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Review
Glossary

Anisotropic cell expansion: extension of a cell along a particular axis or in a

certain direction.

Confocal microscopy: or confocal laser scanning microscopy. A laser light is

focused onto a very small and specific portion of a sample and the emitted

fluorescence that passes through a detector pinhole is collected. The pinhole

reduces the amount of out-of-focus light (i.e., fluorescence emitted by other

points in the sample).

Displacement transducer: a measuring device that converts a linear or angular

displacement into a signal (electric, mechanical, pneumatic, or other) suitable

for recording, transmission, or conversion.

High-resolution X-ray computed tomography: a volume rendering technology

in which X-ray projections of a rotating sample are combined into a 3D

structure.

Hyponastic movement: upward bending of plant organs (e.g., leaves) because

of differential extension across a plant axis (e.g., the petiole).

Kinematic parameters: describe the rate at which plant processes take place

and their extent and duration in space and time.

Multiphoton microscopy: fluorescence microscopy in which the excitation of

the fluorophore is achieved by the simultaneous absorption of two photons in

the infrared. This is achieved by concentrating an ultrafast laser onto a specific

point in the sample under the microscope.

Optical coherence microscopy: a non-invasive imaging technology which

measures the inherent light-scattering properties of biological samples with an

increased sample penetration depth compared to confocal microscopy [99].

Optical projection tomography: a volume rendering technology in which

pictures of a translucent sample taken at different rotation angles are combined

into a 3D structure.

Point cloud: a set of points with coordinates in 3D space (X, Y, Z). Each point

contains data specific to its position in space, such as intensity, color, and

orientation.

Rhizotron: a plant root observation chamber often constructed from

transparent Plexiglas.

Segmentation: the operation of checking whether each individual pixel of an

image belongs to an object of interest or not. Objects of interest are identified

by finding suitable local features that allow them to be distinguished from

other objects and from the background. Segmentation produces a binary
Imaging and image processing have revolutionized plant
phenotyping and are now a major tool for phenotypic
trait measurement. Here we review plant phenotyping
systems by examining three important characteristics:
throughput, dimensionality, and resolution. First,
whole-plant phenotyping systems are highlighted to-
gether with advances in automation that enable signifi-
cant throughput increases. Organ and cellular level
phenotyping and its tools, often operating at a lower
throughput, are then discussed as a means to obtain
high-dimensional phenotypic data at elevated spatial
and temporal resolution. The significance of recent
developments in sensor technologies that give access
to plant morphology and physiology-related traits is
shown. Overall, attention is focused on spatial and tem-
poral resolution because these are crucial aspects of
imaging procedures in plant phenotyping systems.

Plant phenotyping is a complex matter involving a
plethora of systems and tools
‘Phenomics’ has been proposed as a novel discipline in
biology and involves the gathering of high-dimensional
phenotypic data at multiple levels of organization, to prog-
ress towards the full characterization of the complete set of
phenotypes of a genome, in analogy with whole genome
sequencing [1]. This ultimate aim will of course remain
hypothetical; however, current and future developments
in plant phenotyping and phenomics may benefit from the
consideration of dimensionality, together with throughput
and resolution, because our comprehension of plant process-
es in general, and the genotype–phenotype relationship in
particular, is far from complete (Box 1). Plant phenotypes
are inherently complex because they result from the inter-
action of genotypes with a multitude of environmental
factors. This interaction influences on the one hand the
developmental program and growth of plants, which can
be described by means of structural traits, and, on the other
hand, plant functioning, described by means of physiological
traits (Figure 1). Both the structural and physiological traits
eventually determine plant performance in terms of bio-
mass and yield. Phenotypic traits at different organizational
1360-1385/$ – see front matter

� 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tplants.2013.04.008
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levels or in different categories may show high correlations
(dependent variation) in one particular or in multiple envir-
onments. If robust, these may reduce the complexity of
phenotyping (i.e., the number of different traits to be mea-
sured), but whether this is wanted depends on the biological
question [2].

The biological question under investigation largely
determines the phenotypic traits of interest and conse-
quently the phenotyping system and tools. It may be
exploratory in nature, meaning that the number of traits
is limited by the phenotyping system itself and to what is
image in which a pixel has the value one if it belongs to an object of interest;

otherwise it is zero [130].

Segregating population: a population of plants, usually the progeny of a cross,

showing variation in phenotypic traits.

Visible imaging: acquisition of images on digital sensors sensitive to light

reflected in the visible part of the electromagnetic spectrum.
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Figure 1. From plant phenotyping to phenomics. Plant phenotyping can be performed at multiple organizational levels, ranging from the field and canopy, to the whole-

plant, organ, tissue, and cellular level (and eventually subcellular level). Phenotypic traits of interest can be categorized as physiological, structural, or performance-related.

Plant phenotyping is the quantitative or qualitative investigation of these traits at any organizational level, in a given genomic expression state and a given environment.

This is shown as a single column of yellow cubes, which could be positioned anywhere in the overall cube. A phenome corresponds to all possible phenotypes under

different environmental conditions of a given genotype, represented by the combination of yellow and red cubes. Genomic expression states cover the complete range of

available plant genetic resources (e.g., overexpresssion lines, mutants, natural accessions, and segregating populations). Plant phenomics could be considered as the study

of phenomes of multiple genomic expression states, represented by the combination of yellow, red, and blue cubes. Light-colored cubes illustrate the (in principle) infinite

possibilities of environmental conditions and genomic expression states. Notably, plant phenotypes can be assessed at specific times during development, or alternatively

in a dynamic manner.

Box 1. Throughput, resolution, and dimensionality in plant phenotyping systems

Plant phenotyping

A plant phenotype is the set of structural, physiological, and

performance-related traits of a genotype in a given environment.

Plant phenotyping is the act of determining the quantitative or

qualitative values of these traits. Given that a phenome consists in

principle – of the set of all possible phenotypes of a given genotype,

plant phenomics could be considered as the study of phenomes of

multiple genotypes. Besides providing the tools to perform phenotyp-

ing itself, plant phenotyping systems usually comprise the means to

grow plants in certain environments, which are either defined and

controlled, or semi-controlled, or uncontrolled and measured. The

characteristics of the phenotyping system determine its capacity in

terms of the number of genotypes and the range of environmental

conditions or treatments and, thus, its suitability for phenomics.

Phenotyping systems can be described by means of throughput,

resolution, and dimensionality.

Throughput

The throughput of a system is the amount of things it can do or deal

with in a particular period of time (http://www.collinsdictionary.com/).

In plant phenotyping systems, throughput refers to the number of

individual units at particular organizational levels within plants, or at

the plant or canopy level, that can be analyzed for a particular (set of)

trait(s) at a given time.

Resolution

Resolution is the process or act of separating something into its

constituent parts or elements (http://www.collinsdictionary.com/).

In plant phenotyping systems, spatial resolution refers to the level

of separation of plants or plant organs, tissues, and cells into

their elementary or organizational units used for the measurement

of plant traits (Figure I). Temporal resolution indicates the level

of separation into elementary time periods significant for

plant processes and used for the measurement of plant traits

(Figure II).

Dimensionality

Dimensionality indicates the number of different aspects of some-

thing or the quality of having depth and richness (http://www.collins-

dictionary.com/). Dimensionality in plant phenotyping refers to the

diversity of phenotypic traits measured at different spatial and

temporal resolutions and in different categories, such as plant

structure, physiology, and performance. In phenomics, dimensionality

additionally includes the number of genotypes and the diversity of

environmental conditions and treatments taken into account upon

phenotyping.
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Figure I. Spatial resolution in plant phenotyping.
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Figure II. Temporal resolution in plant phenotyping.
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practically feasible. In the case of explanatory phenotyp-
ing, traits are typically restricted to what is required for
hypothesis testing.

Plant growth conditions within phenotyping systems
include both in vitro cultures in artificial substrates and
in vivo growth in soil in a variety of containers, ranging from
Petri dishes to pots, rhizotrons (see Glossary) and hydro-
ponic or aeroponic containers, and in situ in field plots. The
environmental conditions are controlled in incubators and
growth chambers, semi-controlled in greenhouses, and un-
controlled in field trials. Phenotyping tools range from the
manual measurement of leaf length to complex robotic
systems with automated acquisition and measurement
workflows. They comprise destructive or non-invasive mea-
surements, in or ex situ, at a spatial resolution stretching
from the subcellular level (nm-scale precision) to canopy
stands (meter-scale precision), and temporal resolutions
ranging from seconds to entire growing seasons.

Plant phenotyping and phenomics are often associated
with high-throughput phenotyping systems in plant breed-
ing and biotechnology for crop improvements relating to
current and future demographic and climatic scenarios.
Here, automated workflows enable several hundreds of
plants to be processed daily by means of non-invasive
imaging and image processing [3]. Most of this phenotyp-
ing is performed at the organism level (i.e., shoots or root
systems), which means at a limited spatial resolution and
dimensionality in terms of plant processes and the pheno-
typic traits that describe these processes. At the research
laboratory scale, a substantial amount of effort is spent on
phenotyping in relation to gene function and mode-of-
action analysis, and aimed at unraveling the fundamental
developmental and physiological processes involved in
growth, reproduction, and responses to environmental
factors in both model and crop species [4]. In-depth,
high-dimensional phenotyping is mostly performed at
the organ and cellular level of plant organization and often
involves destructive and manual measurements of struc-
tural and physiological traits. Compared with whole-plant
phenotyping systems, throughput is rarely high, but spa-
tial and temporal resolution tends to be increased.

Overall, the plant phenotyping community seems some-
what divided between high-throughput, low-resolution
phenotyping and in-depth phenotyping at lower through-
put and higher resolution. The divergence is currently
most prominent in the phenotyping of the vegetative stage
of plant development. This review focuses on the techno-
logical aspects of vegetative shoot and root system pheno-
typing, covering the organism (whole plant) to cellular
level. Phenotyping systems and tools are discussed by
examining three key characteristics – throughput, di-
mensionality, and resolution. Novel technologies that
may improve dimensionality in high- and low-throughput
systems are highlighted. For phenotyping of plant repro-
ductive organs and performance, the reader is referred to
other recent work [5–7].

Automation in whole-plant phenotyping
In plant mutant collections, exploratory phenotyping is used
to detect ‘extra-ordinary’ traits (the ordinary being the wild
type phenotype) [4], whereas natural and segregating
430
populations are evaluated for desirable traits, potentially
in response to stressful environmental conditions such as
drought or low temperatures [8,9]. The phenotyping of large
collections of genotypes enables the identification of trait-
associated genomic regions and ultimately gene cloning, and
the establishment of genetic markers that may assist in
marker-based selection of germplasm [10]. Screening pur-
poses typically require large numbers of plants to be pro-
cessed, preferably by means of high-throughput systems, for
the measurement of phenotypic traits, usually at the whole-
plant or organism level (i.e., either shoots or root systems).
In general, automated workflows enable increased through-
put when time-consuming or repetitive manual interven-
tions and analyses can be replaced by all or part of the
following means: (i) non-invasive sensors, (ii) automated
data processing to obtain phenotypic traits of interest,
(iii) robotized delivery of plants to sensors or vice versa,
(iv) robotized plant culturing, and (v) automated analysis of
processed data in a data management pipeline (Figure 2).

Visible imaging of plants has revolutionized plant phe-
notyping by enabling the non-destructive measurement of
plant morphological traits and, therefore, the dynamic
aspects of shoot and root system development. Plant-asso-
ciated pixels can be distinguished from the image back-
ground by several segmentation methods, using the red,
green, and blue (RGB) or the hue, saturation, and value
(HSV) color spaces [11–13]. This is then followed by the
scaling of relevant pixels to metric values. Arabidopsis
(Arabidopsis thaliana) rosettes and the vegetative shoots
of some other dicots are usually imaged from above for the
measurement of projected leaf surface area (Figure 3A)
[11,14–16]. Two side views, at 08 and 908, are used for
monocots [17]. The projected leaf surface area of monocots
shows linear variation with total leaf surface area, and
with shoot biomass in early vegetative stages, or over the
complete duration of vegetative shoot establishment when
plant age is taken into account [18]. In essence, it is the
combination of robotics and dedicated image processing
that has boosted throughput in plant phenotyping
(Figure 2). Automated imaging of the aboveground parts
of plants has been incorporated in robotized platforms in
growth chambers [12,16,19,20] and greenhouses [21,22],
where either plants are transported to cameras or, vice
versa, cameras get positioned in line with plants. In some
cases, these platforms include automated weighing and
irrigation of plants to establish soil water stress conditions
[16,19,21,22]. Imaging and image processing tools have
been developed for the analysis of in vitro Arabidopsis
rosette growth in many research environments, for exam-
ple, the ‘in vitro growth imaging system’ (IGIS) (http://
www.yieldbooster.org/resources/methods/154-in-vitro-
growth-imaging-system-igis). Likewise, several sophisti-
cated tools enable the assessment of hypocotyl growth rate,
apical hook opening and photo- and gravitropic bending
with a high spatiotemporal resolution [23–25].

In the case of roots, automation of phenotyping systems
is mainly limited to the level of image analysis. Some
rhizotron systems have robotized delivery of plants to
the imaging sensor [17]; however, in general, root systems
are manually positioned in front of a camera or on a
flat-bed scanner, and imaged either once or continuously

http://www.yieldbooster.org/resources/methods/154-in-vitro-growth-imaging-system-igis
http://www.yieldbooster.org/resources/methods/154-in-vitro-growth-imaging-system-igis
http://www.yieldbooster.org/resources/methods/154-in-vitro-growth-imaging-system-igis
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Figure 2. Throughput, resolution, and dimensionality are pivotal aspects of plant phenotyping systems with consequences for data quality. Advances in phenotyping

systems are led by robotics, sensor technology, image analysis, and the way that data and image processing is handled. A dashed red arrow indicates a negative influence

that could disappear in the future, and a solid green arrow shows a positive influence. The throughput in plant phenotyping systems is positively affected by the

implementation of robotics, sensors that are able to acquire data more rapidly, automated image processing, and increased image resolution, enabling more plants to be

monitored simultaneously. Throughput can have a negative effect on dimensionality in phenotyping systems when only a limited number of phenotypic traits is measured.

This may change in the near future when novel sensor technologies are put into practice. However, throughput may be negatively influenced by increased dimensionality if

plant processing is slowed down in phenotyping systems. Image resolution could be increased by the development of larger sensors. Image analysis may assist in

increasing the effective resolution of, for example, thermal images, and dimensionality in general by extracting multiple traits. Likewise, the introduction of new sensors to

the field of plant phenotyping positively affects dimensionality. Increased throughput can have a positive as well as a negative impact on data quality because, although it

may improve the statistical power of the analysis, it often affects the quality of the individual measurement in a negative manner. This may be resolved by higher

dimensionality, enhanced image resolution, improved image analysis, and human intervention. ‘Human intervention’ refers to the processing of the produced data,

assistance in image analysis steps in the case of semi-automated image processing, and supervision of imaging results.
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during growth in time-lapse sequences [26–31]. Because of
the necessity of throughput in screening experiments aimed
at retrieving the genetic basis of root system architecture,
the growth of plants and their root systems in artificial, but
accessible and standardized environments is still justifiable
[32,33]. Some root image processing tools have been devel-
oped for specific growth environments, including transpar-
ent gel-based media in Petri dishes in the case of
Arabidopsis root systems [26] or bigger containers for crop
species [30,31]. Other software tools accept images of root
systems grown under a variety of conditions, including
hydroponic and aeroponic systems, and in paper pouches
and soil [28,29]. Besides total root system length, several
traits describing root system architecture can be derived
from images, including individual root length and diameter,
lateral root number, insertion angle and density, and dy-
namic changes in these traits. A non-exhaustive set of
calculated traits has recently been added to further describe
and compare the spatial distribution of roots [30,31]. Simi-
larly, for a near-planar vegetative shoot axis, such as the
Arabidopsis rosette, traits describing the roundness or com-
pactness of the rosette have been calculated based on its
dimensions (surface area, perimeter, and convex hull)
[34,35]. These examples illustrate that automated image
analysis often encourages the extraction of more data from
the same sample. Segmentation is often the most crucial and
difficult step in image processing, but once succeeded, the
extraction of extra size, shape, and color features is in
general more straightforward, particularly compared with
additional manual measurements. Nevertheless, one
should always carefully consider the biological relevance
of the recorded measurements (Figure 2).

A final avenue for automation in plant phenotyping
systems is the development of platform-associated data
management pipelines, including dedicated and annotated
databases, and standardized analyses of phenotypic trait
data [15,36]. Furthermore, proper consideration of data
management is necessary because of the acquisition of
gigabytes of data on a daily basis in many robotized plat-
forms, including images, phenotypic trait values, data
generated by environmental sensors, and experimental
metadata. Initiatives to stimulate the general adoption
of data management into phenotyping systems have been
taken [37,38], because this may advance developments in
genotype–phenotype maps and plant models, and enable
meta-analyses [36,38–40].

Lately, there has been much talk about the ‘phenotyping
bottleneck’ in the high-throughput screening of genetic
431
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Figure 3. Plant phenotyping at multiple organizational levels. (A) Image color channel manipulation followed by thresholding is used for the extraction of the Arabidopsis

rosette from the background, and the subsequent measurement of the projected rosette area, perimeter, and convex hull. (B) Leaf series are created by dissecting the

rosette and arranging the individual leaves on an agar plate. Leaves are segmented by means of automated image processing and their individual sizes can be plotted in a

leaf area profile. (C) Dark-field image of a cleared Arabidopsis leaf. The LIMANI tool extracts several venation parameters by consecutive segmentation of the leaf and the

vascular pattern [62]. (D) Orthogonal view of a confocal image stack of an Arabidopsis leaf. Volumes of individual epidermal and mesophyll cells are obtained by 3D image

processing [55]. (E) Differential interference contrast picture of the Arabidopsis abaxial epidermis. A microscopic drawing aids in the extraction of size and shape

characteristics of segmented epidermal pavement cells [47].
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resources for leads to improve crop yield [3]. However,
phenotyping also constitutes a bottleneck in the sense that
the wealth of the already available sequence information
has not been adequately exploited. A significant proportion
of Arabidopsis genes remains annotated with ‘unknown
432
function’, and functional analyses often report ‘no visible
phenotype’ [4]. Hence, besides the adoption of automated
workflows to intensify throughput in phenotyping systems,
there is a need for increased dimensionality or ‘data rich-
ness’ to better comprehend plant phenotypes and their
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subtleties. Whole-plant growth traits constitute only a
small portion of the matrix of structural, physiological,
and performance-related traits (Figure 1). One way of
improving dimensionality is to consider traits at multiple
levels of organization (i.e., organs, tissues, and cells), at a
higher spatial and temporal resolution, although this may
still be at the expense of throughput (Figure 2).

Plant phenotyping at the organ and cellular level
Shoot and root system growth is the cumulative result of
development in individual organs, leaves, and roots, which
themselves integrate two fundamental processes, cell divi-
sion and expansion. ‘No visible phenotype’ situations may
occur when identical plant or leaf surface areas are
obtained via different, compensating developmental path-
ways, for example, by means of coinciding variances in leaf
or cell number and size, respectively. Final leaf size is
generally highly correlated with cell number, but reduc-
tions in cell number may be made up for by enlarged cells
[41]. Moreover, the duration of processes needs to be taken
into account because an increase in cell number may be
obtained by either higher cell division rates or an extended
cell proliferation phase. Similarly, organ and cell expan-
sion may occur at reduced rates, but for a longer time
[42,43]. In addition, these growth processes are influenced
by environmental conditions, either directly, for example,
the negative effect of soil water deficit on the leaf elonga-
tion rate [2], or indirectly via effects on the plant develop-
mental stage, such as the effect of daily accumulated light
on floral transition, and its consequences for leaf number
and individual leaf development [42]. Other phenotypic
differences may even be more subtle in the sense that they
may only become discernible under certain environmental
conditions [44].

During the past decade, transcriptome, proteome, and
metabolome profiling techniques have increasingly been
applied to unravel the genetic basis of growth phenotypes.
However, they often focus only on the molecular level and
lack details on processes that occur at the cellular level,
and at the organ and whole-plant level. To understand
growth regulatory mechanisms fully, profiling experi-
ments should be combined with integrated growth analy-
ses so as to be able to link regulatory processes at the
molecular level to plant phenotypes [45,46]. In well-char-
acterized phenotypes, it is possible to target a specific
developmental stage, such as the transition from cell divi-
sion to expansion [47,48], whereas in other cases, the
dynamic aspect of phenotypic traits may need to be deter-
mined before robust conclusions can be drawn [12,49].
Organ and cellular size measurements at single time
points, such as a particular time after sowing, may be
problematic in the comparison of genotypes if no attention
is focused on the difference in timing of germination be-
tween genotypes. Likewise, genotypes may differ in the
rate of leaf initiation, which has consequences for the
interpretation of differences in leaf area. Overall, the
temporal resolution required to perform dynamic analyses
depends on the biological question, the relevant spatial
resolution, and the phenotypic traits of interest. Organ
growth rate may be studied by means of time-lapse
sequences of one to several days, whereas intervals of
minutes may be required if one is interested in diurnal
growth patterns [50]. Cell division is a discrete event
occurring at day intervals, whereas cell expansion can
be measured in second(s) intervals at high spatial resolu-
tion [51–53].

Organ level phenotyping

Although it is already possible to obtain (semi-)automated
organ size measurements from images of root systems,
such as individual root length, images of plant shoots in
general do not lend themselves to the measurement of
individual leaf dimensions, because leaves may not be
(completely) visible or they may overlap because of com-
plex, non-planar arrangements. Moreover, in the earliest
phase of development, leaves are either too small to be
visualized by conventional imaging or they remain hidden
within leaf sheaths until emergence. Arabidopsis leaf pri-
mordia have been visualized and measured at the shoot
apical meristem by means of histological or optical section-
ing followed by 3D reconstruction [54,55], and a stereomi-
croscope can be used to dissect the shoot and measure the
smallest leaves directly [56]. Monocot leaf length and
elongation rate are still measured manually or by means
of a displacement transducer [9,57]. Dicot leaf surface area
is usually determined destructively by physically dissect-
ing shoots and arranging emerged leaves before imaging
(Figure 3B). Most of the tools processing these images
provide leaf surface area, height, width, and perimeter,
whereas others have been specifically developed to express
leaf shape and the extent of leaf serrations in a quantita-
tive manner [15,58,59]. Besides size and shape, there is an
interest in determining leaf vein patterning to investigate
the relationship between growth and the establishment of
the hydraulic structure of leaves; in this case, leaves are
fixed, cleared, and imaged by means of dark-field micros-
copy (Figure 3C) [60–62]. In contrast to leaves, dynamic
analyses of elongating roots to determine root growth rate,
and the responses of roots to stimuli such as gravitropic
bending, are non-destructive and have been automated in
plants grown on transparent media in Petri dishes [63–66].

The existence of growth zones in both leaves and roots has
motivated the development of image acquisition systems
and software tools that provide spatially resolved data on
local relative growth rates. Both particle-tracking and opti-
cal flow-based methods, quantifying the deformation of
applied markers or local intensity features, respectively,
have been applied to time-lapse sequences of root and shoot
images. The temporal resolution in these systems ranges
from several hours to minutes in organ level analyses, and to
seconds at higher spatial resolution [53,67,68]. The techni-
cal difficulties in applying this type of analysis on the
earliest stages of leaf development have now been overcome
by the use of microscopic fluorescent markers and a fluores-
cence macroscope, enabling in situ time-lapse imaging of
small leaves (<500 mm) and non-planar leaves, whereby
growth is tracked in three spatial dimensions [69].

Leaves not only expand in surface area but also in
thickness. Physiological processes such as gas exchange
and photosynthesis take place in, and are determined by,
the overall 3D anatomy of the leaf, including the epider-
mis, stomata, mesophyll, and veins. Leaf thickness and
433
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tissue-specific traits have therefore been measured on
histological and optical sections (Figure 3D) [55,70–72].

Cellular level phenotyping

Cellular level analyses in vegetative shoots have so far
mainly focused on epidermal tissues because these are
more accessible and can reasonably be considered as pla-
nar, which makes surface area a good quantitative mea-
sure of cell dimensions. Moreover, the epidermis is
considered to be the major growth-driving tissue layer
[73]. Epidermal peels, varnish imprints, fixation and clear-
ing of leaf samples in combination with direct microscopic
measurements, imaging or microscopic drawings are used
to determine cell size and number [57,74,75]. Image anal-
ysis scripts have been developed to distinguish automati-
cally between leaf epidermal cell types and to extract
individual cell sizes starting from microscopic drawings
(Figure 3E) [47]. The combination of these measurements
with mathematical modeling has, for example, revealed
distinct division and expansion patterns for pavement and
guard cells [76], and functional relationships between cell
and organ level phenotypic traits [75].

The delineation of meristematic, expansion, and matu-
ration zones in monocot leaves and roots in general
involves the determination of kinematic parameters at
the organ level and number and size measurements at
the cellular level [48,57,77]. Software tools have been
developed for either automated root cell segmentation
and measurement or as an aid in cell length measurement
in confocal images [78–80]. Confocal imaging in Arabidop-
sis roots enables the non-destructive acquisition of cellular
features at any chosen focal plane in the root, which means
that the analysis is not limited to the epidermis. Moreover,
if fluorescent protein expression is localized in structural
features, such as the plasma membrane and nucleus, and
appropriate plant culture conditions and imaging setups
are chosen, cellular dynamics, including division and ex-
pansion, can be studied at high temporal resolution and in
a spatially resolved manner [52,53]. Another advantage is
that growth analyses can then easily be correlated with
protein localization and gene expression dynamics [81,82].
This type of ‘live imaging’ has also provided novel insights
in shoot meristem development [83] and intracellular pro-
cesses associated with anisotropic cell expansion [84], but
its use in roots of crop species and leaves in general is still
limited because of tissue thickness and cellular content.
Tissue fixation and rigorous clearing in combination with
staining are required to access the mesophyll and vascular
tissues in leaves by confocal or multiphoton microscopy
[55,85]. Software tools have been developed to measure the
volumes of cells in 3D reconstructions of leaf tissue, which
then enable a dynamic analysis of cell expansion in both
the epidermis and mesophyll (Figure 3D) [55,72].

Phenotyping at higher spatial and temporal resolutions
requires more complex procedures, including extensive
sample preparation and advanced microscopic acquisition,
which decreases throughput at the sampling, measure-
ment, imaging, or image-processing stage depending on
the level of automation. Image processing is not a major
bottleneck in organ and cellular level phenotyping. How-
ever, novel developments in imaging sensors and setups
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may increase throughput and concurrently dimensionality
(Figure 2).

Increasing dimensionality for a better comprehension of
the phenotype
Phenotypes are composed of structural, physiological, and
performance-related traits, and their mutual interaction at
multiple levels of organization. Increases in dimensionali-
ty to better comprehend the phenotype may thus be
achieved by including physiological and, at the same time,
structural traits that help to interpret physiological traits
[86]. Technologies aimed at extracting the inherent 3D
structure, development, and functioning of plants are de-
scribed first, followed by novel sensors that have the
potential to report on the physiological status of the plant.

Phenotyping in three spatial dimensions

The 3D characteristics of plant structure can be captured
by various means; here, 3D rendering based on surface
data is distinguished from volume rendering. Vegetative
shoot-level traits of interest at the laboratory and field
scale that can be extracted from surface renderings include
canopy structure, plant height, leaf number, individual
leaf length, position, and angle. Leaf position and angle
are determined to either quantify hyponastic movement in
response to light and circadian rhythms [87,88], or to
estimate the capacity of canopies or individual leaves to
capture incident radiation, which determines their heat
content and contributes to the modeling of radiation ab-
sorption [86]. The acquisition of point cloud data for surface
rendering, based on height or depth, relative to the ground
or sensor, respectively, has been achieved by laser scan-
ning in laboratory setups [88,89] and by a portable scan-
ning lidar (light detection and ranging) instrument applied
on scales ranging from forest and canopy structure down to
individual plants [90,91]. Long acquisition times have
motivated developments in ‘depth imaging’, whereby light
is projected onto a scene and its reflection from the scene is
used to build a depth image by measuring either the time of
flight between emission and reception, or the deformation
of a spatially structured light pattern [92–94]. Both
approaches have great potential because of their simplicity
and large community support in the development of pro-
cessing tools. The drawbacks include low precision (cm-
scale), disturbance by direct sunlight and small imaging
sensors. Further development of these types of sensors will
most likely be directed in the first instance towards larger
sensors instead of higher precision (Figure 2). Neverthe-
less, in combination with visible imaging, depth imaging
sensors may aid the 3D reconstruction of plants by indi-
cating the coarse position of structural features such as
leaves in 3D space [94]. Stereoscopic approaches have been
used to calculate surface structure morphology from
matching object patterns on images taken by multiple
cameras or camera positions at slightly different angles.
Height and total leaf area of single wheat (Triticum aes-
tivum) seedlings [95], spatial orientation of individual
leaves in canopy stands [96], and diurnal growth of isolated
leaf discs [97] have been estimated by means of stereoscop-
ic imaging. Finally, the full 3D reconstruction of plants,
for example, by multiple view imaging, may provide
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quantitative data on whole-plant surface area or root
system architecture, and the surface area, length, position,
and angle of individual elements, such as leaves or lateral
roots [32,98]. A single 3D model may thus deliver measure-
ments of both whole-plant and organ level structural traits.

High-resolution X-ray computed tomography (HRXCT),
optical coherence microscopy (OCM), and optical projection
tomography (OPT) are examples of volume rendering tech-
nologies that have been applied to record 3D morphological
and anatomical traits of shoots, but with an overall trade-
off between sample size, spatial resolution, and acquisition
time [99–102]. In vivo imaging using OCM does provide a
tool for monitoring developmental changes at the organ
level during leaf growth [99], whereas OPT was introduced
to capture 3D data of primarily ex vivo plant specimens.
OPT enables the visualization of gene expression patterns
from whole-mount RNA in situ hybridization or b-glucu-
ronidase staining patterns [101]. HRXCT enables the rapid
extraction of 3D morphological traits from in vivo Arabi-
dopsis seedlings and the visualization of the cellular orga-
nization of ex vivo plant tissue samples at submicron
resolution [102]. This same technology can be applied for
in-soil phenotyping of root system architecture [103,104],
which offers exciting opportunities to study root–soil inter-
actions.

3D structural as well as physiological traits have been
acquired non-invasively by positron emission tomography
(PET) and magnetic resonance imaging (MRI). PET scan-
ning is used to measure the distribution of products labeled
with unstable isotopes, such as 11C-labeled photoassimi-
lates [105], and MRI is applied to map and quantify water
flows in xylem and phloem vessels by the nuclear magnetic
resonance of water protons [106]. An exciting development
in this area is the downscaling of MRI to portable devices
that are usable under greenhouse and field conditions
[107].

Physiology-related trait measurement

Under field conditions, high-throughput refers to the
screening of an extensive surface area, and, thus, poten-
tially a broad array of plants of different genetic back-
grounds and phenotyping at a phenomics level. However,
field phenotyping is still of relatively low dimensionality
because only a few traits are recorded at low spatial and
temporal resolution, mainly because of laborious and time-
consuming manual measurements. Nevertheless, phe-
nomics is evolving from the investigation of mainly mor-
phological traits (e.g., plant height, number of leaves,
number of tillers), developmental stages (e.g., emergence,
male and female flowering), and performance-related
traits (e.g., seed number and weight) towards physiological
traits, which are recorded by means of remote sensing to
enable high-throughput acquisition and processing of data
[3]. The motivation for this change lies in the understand-
ing that traits in the different categories interact, exam-
ples of which can be found in drought avoidance and
tolerance strategies [108,109]. Non-invasive sensors are
brought to plants by various means at increased heights
(e.g., moving platform, tower or crane, unmanned aerial
vehicle, or airplane), but with decreasing spatial and tem-
poral resolution. Some of these techniques have been or are
being adapted for greenhouse and laboratory-level screen-
ing, where they can be used at higher spatiotemporal
resolution. The goal is to remotely quantify traits such
as disease incidence, water and metabolite content, evapo-
transpiration, and photosynthesis [3,108,110–113]. The
most promising systems include thermal infrared, multi-
spectral, and hyperspectral imaging, providing spatially
resolved data in high-throughput systems, as opposed to
point measurements obtained by instruments such as
thermal infrared spectrometers, porometers, portable pho-
tosynthesis systems, and gas analyzers.

Infrared thermography is the most established tech-
nique and has been used historically to determine crop
water stress for irrigation scheduling [114]. More recently,
thermography has been used to compare evapotranspira-
tion between genotypes at the canopy and plant level, and
for the comparison and measurement of stomatal conduc-
tance in individual plants and leaves [108,111,115–117]. In
both applications, the dynamic diurnal aspects of plant
water use behavior need to be taken into account. In field
phenotyping, images may be acquired at daily intervals, at
a specific time of the day, at crucial developmental stages,
or when the environment imposes significant constraints.
At the laboratory scale, it is more likely that temporal
resolution can be increased to minute(s) and hourly inter-
vals for part of or the complete photoperiod to enable the
estimation and comparison of stomatal conductance in the
context of its dynamic behavior.

Multispectral imaging involves the simultaneous collec-
tion of narrow-band plant reflectance at selected wave-
lengths, whereas hyperspectral imaging covers a spectral
region in the visible and near infrared (Vis-NIR) and the
short wave infrared (SWIR). A significant number of exist-
ing spectral indices developed in the context of remote
sensing (satellite images) are now being tested at the field
and canopy level, whereas to a lesser extent novel charac-
teristic spectra are searched for under laboratory condi-
tions [113,118]. Indices relate to biomass, canopy
structure, pigment activity, light-use efficiency, and water
content [119].

Whereas thermal and spectral imaging sensors passive-
ly acquire radiation and reflectance data, fluorescence is
actively recorded at specific wavelengths after induction by
laser or light-emitting diode (LED) light and related to
photosynthesis parameters, such as the dark-adapted Fv/
Fm, which is a measure of maximum quantum efficiency of
photosystem II photochemistry [120]. Its use in plant
phenotyping is controversial because of its relative insen-
sitivity to certain types of stress, such as drought and
osmotic stress, and because of the required imaging con-
ditions (i.e., homogeneously distributed high-intensity
light pulses, which are difficult to obtain at the whole-plant
and canopy level) [3,121]. In laboratory cultures, where
individual reasonably sized plants and seedlings can be
positioned in close proximity to this type of light source,
chlorophyll fluorescence imaging has been applied with
success in a high-throughput phenotyping system [34].

Overall, extensive ‘ground truthing’ is required to test
and validate the correlation of remotely obtained data with
data originating from established point sensors or destruc-
tive sampling procedures. Another option would be to
435
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include well-characterized or designed phenotypes, or
known effects of specific environmental conditions. Tem-
poral resolution, as for thermal imaging, also needs to be
considered for hyperspectral and fluorescence imaging
because observed parameters may display a dynamic be-
havior. Moreover, spatial resolution needs to be in line with
the biological question under investigation and the re-
quired throughput (Figure 2). Under field conditions, the
most prevalent imaging mode aims to include as many
plants as possible to enable a direct comparison of canopy
features between genotypes under identical environmental
conditions. The sensor is then positioned at a considerable
height and many mixed pixels are obtained because of the
presence in the image of multiple plants, together with
background features such as soil and sky. Moreover, cano-
py structure may significantly affect physiological trait
measurement because of the instant effect of solar radia-
tion on the heat content and light-use efficiency of the
leaves. When thermal imaging is used at the single plant
level and even more so at the individual leaf level, it is
crucial to take into account the difference in heat content
because of leaf orientation towards the incident radiation
[108]. A solution has been offered by a combination of
thermal and visible imaging of canopies, whereby the
canopies are segmented into shaded and sunlit leaves
[122]. This illustrates the positive effect of image proces-
sing on resolution and subsequent data quality (Figure 2).
Furthermore, environmental conditions such as air tem-
perature, vapor pressure deficit, wind speed, and light
intensity have been shown to affect leaf temperature
[123]. When performing these types of remote sensing,
image processing and even more so the interpretation of
the resulting data are challenging, but at the same time
promising because of the large potential for multidimen-
sional data acquisition in high-throughput systems. Devel-
opments towards larger sensors, in analogy with visible
imaging, may aid in increasing spatial resolution, improv-
ing the performance of image analysis, and improving data
quality (Figure 2).

Perspectives on throughput, resolution, dimensionality,
and quality
Robotic hardware and automation in workflows have
boosted plant phenotyping, particularly at the whole-plant
level (Figure 2). The adoption of remote sensing in its
historical sense (i.e., image acquisition by satellites and
analysis based on specific wavelength-derived indices) to
field, greenhouse and laboratory scales is likely to deliver a
significant amount of data to be published in the coming
years. Moreover, dimensionality should be boosted because
plant physiology-related traits will be included. However,
important progress can still be made in the 3D recording
and reconstruction of shoots, and the dynamic, quantita-
tive analysis of structural traits at the shoot as well as the
individual leaf level. Quantitative 3D analysis is important
because throughput could be improved for leaf-level traits,
as simple as length and area, or more complex such as leaf
position and angle, which to date have been measured
manually, destructively or not at all. At the same time,
shoot and leaf traits would be determined simultaneously,
thereby refining comprehension of the phenotype. At the
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cellular level, improvements could be situated at the level
of imaging by developments in microscopic systems driven
by specific research problems or questions. Indeed, high-
throughput microscopic imaging is finding its way into
plant research [124,125].

On the downside, high-throughput phenotyping sys-
tems and automated workflows may increase the risk of
data quality deterioration if appropriate checkpoints are
not implemented at various stages, such as imaging and
image processing (Figure 2). Supervised and semi-auto-
mated image processing tools tend to unjustly have a
negative connotation compared with fully automated tools
and batch jobs because some form of human intervention is
required. However, supervised image processing offers the
possibility to review and correct errors and imperfections
in automatically obtained data (e.g., [62,80]), and in the
case of semi-automated tools, the user assists in image
processing steps that cannot (yet) be fulfilled at an accept-
able level by computer vision (e.g., [28,55]).

Remaining issues: the ‘bigger picture’

The in situ characterization of root system architecture
and root growth dynamics remains a hard-to-overcome
hurdle in the assessment of genomic effects on whole-plant
fitness for survival and performance in demanding or
fluctuating conditions in the surrounding soil and atmo-
sphere. Adding to this, comprehensive whole-plant pheno-
typing, including both shoots and roots, is only occasionally
practiced, and the influence of shoot–root interactions on
structural and physiological traits on both levels is hardly
ever considered to its full extent.

Because of the definition of phenotypes, the simple
extrapolation of valuable traits from in vitro to soil condi-
tions, or from growth chamber and greenhouse environ-
ments to fields is not expected. Either exhaustive
comparative data are required to elucidate the ‘predictive
powers’ or robustness of traits and their genetic back-
ground obtained in particular phenotyping systems, or
modesty about their extent should remain in place given
that traits assume values relevant to the conditions in
which they are determined. This further points to the
importance of data quality and annotation, and more
specifically to the quantity or specificity of recorded and
reported experimental metadata.

Dimensionality as well as raw data quality may be
improved by novel developments in imaging, across the
spectrum, and in sensors suitable for high-precision, spa-
tially and temporally resolved measurements of structural
and physiological traits such as leaf thickness and elonga-
tion rate, transpiration rate, internal carbon dioxide con-
centrations, and incident light at the leaf level. Progress in
these areas will require the active involvement of applied
physicists. Moreover, improved dimensionality will in-
crease the call for modeling approaches to manage and
interpret the extensive array and diversity of gathered
data [39].

Finally, computer scientists and biologists, separately
or in joint efforts, have created a large number of software
tools for the automated or assisted processing of raw image
data, aimed at extracting an increasingly large number of
phenotypic traits. These are often specific with regard to
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the requisites imposed on image input data and to the
collected phenotypic traits. Here, significant progress may
also be achieved by an improved interaction between dis-
ciplines, or, alternatively, the translation of algorithms on
the one hand, and specific plant phenotyping needs on the
other hand, into a format readily understandable by biol-
ogists and computer scientists or mathematicians, respec-
tively [126]. A community effort towards the sharing and
re-use of plant phenotyping software tools or algorithms,
similar to ImageJ [127], R (http://www.R-project.org/), and
the ‘Internet Analysis Tools Registry’ [128] is needed to
improve tool design and stimulate their use in general. The
first modest step in this direction has been taken (http://
www.root-image-analysis.org/) and now awaits upscaling
to the level of ImageJ, R, and the ‘Internet Analysis Tools
Registry’ and similar initiatives such as OpenAlea [129]
and iPlant [40].

Overall, as long as preserving data quality is kept high
on the agenda and it can be shown with sound data that
seeing is believing (i.e., image processing is delivering),
plant phenotyping should continue to improve.
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and Köhler, C., eds), In Methods in Molecular Biology (Vol. 655), pp.
89–103, Humana Press

57 Rymen, B. et al. (2010) Kinematic analysis of cell division and
expansion. In Plant Developmental Biology (Hennig, L. and Köhler,
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