a carriage is nearly full, it may be more appropriate to use the binomial distribution instead, see the 6th.
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(Rapoport et al., 2010). As such, there is no refereed evidence concerning possible distributions of the waiting period of a
non-balking passenger before reneging. Nevertheless, it is routine practice in queueing-related study to model a (waiting)
time period in an exponential distribution. This assumption virtually indicates that, due to the memorylessness, the time
gap between the reneging actions of any two passengers (assuming at most one reneging action at any time instant) is also
exponentially distributed. This further implies that the number of reneging passengers over a time period is Poisson distrib-
uted, which does not seem to be excessive.

5.2. No passenger left behind bridging services

As depicted in Fig. 1, S1(0) = 0. This involves an assumption that the passengers remaining at the station when the bridg-
ing services start will all be picked up by bridging buses. Purely in terms of queueing theory, this may indicate that service
capacity is nearly infinite, and hence may seem to be a bit idealized. Specifically for the practice of bus bridging, however,
this may not be a concern. First of all, it is exactly the aim to serve all remaining passengers that we estimate via Theorem 3
the number of passengers so as to determine/recommend an appropriate size of bus platoons. Second, besides seats offered
in buses, standees are allowed in order to avoid leaving any passengers not served. In practice, this is often adequate. Third,
even if the leftover passengers are assumed, this would not add much difficulty to the theoretical exploration. This is because
the passenger demand can be estimated and the capacity of a bus is known; thus the leftover demand can be estimated to
determine S1(0) for the next round of bus bridging services. Except for this, there might not be any big change for the the-
oretical work presented with Theorems 1–3. Of course, the balking and reneging rates of the leftover passengers would be
much higher than normal; see Section 5.3 for further discussion on the balking and reneging rates.

5.3. The balking and reneging rates

It is postulated in the paper that any queueing customer (or affected passenger in the case of bus bridging) makes deci-
sions on balking and/or reneging randomly and independently. The genuine case in the circumstance of bus bridging could
be much complicated. First, the balking rate may depend on a number of factors such as the locations of the bridging stations,
the time of day, the population of affected passengers (initial queue length) and composition of these passengers. Second, the
reneging rate is rather psychology-related. For a certain group of affected passengers, the longer to wait, the less patient they
can be. However, it is also observed that the longer one waits the less is the propensity to renege (Maister, 1985; Larson,
1987). Quite likely, the distinction between the two groups is not fixed. A same passenger may fall in a different group,
depending on specific cases. In addition, affected passengers arriving in different trains would be altogether at a bridging
station, and the population of affected passengers may affect the decision of a single passenger. For some people, the more
affected people to see, the more confident they may feel of waiting further; for some others, the converse may be perceived.
In any case, the reneging rate is a function of at least two parameters: time spent in waiting (queuing time) and the total
number of affected passengers to be with (queue length). Probably this reneging function in bus bridging is much different
from that in supermarkets. To sum up, it is very hard to establish a deterministic model for balking and reneging phenomena,
and therefore a simplified random model is adopted in this paper. The practical values (constant or varying) of the balking
and reneging rates need to be identified with real data from traffic surveys. According to our literature review, no work was
yet done along this line.

 
 

 

6. Conclusive remarks

Queueing or waiting for services is one of the unpleasant experiences of life ought to be better understood and modeled
for a variety of economical, productivity and efficiency calculations. Queues of batch arrivals and service including balking
and reneging behaviors of customers are commonly observed in public transport. This study formulates queues of this type
using compound Poisson processes. Because of the complete treatment of this type of queueing problem is still an ongoing
task of queueing theorists, this paper focuses on the probabilistic nature of balking and reneging behavior of impatient pas-
sengers as well as the impact of such behavior on queueing. The key probabilistic measures of such queues are determined
via analytical study and evaluated using Monte-Carlo simulation. The contributions of this work are fourfold. First, the ana-
lytical exploration of the bulk queueing problem involving balking and reneging with special orientation to public transport
services. Second, the introduction of the theory of compound Poisson processes as a new analytical conceptualization of the
problem. Third, the determination of mean and variance for the length of a queue that is subject to the balking and reneging
actions of impatient passengers. Fourth, the emulation of the compound Poisson processes with balking and reneging using
large-scale Monte-Carlo simulations in the context of public transport services. The developed mathematical model, analyt-
ical approaches, and simulation methods can be applied to a variety of queueing processes of this type.
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Appendix A. Four Lemmas

Lemma 1. The law of iterated expectations and the law of total variance (Bertsekas and Tsitsiklis, 2008)
X and Y are two random variables, then

 
 

 

E½E½XjY�� ¼ E½X� ð3Þ
Var½X� ¼ E½Var½XjY�� þ Var½E½XjY�� ð4Þ
Lemma 2. The mean and variance of a compound random variable (Tijms, 2003)

Let N be a non-negative and integer-valued random variable having finite first two moments. Let fMigN
i¼1 be a sequence of

independent and identically distributed random variables with mean E[M] and variance Var[M]. If N is independent of M1, M2, . . .,
then
E
XN

i¼1

Mi

" #
¼ E½N�E½M� ð5Þ

Var
XN

i¼1

Mi

" #
¼ E½N�Var½M� þ Var½N�E2½M� ð6Þ
Lemma 2 can be derived with Lemma 1.
Lemma 3. Random sampling of a Poisson number (Prazen, 1967)
Let Mi be a Poisson random variable of parameter C. Let {Bj; j = 1, 2, . . .} be a Bernoulli process, independently of Mi, with

probability p for success (i.e. Bj = 1) and 1 � p for failure (i.e. Bj = 0). Let Mi1 be the total number of success among the number Mi of
‘‘tests’’, i.e. Mi1 ¼

PMi
j¼1Bj. Then, Mi1 and Mi2 = Mi �Mi1 are independent Poisson variables, respectively, of parameters Cp and

C(1 � p).
Lemma 4. Campbell Theorem (Kulkarni, 2010)
Consider a Poisson counting process N(t). Given that N(t) = n, i.e. n events have occurred in the interval (0,t], the times of

occurrence 0 6 t1 < t2 < � � � < tn 6 t have the same distribution as the ordered statistics corresponding to n independent ran-
dom variables uniformly distributed on the interval (0, t].

Appendix B. Proof of Theorem 1

Theorem 1(a). Given that t = s, E[N(s)] = Var[N(s)] = ks results immediately from the definition of N(t). Based on this, it follows
from Lemma 2 and the fact that E[Mi] = Var[Mi] = C,
E½S1ðtÞjt ¼ s� ¼ E
XNðsÞ
i¼1

Mi

" #
¼ kCs ð7Þ

Var½S1ðtÞjt ¼ s� ¼ Var
XNðsÞ
i¼1

Mi

" #
¼ ksðC2 þ CÞ � ð8Þ
Theorem 1(b). It follows from E[N(s)] = Var[N(s)] = ks and Lemma 1 that
E½NðtÞ� ¼ k
l
; Var½NðtÞ� ¼ k

l
þ k

l

� �2

ð9Þ
Note that E½NðtÞ� ¼ k
l may also be derived by use of some fundamental properties of the Poisson process (without using Lemma 1);

see Appendix E. By Lemma 1 and Eq. (7),
E½S1ðtÞ� ¼ E½E½S1ðtÞjt ¼ s�� ¼ E½ksC� ¼ kC
l

ð10Þ
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Again, from (7), 
Var½E½S1ðtÞjt ¼ s�� ¼ Var½ksC� ¼ k2C2 1
l2 ð11Þ

 

and with (8), we have,
 

E½Var½S1ðtÞjt ¼ s�� ¼ kðC þ C2Þ
l

ð12Þ
The use of Lemma 1 with (11) and (12) leads to
Var½S1ðtÞ� ¼
k
l
ðC þ C2Þ þ k2C2

l2 ð13Þ
h

Theorem 1(c).
PrfS1ðtÞ ¼ kg ¼ E½PrfS1ðtÞ ¼ kjt ¼ sg� ¼
Z 1

0
PrfS1ðsÞ ¼ kgle�lsds ð14Þ
Note that the sum of a fixed number n of independent Poisson distributed variables each of parameter C is Poisson distributed with
parameter nC,
PrfS1ðsÞ ¼ kjNðsÞ ¼ ng ¼ ðnCÞke�nC

k!
Thus,
PrfS1ðsÞ ¼ kg ¼
X1
n¼0

PrfS1ðsÞ ¼ kjNðsÞ ¼ ngPrfNðsÞ ¼ ng ¼
X1
n¼0

ðnCÞke�nC

k!

ðksÞne�ks

n!
ð15Þ
Substituting (15) into (14) leads to
Z 1

0

X1
n¼0

ðnCÞke�nC

k!

ðksÞne�ks

n!
le�lsds ¼

X1
n¼0

ðnCÞke�nC

k!

Z 1

0

lðksÞne�ðkþlÞs

n!
ds

¼
X1
n¼0

ðnCÞke�nC

k!

Cðnþ 1Þ
n!

l
kþ l

� �
k

kþ l

� �n

¼ l
kþ l

� �X1
n¼0

ðnCÞke�nC

k!

k
kþ l

� �n

ð16Þ
Therefore,
PrfS1ðtÞ ¼ kg ¼ l
kþ l

� �X1
n¼0

ðnCÞke�nC

k!

k
kþ l

� �n

ð17Þ
To verify (17), first the identity
P1

k¼0PrfSðtÞ ¼ kg ¼ 1 holds.
X1
k¼0

l
kþ l

� �X1
n¼0

ðnCÞke�nC

k!

k
kþ l

� �n

¼
X1
n¼0

l
kþ l

� �
k

kþ l

� �nX1
k¼0

ðnCÞke�nC

k!
¼ l

kþ l
X1
n¼0

k
kþ l

� �n

¼ 1
Moreover, (10) derived using Lemmas 1 and 2 can also be reached through the definition of mathematic expectation using (17).
E½S1ðtÞ� ¼
X1
k¼0

kPrfSðtÞ ¼ kg ¼
X1
n¼0

l
kþ l

� �
k

kþ l

� �nX1
k¼0

k
ðnCÞke�nC

k!
¼
X1
n¼0

l
kþ l

� �
k

kþ l

� �n

nC

¼ Cl
kþ l

X1
n¼0

ðnþ 1Þ k
kþ l

� �ðnþ1Þ
" #

¼ kCl
ðkþ lÞ2

X1
n¼0

k
kþ l

� �n

ðnþ 1Þ ¼ kC
X1
n¼0

d
dk

k
kþ l

� �nþ1
" #

¼ kC
l

Note that (13) may also be derived from (17), albeit much more tedious. h
Appendix C. Proof of Theorem 2

Theorem 2(a). It is straightforward with Lemma 3. h
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Theorem 2(b). Any non-balking customers may choose to leave after a period of time that is exponentially distributed with
parameter c. Given a customer who arrives at ti, the probability that he/she remains in queue when the first service starts at t
is e�cðt�tiÞ. Note that t � ti is still exponentially distributed (Papoulis and Pillai, 2002). As defined in Table 1, Qi(t) denote the part
of Mi2 that is eventually served by bridging buses. The proof is closed by following Theorem 2(a) and applying Lemma 3 to Mi2 in
consideration of the success rate e�cðt�tiÞ. h

 
 

 

Theorem 2(c). By Theorem 2(b) and s = t � ti,
Z 1

0
Cð1� hÞe�csle�lsds ¼ Cð1� hÞ l

lþ c
� ð18Þ
Remarks: (18) may also be proved alternatively as follows:

The in-queue waiting time of a customer is an exponential variable (R1) of parameter c, and the duration R2 = t � ti is
exponentially distributed with parameter l. The customers who are eventually served are those satisfying R1 P R2. Note that
PrfR2 6 R1g ¼
Z 1

0
PrfR2 6 R1jR1 ¼ xgce�cxdx ¼

Z 1

0
½1� e�lx�ce�cxdx ¼ l

lþ c

The use of Lemma 3 along with Theorem 2(a) and Pr{R2 6 R1} leads to (18). h

Theorem 2(d). Note that S2(ti) = Mi2. T1 ,max{t > ti;Qi (t) = Mi2}, Pr{T1 > t} = Pr{Qi(t) = Mi2}. Assume that every customer makes
his/her decision independently, PrfQiðtÞ ¼ Mi2g ¼ ½e�cðt�tiÞ�Mi2 . Thus,
E½T1jMi2 ¼ m� ¼
Z 1

ti

PrfT1 > tjMi2 ¼ mgdt ¼
Z 1

ti

e�mcðt�tiÞdt ¼
Z 1

0
e�mcsds ¼ 1

mc
Mi2 is an integer. Based on the last equality above, it makes no sense if it equals 0. Therefore, by Lemma 1 and Theorem 2(a),
E½T1jMi2 > 0� ¼ E½E½T1jMi2 ¼ m�jm > 0� ¼ 1
c

E
1
m
jm > 0

� �
>

1
c

1
E½mjm > 0�

¼ 1
c
X1
m¼1

m
½Cð1� hÞ�me�Cð1�hÞ

m!
ð1� e�Cð1�hÞÞ�1

" #�1

¼ 1
c
X1
m¼0

m
½Cð1� hÞ�me�Cð1�hÞ

m!
ð1� e�Cð1�hÞÞ�1

" #�1

¼ 1� e�Cð1�hÞ

cCð1� hÞ
The inequality above results from Jensen’s inequality in the case of a convex function (Paolella, 2006). h
Theorem 2(e). Note that S2(ti) = Mi2. T2 ,min{t > ti; Qi(t) = 0}, Pr{T2 6 t} = Pr{Qi(t) = 0}. Assume that every customer makes his/
her decision independently, PrfQiðtÞ ¼ 0g ¼ ½1� e�cðt�tiÞ�Mi2 . Then,
E½T2jMi2 ¼ m� ¼
Z 1

ti

PrfT2 > tjMi2 ¼ mgdt ¼
Z 1

ti

f1� ½1� e�cðt�tiÞ�mgdt ¼
Z 1

0
1� ½1� e�cs�m
� �

ds

¼
Z 1

0
ð1� ymÞ dy

1� y
c�1 ¼ 1

c

Z 1

0

1� ym

1� y

� �
dy ¼ 1

c

Z 1

0
ð1þ yþ y2 þ . . .þ ym�1Þdy ¼ 1

c
Xm

i¼1

1
i
¼ 1

c
½lnðmÞ þuþ em�
In the last equality, u denotes Euler’s constant and approximately equals 0.58 (Havil, 2009), em approaches zero as m approaches
infinite. Again, it makes no sense if Mi2 equals zero. Thus,
E½T2jMi2 > 0� ¼ E½E½T2jMi2 ¼ m�jm > 0� ¼ E
1
c
ðlnðmÞ þuþ emÞjm > 0

� �
<

1
c

ln
Cð1� hÞ

1� e�Cð1�hÞ

� �
þu

� �

The inequality results from Jensen’s inequality in the case of a concave function (Paolella, 2006), with the em term omitted. h
Appendix D. Proof of Theorem 3

Theorem 3(a) (Mean).

By Lemma 1,
E½S2ðsÞ� ¼ E½E½S2ðsÞjNðsÞ ¼ n�� ¼
X

n

E½S2ðsÞjNðsÞ ¼ n�PrfNðsÞ ¼ ng ð19Þ
Also, with (2), we have
E½S2ðsÞjNðsÞ ¼ n� ¼ E
XNðsÞ
i¼1

QiðsÞjNðsÞ ¼ n

" #
¼ E

XNðsÞ
i¼1

f ðMi; ti; h; c; sÞjNðsÞ ¼ n

" #
¼ E

Xn

i¼1

f ðMi;uðiÞ; h; c; sÞ
" #

ð20Þ
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Note that the final equality of (20) results from Lemma 4. u(1), u(2), . . . ,u(n) are the ordered values of n independent random vari-
ables u1, u2, . . . ,un that are uniformly distributed over (0, s); the outcome of function f is a Poisson distributed. To continue with
(20),

 
 

E
Xn

i¼1

f ðMi;uðiÞ; h; c; sÞ
" #

¼ E E
Xn

i¼1

f ðMi;uðiÞ; h; c; sÞjuðiÞ

" #( )

¼ E
Xn

i¼1

Cð1� hÞe�cðs�uðiÞÞ

" #
ðby Theorem 2ðbÞÞ

¼ nCð1� hÞE½e�cðs�uiÞ�
¼ nCð1� hÞ 1

cs ½1� e�cs� ðby Lemma 4Þ

ð21Þ

 

Substituting (21) and (20) into (19), we have
E½S2ðsÞ� ¼
Cð1� hÞ

cs
½1� e�cs�E½NðsÞ� ¼ Cð1� hÞ

cs
½1� e�cs�ks ¼ kCð1� hÞ

c
½1� e�cs� � ð22Þ
Theorem 3(a) (Variance).

By Lemma 1,
Var½S2ðsÞ� ¼ EfVar½S2ðsÞjNðsÞ ¼ n�g þ VarfE½S2ðsÞjNðsÞ ¼ n�g ð23Þ
Note that n in (21) is a random variable, then
VarfE½S2ðsÞjNðsÞ ¼ n�g ¼ C2ð1� hÞ2 1
c2s2 ½1� e�cs�2ks ð24Þ
On the other hand,
EfVar½S2ðsÞjNðsÞ ¼ n�g ¼ E Var
XNðtÞ
i¼1

f ðMi; ti; h; c; sÞjNðsÞ ¼ n

" #( )
¼ E Var

Xn

i¼1

f ðMi;uðiÞ; h; c; sÞ
" #( )

ðBy Lemma 4Þ ð25Þ
In particular,
Var
Xn

i¼1

f ðMi;uðiÞ; h; c; sÞ
" #

¼
Xn

i¼1

E Var f ðMi;uðiÞ; h; c; sÞ uðiÞ
		
 �� �

þ
Xn

i¼1

Var E f ðMi;uðiÞ; h; c; sÞjuðiÞ

 �� �

ðby Lemma 1Þ

¼
Xn

i¼1

E½Cð1� hÞe�cðs�uðiÞÞ�

þ
Xn

i¼1

Var½Cð1� hÞe�cðs�uðiÞÞ� ðby Theorem 2ðbÞÞ

ð26Þ
For the second term of (26), we have Var½e�cðs�uiÞ� ¼ 1
2cs ½1� e�2cs� � 1

c2s2 ½1� e�cs�2, because ui is uniformly distributed over (0,s).
We then continue with (26) to get
Var
Xn

i¼1

f ðMi;uðiÞ; h; c; sÞ
" #

¼ nCð1� hÞ 1
cs
½1� e�cs� þ nC2ð1� hÞ2 1

2cs
½1� e�2cs� � 1

c2s2 ½1� e�cs�2
� �

ð27Þ
Substituting (27) into (25) leads to:
EfVar½S2ðsÞjNðsÞ ¼ n�g ¼ ksCð1� hÞ 1
cs
½1� e�cs� þ ksC2ð1� hÞ2 1

2cs
½1� e�2cs� � 1

c2s2 ½1� e�cs�2
� �

¼ kCð1� hÞ1
c
½1� e�cs� þ kC2ð1� hÞ2 1

2c
½1� e�2cs� � 1

c2s
½1� e�cs�2

� �
ð28Þ
Substituting (28) and (24) into (23), we have
Var½S2ðsÞ� ¼ kC2ð1� hÞ2 1
c2s
½1� e�cs�2 þ kCð1� hÞ1

c
½1� e�cs� þ kC2ð1� hÞ2 1

2c
½1� e�2cs� � 1

c2s
½1� e�cs�2

� �

¼ kCð1� hÞ
c

½1� e�cs� þ kC2ð1� hÞ2

2c
½1� e�2cs� � ð29Þ
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Theorem 3(b) (Mean).

So far, we have derived with (22) that E½S2ðsÞ� ¼ kCð1�hÞ
c ½1� e�cs�. Then, by Lemma 1,

 
 

E½S2ðtÞ� ¼ E½E½S2ðtÞjt ¼ s�� ¼ E
kCð1� hÞ

c
½1� e�cs�

� �
¼ kCð1� hÞ

c
1�

Z 1

0
e�csle�lsds

� �
¼ kCð1� hÞ

lþ c
�

 

Theorem 3(b) (Variance).

It follows (22) that
Var½E½S2ðtÞjt ¼ s�� ¼ Var½E½S2ðsÞ�� ¼ Var
kCð1� hÞ

c
½1� e�cs�

� �
¼ k2C2ð1� hÞ2

c2 Var½1� e�cs�

¼ k2C2ð1� hÞ2

c2 Var½e�cs� ¼ k2C2ð1� hÞ2

c2 ½E½e�2cs� � E2½e�cs�� ¼ k2C2ð1� hÞ2

c2

l
2cþ l

� l2

ðcþ lÞ2

" #

¼ lk2C2ð1� hÞ2

ð2cþ lÞðcþ lÞ2
ð30Þ
By (29),
E½Var½S2ðtÞjt ¼ s�� ¼ E½Var½S2ðsÞ�� ¼
kCð1� hÞ

c
1�

Z 1

0
e�csle�lsds

� �
þ kC2ð1� hÞ2

2c
1�

Z 1

0
e�2csle�lsds

� �

¼ kCð1� hÞ
lþ c

þ kC2ð1� hÞ2

lþ 2c
ð31Þ
Finally, with (30) and (31),
Var½S2ðtÞ� ¼ E½Var½SðtÞjt ¼ s�� þ Var½E½SðtÞjt ¼ s�� ¼ kCð1� hÞ
lþ c

þ kC2ð1� hÞ2

lþ 2c
þ lk2C2ð1� hÞ2

ðlþ 2cÞðlþ cÞ2
�

Appendix E

With reference to Fig. 1, let x1, x2, . . ., xn represent consecutive inter-arrival times of customer batches over period t, that
is, x1 = t1, x2 = t2 � t1, . . ., xn = tn � tn�1. Thus,
Prfx1 þ x2 þ � � � þ xn < tg ¼ Prfx1 þ x2 þ � � � þ xn < tjx1 < tgPrfx1 < tg
From Table 1, t is exponentially distributed and xi (i = 1, 2) are independent and identically distributed. By the lack-of-mem-
ory property,
Prfx1 þ x2 þ � � � þ xn < tjx1 < tg ¼ Prfx2 þ � � � þ xn < tg
and as such,
Prfx1 þ x2 þ � � � þ xn < tg ¼ ½Prfx < tg�n
Following the definition of mean,
E½NðtÞ� ¼
X1
n¼1

PrfNðtÞP ng ¼
X1
n¼1

Prfx1 þ x2 þ � � � þ xn 6 tg ¼
X1
n¼1

½Prfx < tg�n ¼ Prfx < tg
1� Prfx < tg
Note that
Prfx < tg ¼
Z 1

0
Prfx < tjx ¼ hgf ðhÞdh ¼

Z 1

0
e�lhke�khdh ¼ k

kþ l
Thus,
E½NðtÞ� ¼ Prfx < tg
1� Prfx < tg ¼

k
l

Appendix F. Theorems 1–3 in the case of a constant train headway

In contrast to Figs. 6, 20 displays the case of a constant headway of trains, where N(t) in Table 2 is exactly equal to kt, with
k�1 being the constant train headway. Accordingly, Theorems 1–3 are updated as follows:
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Fig. 20. Thirty realizations of S1(t) in the case of a constant train headway.
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Theorem 1-1

(a)
E½NðsÞ� ¼ ks
Var½NðsÞ� ¼ 0
E½S1ðsÞ� ¼ kCs
Var½S1ðsÞ� ¼ kCs
(b)
E½NðtÞ� ¼ k
l

Var½NðtÞ� ¼ k2

l2

E½S1ðtÞ� ¼
kC
l

Var½S1ðtÞ� ¼
kC
l
þ k2C2

l2
(c)
PrfS1ðtÞ ¼ kg ¼ l
kC þ l

� �
kC

kC þ l

� �k
Compared to Theorem 1, it is not surprising that the use of a constant train headway leads to smaller variances.

Theorem 2-1. It is the same as Theorem 2.
Theorem 3-1

(a)
E½S2ðsÞ� ¼
kCð1� hÞ

c
½1� e�cs�

Var½S2ðsÞ� ¼
kCð1� hÞ

c
½1� e�cs� þ kC2ð1� hÞ2

2c
½1� e�2cs� � kC2ð1� hÞ2

c2s
½1� e�cs�2
(b)
E½S2ðtÞ� ¼
kCð1� hÞ

lþ c
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Var½S2ðtÞ� ¼
kCð1� hÞ

lþ c
þ kC2ð1� hÞ2

lþ 2c
þ lk2C2ð1� hÞ2

ðlþ 2cÞðlþ cÞ2
� kC2ð1� hÞ2l

c2

Z 1

0

e�ls

s
½1� e�cs�2ds

 
 

Compared to Theorem 3, the same means but smaller variances yield in the case of constant headways (see the additional
terms of the negative sign appearing on the right-hand side of Var[S2(s)] and of Var[S2(t)]). This also confirms our intuition
concerning variances by comparing Fig. 6 and Fig. 21. Mathematically, this is due to the removal of the second term on the
right-hand side of (4) when it is applied to a constant headway case. It is noticed that there is no compact analytical expres-
sion for the last term on the right-hand side of Var[S2(t)]. Nevertheless,

R1
0

e�ls

s ½1� e�cs�2ds can be approximately expressed
using the exponential integral E1ðzÞ ¼

R1
z

e�s
s ds (this is not an elementary function). Considering that s in Theorem 3-1(b)

must have a lower bound s0,

 

Z 1

0

e�ls

s
½1� e�cs�2ds �

Z 1

s0

e�ls

s
½1� e�cs�2ds ¼ E1ðls0Þ � 2E1ððlþ cÞs0Þ þ E1ððlþ 2cÞs0Þ
A further estimate may be obtained using the relation 1
2 e�zln 1þ 2

z

� 

< E1ðzÞ < e�zln 1þ 1

z

� 

. The proof of Theorems 1, 2 � 1,

and 3 � 1 follows the same line of thoughts with Theorems 1–3. It is inspiring to see that the consideration of a constant
headway does not necessarily lead to simpler conclusions than with an exponential headway. Exponential distributions
(or sometimes its extension to the Gamma/Erlang distributions) are often used in the mathematics of stochastic processes,
not only because of the general applicability of the distributions, but also the mathematical tractability enabled by the
memoryless property of the distributions. Having this in mind, it is still thought-provoking that it is mathematically easier
to handle the situation depicted in Fig. 6 than in Fig. 20.
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