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a b s t r a c t

Errors-in-variables (EIV) identification refers to the problem of consistently estimating linear dynamic
systemswhose output and input variables are affected by additive noise. Various solutions have been pre-
sented for identifying such systems. In this study, EIV identification using Structural Equation Modeling
(SEM) is considered. Two schemes for how EIV Single-Input Single-Output (SISO) systems can be formu-
lated as SEMs are presented. The proposed formulations allow for quick implementation using standard
SEM software. By simulation examples, it is shown that compared to existing procedures, here repre-
sented by the covariance matching (CM) approach, SEM-based estimation provide parameter estimates
of similar quality.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Several estimation methods have been proposed for identify-
ing linear dynamic systems fromnoise-corrupted outputmeasure-
ments, see for instance Ljung (1999) and Söderström and Stoica
(1989). On the other hand, estimation of the parameters of sys-
tems in which the input signal is also affected by noise, here re-
ferred to as ‘‘errors-in-variables’’ (EIV) models, is recognized as a
more delicate problem. Studying such systems is of interest due to
their potential usage in the engineering sciences and elsewhere.

Established techniques for handling the EIV problem in-
clude the bias-eliminating least squares (Zheng, 1998, 2002), the
Frisch estimator (Beghelli, Castaldi, Guidorzi, & Soverini, 1993;
Beghelli, Guidorzi, & Soverini, 1990; Diversi & Guidorzi, 2012;
Diversi, Guidorzi, & Soverini, 2003, 2004, 2006; Guidorzi, Di-
versi, & Soverini, 2008; Söderström, 2008) and various forms of
bias-compensated least squares (Ekman, 2005; Ekman, Hong, &
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Söderström, 2006;Mahata, 2007). An overview of EIV system iden-
tification, containing various solutions from the literature, can be
found in Söderström (1981, 2007, 2012). The topic is also treated
from different points of view in the books (Cheng & Van Ness,
1999; Fuller, 2006). A more recent development is represented
by the covariance matching (CM) approach introduced in Moss-
berg and Söderström (2011), Söderström and Mossberg (2011)
and Söderström,Mossberg, and Hong (2009). Mossberg and Söder-
ström (2012) and Söderström, Kreiberg, andMossberg (2014). This
approach has been shown to be related to structural equation
modeling (SEM) techniques. In Kreiberg, Söderström, and Yang-
Wallentin (2013), it is demonstrated how SEM can be applied to
the problem of EIV system identification.

The objective of the present study is to further extend and re-
fine the SEM approach. As compared to Kreiberg et al. (2013), we
provide a more thorough analysis of how SEM can be applied to
the EIV problem. Two different and quite general formulations of
the EIV system as SEMs are presented, and their relation is ana-
lyzed. To facilitate the SEM implementation of such systems, sev-
eral extensions of the standard SEM framework are proposed. The
suggested formulations are evaluated in terms of statistical andnu-
merical performance using simulated data. Aspects concerning the
implementation, which were only briefly considered in Kreiberg
et al. (2013), are studied inmore detail. In the simulation examples,
standard software developed for SEM-based estimation is used.

The study is organized as follows. First, in Section 2, we outline
the background of the EIV problem. In Section 3, the standard
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Fig. 1. Basic setup for the dynamic EIV problem.

SEM framework for static systems is reviewed. In Section 4,
it is shown how EIV systems can be formulated as SEMs, and
in Section 5, simulation examples of the two formulations are
presented. Finally, in Section 6, concluding remarks are given.

2. EIV system formulation

First, we define the signals entering the system and then
describe the general EIV problem for linear dynamic systems. The
usual setup of the EIV problem is illustrated in Fig. 1.

Our interest lies in the linear Single-Input Single-Output (SISO)
system described by

A(q−1)y0(t) = B(q−1)u0(t), (1)
where y0(t) and u0(t) are the noise-free output and input signals,
respectively, and A(q−1) and B(q−1) are polynomials in the
backward shift operator q−1 of the form

A(q−1) = 1 + a1q−1
+ · · · + anaq

−na , (2)

B(q−1) = b1q−1
+ · · · + bnbq

−nb . (3)

We allow the noise-free signals to be corrupted by additive
measurement noises ỹ(t) and ũ(t). The available signals are in
discrete time and are given by

y(t) = y0(t)+ ỹ(t), (4)
u(t) = u0(t)+ ũ(t). (5)

Since y0(t) and u0(t) are not directly observable, the signals are
considered latent.

The assumptions related to the system and its components are
as follows:
A1. All signals and disturbances are zero mean stationary

processes.
A2. The polynomials A(q−1) and B(q−1) are coprime and their

respective degrees na and nb are known.
A3. Data records of the noisy output and input signals

{y(t), u(t)}Nt=1 are known.
A4. The noise-free input u0(t) is unknown as well as its second

order properties such as its spectrum φu0(ω).
A5. Themeasurement noises ỹ(t) and ũ(t) arewhite andmutually

uncorrelated. Moreover, ỹ(t) and ũ(t) are both uncorrelated
with u0(t − τ) for all τ . Their unknown variances are denoted
ψỹ and ψũ.

Our concern is to determine the system transfer function
described by

G(q−1) =
B(q−1)

A(q−1)
=

b1q−1
+ · · · + bnbq

−nb

1 + a1q−1 + · · · + anaq−na
. (6)

It follows that the parameter vector to be estimated from the noisy
data is

θ0 =


a1 · · · ana b1 · · · bnb

T
, (7)

where the superscript T denotes the transpose. It may also be
of interest to determine other system characteristics such as the
measurement noise variances ψ0 = (ψỹ ψũ)

T .
3. Structural equation modeling

In multivariate statistics, SEM is a well established statistical
technique which has become popular within many disciplines
of social science research. The popularity of SEM stems from its
versatility, inwhich estimation problems involving latent variables
and measurement errors can be handled. The versatility is also
seen from the fact that numerous types of statistical problems can
be formulated within the SEM framework. In what follows, we
only briefly summarize the basics of SEM. For a more thorough
introduction, see Bartholomew, Knott, and Moustaki (2011) and
Bollen (1989).

3.1. Model formulation

The basic framework of SEM is described by the following three
equations

η = Bη+ 0ξ + δ, (8)
x1 = 31η+ ϵ1, (9)

x2 = 32ξ + ϵ2. (10)

The first equation is referred to as the structural equation, while the
latter two equations are known as themeasurement equations. The
randomvectorsη and ξ consist of unobserved (or latent) quantities,
whereas the vectors x1 and x2 consist of observed quantities.

The structural equation describes the relationship among the
latent quantities, wherein η is endogenous and ξ is exogenous. The
parameter matrices B and 0 consist of elements that represent the
effect of η on η and ξ on η, respectively. It is assumed that I − B is
nonsingular such that η can be uniquely determined by ξ and the
noise vector δ. It is further assumed that δ has expectation zero and
is mutually uncorrelated with ξ.

The measurement equations describe how the observed
quantities depend on the latent quantities. The parametermatrices
31 and 32 are so-called loading matrices whose elements
represent the effect of η on x1 and ξ on x2, respectively. The
measurement noises ϵ1 and ϵ2 may or may not be correlated, but
are assumed to be mutually uncorrelated with η, ξ and δ. Note
that the measurement equations are modeling devices in their
own right.When ameasurement equation is implementedwithout
considering the remaining equations, the model is referred to as
a Confirmatory Factor Analysis (CFA) model. Additional details are
given in Bartholomew et al. (2011) and Bollen (1989).

The dimensions of the parameter matrices in (8)–(10) follow
from the dimensions of the random vectors. Let nη , nξ , nx1 and nx2
denote the number of elements in η, ξ, x1 and x2, respectively. The
dimensions are then given by

B

nη × nη


, 0


nη × nξ


, (11)

31

nx1 × nη


, 32


nx2 × nξ


. (12)

The model framework additionally include the following covari-
ance matrices

E

ξξT


= 8, E


δδT


= 9δ, (13)

E

ϵ1ϵ

T
1


= 9ϵ1 , E


ϵ2ϵ

T
2


= 9ϵ2 , (14)

where E is the expectation operator. The dimensions of the
matrices in (13) and (14) follow immediately from the dimensions
of the involved vectors. Depending on the noise structure, 9δ , 9ϵ1
and9ϵ2 may or may not be diagonal.

The elements of B, 0, 31, 32, 8, 9δ , 9ϵ1 and 9ϵ2 are either
free or constrained. An element is said to be constrained if it
is assigned a specific value, or if it is a function (linear or non-
linear) of other elements. In SEM, it is common to constrain a large
number of elements to zero. An example is when any or all of the
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matrices 9δ , 9ϵ1 and 9ϵ2 are restricted to be diagonal. Another
form of constraint that is commonly imposed is to restrict two
or more elements to be equal. Such constraints are referred to
as equality constraints. By appropriately constraining the elements
of the parameter matrices, various statistical problems can be
formulated. An essential task in many applications of SEM is to
assess the validity of the imposed constraints.

A parameter vector ϑ comprises the unique elements of B, 0,
31, 32,8, 9δ , 9ϵ1 and 9ϵ2 for which no pre-assigned values have
been specified. The entries of this vector are referred to as the free
parameters.

3.2. Estimation

Suppose that a set of data points on x1 and x2 are observed.
Given the data, one would like to estimate the parameter vector
ϑ0. From the data, a sample covariance matrix is obtained by

R̂ =


R̂x1x1 R̂x1x2
R̂x2x1 R̂x2x2


=

1
N

N
i=1


x1i
x2i

 
xT1i xT2i


. (15)

Another covariance matrix is derived from the model

R(ϑ) =


E


x1xT1


E


x1xT2


E


x2xT1


E


x2xT2

 
=


31A(080T

+ 9δ)AT3T
1 + 9ϵ1 31A083T

2
3280

TAT3T
1 3283

T
2 + 9ϵ2


, (16)

where A = (I − B)−1. The matrix in (16) is known as the model
implied covariance matrix. The estimation problem is to determine
the vector ϑ that is compatible with the observations in the sense
that

R̂ ≈ R(ϑ). (17)

One has to consider that both sides of (17) are symmetric
matrices, and hence the effective number of covariance elements
to approximate is (at most)

n∗
=

1
2
n(n + 1), (18)

where

n = nx1 + nx2 (19)

is the total number of observed quantities. Depending on the
problem, there are cases in which the number of unique elements
in R(ϑ) is indeed smaller than n∗. For instance, if R(ϑ) is fully
or partly Toeplitz. For the estimation problem to be feasible, it is
required that n∗ is at least as large as the number of elements in ϑ.

Assuming the estimation problem is feasible, one defines an
estimation of ϑ0 as the minimizing value of some criterion
function, expressing howmuch R̂ differs from R(ϑ). Generally, one
writes such a criterion function (typically called a fit function in the
SEM literature) as

V (ϑ) = f

R̂,R(ϑ)


. (20)

There are severalways for how to formulateV (ϑ). In SEM, themost
prominent criterion is

V1(ϑ) = log

det


R(ϑ)


+ tr


R̂R−1(ϑ)


, (21)

where det denotes the determinant of a matrix and tr denotes
the trace. If the data are Gaussian and independently distributed,
minimizing V1(ϑ) gives the maximum likelihood (ML) estimator
(based on the information in R̂); see Jöreskog (1967, 1970). Note
that V1(ϑ) may also be used for other distributions of the data,
even if it no longer leads to the ML estimator. Some caution has
to be exercised when applying V1(ϑ). It is necessary to constrain
the elements ofϑ during the numerical minimization such that the
matrix R(ϑ) remain positive definite. If this is not considered, the
numerical searchmay easily diverge and not lead to an appropriate
estimate.

A second possibility is to consider the criterion

V2(ϑ) = tr


R̂ − R(ϑ)

Q1


R̂ − R(ϑ)


Q2


, (22)

where Q1 and Q2 are symmetric (user-chosen) positive definite
weighting matrices that are either fixed or random. By suitable
choices of Q1 and Q2, a fewwell-known estimators can be derived.
For instance, when Q1 = Q2 = I, the resulting estimator becomes
Unweighted Least Squares (ULS), whereas the choice Q1 = Q2 =

R̂
−1

leads to an estimator known asGeneralized Least Squares (GLS).
An early treatment of the GLS estimator is provided in Jöreskog and
Goldberger (1972). Yet, another estimator is obtained by letting
Q1 = Q2 = R−1(ϑ), in which case V2(ϑ) forms a Re-weighted
Least Squares (RLS) estimator. The term ‘re-weighted’ reflects that
the weighting matrix is iteratively updated during the numerical
search.

Finally, a third alternative is to vectorize the difference between
the covariance matrices. This development is due to Browne
(1974), where it is shown that (22) is a special case of a more
generic criterion formed by

V3(ϑ) = r̃T (ϑ)Wr̃(ϑ). (23)

In this expression,

r̃(ϑ) = vech

R̂ − R(ϑ)


= KT

nvec

R̂ − R(ϑ)


, (24)

and W is a positive definite weighting matrix of appropriate
dimension. In (24), vech denotes the operation of vectorizing the
lower triangular part (including the diagonal) of a square matrix,
whereas vec denotes the operation of vectorizing the full matrix.
Moreover, Kn is a matrix of dimension n2

× n∗ with rank n∗. Due
to its functional form, V3(ϑ) is often labeledWeighted Least Squares
(WLS).

It follows from (24) that the construction of Kn is such that
r̃(ϑ) only contains the n∗ non-repeated elements of R̂ − R(ϑ).
By this, the redundancy owing to the symmetry of R̂ − R(ϑ) is
effectively removed. Since Kn has full column rank, a left inverse
can be obtained by K−

n =

KT

nKn
−1KT

n . A desirable property of Kn
is

vec

R̂ − R(ϑ)


= K−T

n vech

R̂ − R(ϑ)


. (25)

Remark 3.1. If the considered matrix is symmetric and no other
restrictions have been placed on its elements, the result of applying
vech operation is an n∗-dimensional vector consisting of the non-
repeated elements. If the considered matrix is also Toeplitz (or
partly Toeplitz), it is characterized by fewer unique elements.
For later purposes, it will be useful to switch to a more general
notation represented by vecnr. We define vecnr as the operation
of vectorizing only the non-repeated elements. It follows that Kn
may have to bemodified. In Appendix A, we derive expressions for
Kn for various forms of the considered matrix.

The following example demonstrates the use and properties
of Kn when the considered matrix is symmetric and no other
restrictions have been placed on its elements.
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Example 3.1. Let R be a matrix of dimension n = 3. Vectorizing
the non-repeated elements of R gives

vecnr(R) = KT
3vec(R)

=

r11 r21 r31 r22 r32 r33

T
. (26)

Let K3 be written in the rather general form

K3 =



1 0 0 0 0 0
0 α1 0 0 0 0
0 0 α2 0 0 0
0 1 − α1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 α3 0
0 0 1 − α2 0 0 0
0 0 0 0 1 − α3 0
0 0 0 0 0 1


. (27)

Note that any value of α1, α2 and α3 will produce (26), but only
α1 = α2 = α3 = 0.5 will lead to the property described in (25). It
also holds that

K−T
3 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (28)

The generality of V3(ϑ) is largely due to the various forms the
weightingmatrixW can take.Wenowdemonstrate how V3(ϑ) and
V2(ϑ) are related through the choice of W. Before doing so, it is be
useful to introduce the following lemma:

Lemma 3.1. Let A, B, C and D be matrices such that ABCD is well
defined and square. Then it holds that

tr(ABCD) = vecT (D)

A ⊗ CT vecBT . (29)

See Bernstein (2009).
Consider the following expression for the weighting matrix

W = K−

n (Q1 ⊗ Q2)K
−T
n . (30)

By applying the lemma stated in (29), it can be shown that V3(ϑ)
coincides with V2(ϑ). It immediately follows that ULS, GLS and RLS
are all special cases of WLS, obtained from specific choices ofW.

Remark 3.2. In terms of implementation, the quadratic formof the
WLS criteria allows it to be formulated as a Separable Least Squares
problem; see Golub and Pereyra (1973, 2003). In Appendix B, it is
demonstrated how this can be done when the considered model
takes the form of a CFA model.

Below, we briefly summarize some important statistical prop-
erties of the listed criteria. If the covariance structure is correctly
specified and the conditions for identifiability are satisfied, the fol-
lowing general results are reported to hold; see also Bartholomew
et al. (2011) and Bollen (1989):

• Parameters are consistently estimated.
• Asymptotic efficiency is achieved when the data are Gaussian

and independently distributed.
• The WLS estimator is asymptotically efficient without the
Gaussian assumption, provided that theweightingmatrix takes
the form

W =

cov(r̃)

−1
. (31)

The WLS estimator in the non-Gaussian case is treated in
Browne (1984).

3.3. Estimation algorithms

Different non-linear optimization schemes may be considered
for minimizing the various criterion functions. Numerical proce-
dures such asQuasi-Newtonmethods are frequently used. An intro-
duction to the algorithmic aspects of SEM-based estimation with
examples can be found in Lee (2007). A number of commercial and
free software solutions that apply these algorithms are available.

4. Applying structural equation modeling for EIV system
identification

Although SEM is typically applied to static problems, frequent
attempts have been made to fit dynamic models into SEM. For
instance, in van Buuren (1997) and Hamaker, Dolan, and Molenaar
(2002), it is demonstrated how ARMA processes can be formulated
as SEMs. An extension of this work to themultivariate case is given
in du Toit and Browne (2007). Another development, which has
been growing in interest in recent years, is represented by the
Dynamic Factor Analysis (DFA) model. This development is mainly
due to Browne and Nesselroade (2005), Browne and Zhang (2007),
Molenaar (1985) and Molenaar and Nesselroade (1998). The DFA
model allows for time dependent latent factors, a feature shared
with the type of models considered here. Also, in Geweke and
Singleton (1981), a frequency domain approach to CFA modeling
is presented.

The usual implementation of dynamic models in SEM involves
using a sample covariancematrix R̂which is fully or partly Toeplitz.
Models are then fitted into SEM by appropriately constraining the
elements of the parameter matrices. In what follows, we consider
two different formulations of the EIV SISO system within SEM.

4.1. First formulation

In the first formulation, it suffices to work with only part of
the SEM framework. The parameterization represented by this
formulation is closely related to the covariancematching approach
(Söderström et al., 2009).

For later use, let the covariance function for the general random
process x(t) be defined as

rx(τ ) = E {x(t + τ)x(t)} . (32)

To simplify notation, it is useful to introduce the random vectors

y(t) =

y(t) · · · y(t − ny + 1)

T
, (33)

u(t) =

u(t − 1) · · · u(t − nu)

T
, (34)

wherein (33), ny denotes the number of y-elements starting at lag
0, and in (34), nu denotes the number of u-elements starting at lag
1. Note that ny and nu are values to be chosen by the user. Vectors
of the undisturbed signals, denoted y0(t) and u0(t), and vectors
of the measurement noises, denoted ỹ(t) and ũ(t), are formed by
expressions similar to (33) and (34).

Now, define the auxiliary process

z0(t) =
1

A(q−1)
u0(t). (35)
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Using (35), y(t) and u(t), as given in (4) and (5), can be expressed
as

y(t) = B(q−1)z0(t)+ ỹ(t), (36)

u(t) = A(q−1)z0(t)+ ũ(t). (37)

To facilitate the SEM representation of the system, use (36) and
(37) to obtain the following system of equations

y(t) = B(q−1)z0(t)+ ỹ(t)
...

y(t − ny + 1) = B(q−1)z0(t − ny + 1)+ ỹ(t − ny + 1)

u(t − 1) = A(q−1)z0(t − 1)+ ũ(t − 1)
...

u(t − nu) = A(q−1)z0(t − nu)+ ũ(t − nu). (38)

The system in (38) can be written as a CFA model in the form of
(10) (here given without subscripts, but with time indexing on the
random vectors)

x(t) = 3ξ(t)+ ϵ(t). (39)

To do so, let the vector of the observed quantities be given by

x(t) =


yT (t) uT (t)

T
, (40)

where the dimension of x(t) equals

n = ny + nu. (41)

Moreover, let the vectors of the unobserved quantities be

ξ(t) =


z0(t − 1) · · · z0(t − k − 1)

T
, (42)

ϵ(t) =


ỹT (t) ũT

(t)
T
, (43)

wherein (42), k is determined by

k = max

ny + nb − 1, nu + na


− 1. (44)

The parameter matrix relating ξ(t) to x(t) takes the form of a
Sylvester matrix

3 =


Mb
Ma


, (45)

where the partitionsMb andMa depend on the relative magnitude
of ny + nb − 1 and nu + na. To further describe3, let

v = ny − nu − 1, (46)

such that the difference between ny + nb − 1 and nu + na can be
expressed as

v∗
= v + nb − na. (47)

Two cases of (45) are relevant to consider.
Case 1: When v∗

≥ 0,3 takes the form

3 =



b1 · · · · · · bnb 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 b1 · · · · · · bnb
1 · · · ana 0 · · · 0 0

0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

...
0 · · · 0 1 · · · ana 0


, (48)
where the last column of the lower partition Ma consists of v∗-
dimensional row vectors of zeros.

Case 2: In the reversed case when v∗
≤ 0,3 becomes

3 =



b1 · · · bnb 0 · · · 0 0

0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

...
0 · · · 0 b1 · · · bnb 0
1 · · · · · · ana 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 · · · · · · ana


, (49)

where the last column of the upper partition Mb consists of row
vectors of zeroswith dimension−v∗. Obviously, in the special case
when v∗

= 0, (48) and (49) coincides to form the same matrix.
Irrespective of form, the dimension of3 is n × (k + 1).

To fully describe the system, we include the following
covariance matrices

8 =

rz0(0) · · · rz0(k)
...

. . .
...

rz0(k) · · · rz0(0)

 , (50)

9ϵ =


ψỹIny 0
0 ψũInu


, (51)

where the dimensions immediately follow. Since 8 is Toeplitz, a
vector of the non-repeated elements is given by

rξ =


rz0(0) · · · rz0(k)

T
. (52)

The parameter vector to be estimated from the data becomes

ϑ0 =


θT0 rTξ,0 ψT

0

T
, (53)

and the system implied covariance matrix from (16) simplifies to

R(ϑ) = 383T
+ 9ϵ . (54)

We finalize the description by adding a few comments:
• Due to the block Toeplitz form, R(ϑ) contains 2n − 1 non-

repeated elements.
• When estimation is performed using V3(ϑ), the redundancy

originating from the block Toeplitz form of R(ϑ) can be
eliminated by appropriately modifying Kn (see Appendix A for
details).

• With reference to the previous point, to have at least as
many covariance elements to approximate as there are free
parameters to estimate, ny and nu must be chosen such that
2n − 1 ≥ nϑ = nθ + k + 3.

4.2. Second formulation

We now consider a formulation in which the noise-free output
and input signals y0(t) and u0(t) comprise the latent quantities in
the specification. The second formulation is first derived using the
complete SEM. It is then shown how the resulting expressions can
be simplified to admit a CFA representation. As before, let ny and
nu be parameters chosen by the user.

First, we describe the structural equation. Expand (1) to obtain
a system of equations

A(q−1)y0(t) = B(q−1)u0(t)
...

A(q−1)y0(t − ny + 1) = B(q−1)u0(t − ny + 1). (55)
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The system in (55) is now written as a structural equation in the
formof (8). To this aim, let δ(t)be anny-dimensional vector of zeros
so that (8) becomes

η(t) = Bη(t)+ 0ξ(t), (56)
where

η(t) = y0(t), ξ(t) =


uT
0(t) νT (t)

T
. (57)

In the latter expression of (57),

ν(t) =


ν1(t) · · · νnν (t)

T
(58)

denotes a sequence of auxiliary processes which capture the
dynamics of the undisturbed output and input signals prior to
t − ny + 1 and t − nu, respectively. The appropriate number of
auxiliary processes to include is

nν = max(ny − nu − 1 + nb, na)

= max(v∗, 0)+ na. (59)

Recall that v∗ is determined by (47). The auxiliary processes must
take a form such that the structural equation becomes consistent
with the system in (55). Introduce
κj = ny − nν + j − 1, j = 1, . . . , nν . (60)
The auxiliary processes are then described by

νj(t) = −

na
i=1

1{κj+i≥ny}aiy0(t − κj − i)

+

nb
i=1

1{κj+i≥nu+1}biu0(t − κj − i), (61)

where 1{A} is the indicator function of the set A, which takes the
value 1 if A is true and 0 otherwise.

The specification of the structural equation additionally in-
volves describing the parameter matrices B and 0. The ny-
dimensional square matrix relating η(t) to itself is given by

B =



0 −a1 · · · −ana 0 · · · 0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
. . . −ana

...
. . .

. . .
...

−a1
0 · · · · · · 0


. (62)

A general expression for the matrix relating ξ(t) to η(t) is

0 =


0b

0(ny−nν×nν )
Inν


, (63)

where the partition0b is amatrix of dimension ny×nu whose form
depends on the difference between ny and nu. It follows that the
dimension of 0 is ny × (nu + nν).

Two cases of 0b are relevant to consider.
Case 1: When ny − nu ≥ 0, 0b is formed by

0b =



b1 · · · bnb 0 · · · 0

0
. . .

. . .
. . .

...

. . .
. . . 0

...
. . .

. . . bnb
. . .

...
0 · · · 0 b1
0 · · · · · · 0


, (64)
where the last row consists of column vectors of zeros with
dimension ny − nu.

Case 2: In the reversed case when ny − nu ≤ 0, 0b becomes

0b =



b1 · · · bnb 0 · · · 0

0
. . .

. . .
. . .

...

. . .
. . . 0

...
. . .

. . . bnb
. . .

...
0 · · · 0 b1 · · · b−v


, (65)

where v follows from (46). In the special case when ny = nu, the
expressions in (64) and (65) coincides to form the same matrix.

Second, to obtain the measurement equations, expand (4) and
(5) into the following two equation systems

y(t) = y0(t)+ ỹ(t)
...

y(t − ny + 1) = y0(t − ny + 1)+ ỹ(t − ny + 1), (66)
u(t − 1) = u0(t − 1)+ ũ(t − 1)

...

u(t − nu) = u0(t − nu)+ ũ(t − nu). (67)

The equation systems in (66) and (67) are nowwritten in the form
of (9) and (10)

x1(t) = 31η(t)+ ϵ1(t), (68)
x2(t) = 32ξ(t)+ ϵ2(t), (69)

where the observed quantities are given by

x1(t) = y(t), x2(t) = u(t), (70)

and the noise vectors are

ϵ1(t) = ỹ(t), ϵ2(t) = ũ(t). (71)

As before, the total number of observed quantities is determined
by (41). The parameter matrices relating the latent and observed
quantities are simply

31 = Iny , 32 =


Inu 0(nu×nν )


. (72)

The description includes the following covariance matrices.
Let Ru0 denote the covariance matrix of the latent input signal
sequence u0(t), and let Rν denote the covariance matrix of the
auxiliary sequence ν(t). Then,

8 =

 Ru0
(nu×nu)

Ru0ν
(nu×nν )

Rνu0
(nν×nu)

Rν
(nν×nν )

 , (73)

9ϵ1 = ψỹIny , 9ϵ2 = ψũInu , (74)

where the dimensions immediately follow. Let rξ be a column
vector composed of the non-repeated elements of8. If the Toeplitz
form of Ru0 is the only restriction placed on8, the dimension of rξ
is

nrξ = nu + nunν +
1
2
nν(nν + 1)

=


nu +

1
2
nν


(nν + 1). (75)
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The parameter vector to be estimated from the data becomes

ϑ0 =


θT0 rTξ,0 ψT

0

T
. (76)

Since the complete SEM framework is used, the system implied
covariance matrix R(ϑ) takes the general form of (16), but with
the slight simplification that9δ = 0.

It may be of interest to present the second formulation in a
simpler form. Consider the reduced form of (56)

η(t) = (I − B)−10ξ(t). (77)

Substituting (77) into (68) gives

x1(t) = 31(I − B)−10ξ(t)+ ϵ1(t). (78)

Stacking x1(t) and x2(t) allows us to write
x1(t)
x2(t)


=


(I − B)−10

32


ξ(t)+


ϵ1(t)
ϵ2(t)


, (79)

from which it follows that the second formulation can be written
as a CFA model

x(t) =


x1(t)
x2(t)


= 3ξ(t)+ ϵ(t). (80)

Obviously, when the system is described by (80), the use of (54)
provides the same system implied covariance matrix as when the
complete SEM and (16) is used.

As previously, we finalize the description by adding a few
comments:

• Estimation using V3(ϑ) involves n∗ > 2n − 1 covariance
elements. Thus, the redundancy due to the block Toeplitz form
of R(ϑ) is preserved.

• To have at least asmany covariance elements to approximate as
there are free parameters to estimate, ny and nu must be chosen
such that n∗

≥ nϑ = nθ + nrξ + 2.
• The choice of ny and nu should additionally satisfy

ny − na − 1 ≥ 0, nu − nb ≥ 0, (81)

ny − 1 ≥ nu − nb. (82)

The conditions in (81) ensure that all parameters are present
in the specification. The condition in (82) ensures that all
u0-elements in ξ(t) are related to at least one y0-element in
η(t).

• Improved parsimony can be achieved by additionally constrain-
ing the elements of 8. In Appendix C, it is demonstrated how
such constraints can be imposed.

4.3. The relation between the two formulations

The difficulty of applying SEM to the EIV problem is to account
for the transient effects of the undisturbed output and input signals
prior to t −ny +1 and t −nu, respectively. As shown, this difficulty
can be handled by introducing latent auxiliary processes into the
specification. The proposed formulations are distinguished by the
way these auxiliary processes are specified. In the first formulation,
the auxiliary process of (35) imposes additional structure on the
parameterization such that8 becomes Toeplitz. This is in contrast
to the second formulation where the auxiliary processes are
allowed to freely correlate with any other process in ξ(t), leading
to a larger number of free elements in8. Despite these differences,
given the same choice of ny and nu, the auxiliary processes are
such that the two formulations are covariance equivalent. That is,
the covariance functions comprising the elements of R(ϑ)map the
same system covariance matrix in both cases. If ϑ0 is uniquely
identifiable, it follows that the two formulations are asymptotically
equivalent.

Imposing similar structure on the parameterization of the
second formulation as on the first one, it is possible to show their
connection. To show this, let ξ(1)(t) and ξ(2)(t) denote ξ(t) of the
first and second formulation, respectively. Then for a given choice
of ny, nu, and using

y0(t) = B(q−1)z0(t), u0(t) = A(q−1)z0(t), (83)

it follows that

η(t) = Mbξ
(1)(t), u0(t) = Maξ

(1)(t). (84)

The measurement equations given in (68) and (69) become

x1(t) = 31Mbξ
(1)(t)+ ϵ1(t)

= Mbξ
(1)(t)+ ϵ1(t), (85)

x2(t) = 32


Maξ

(1)(t)
ν(t)


+ ϵ2(t)

= Maξ
(1)(t)+ ϵ2(t), (86)

and it is clear that

x(t) =


x1(t)
x2(t)


= 3ξ(1)(t)+ ϵ(t), (87)

where3 takes the form of (45).
It may additionally be of interest to see how the elements

of ξ(2)(t) can be expressed in terms of the elements of ξ(1)(t).
Before presenting the final result, it is useful to introduce some
intermediate results.

First, note that ξ(1)(t) and ξ(2)(t) are vectors of equal dimension.
This is verified by considering (44) and (59) in the following way

nξ (1) = k + 1

= max(ny + nb − 1, nu + na)

= max(v∗, 0)+ na + nu

= nξ (2) . (88)

Second, as an alternative to (61), the auxiliary vector ν(t) can be
obtained from the structural equation

η(t) = Bη(t)+ 0ξ(2)(t)

= Bη(t)+ 0bu0(t)+


0
ν(t)


, (89)

which is re-arranged to give
0
ν(t)


=


I − B


η(t)− 0bu0(t). (90)

Let (I − B)∗ and 0∗

b denote two matrices composed of the last nν
rows of I − B and 0b, respectively. Then from (90), one can write

ν(t) = (I − B)∗η(t)− 0∗

bu0(t). (91)

It is straightforward to verify the correspondence between (61) and
(91).

We are now in a position to establish the direct relationship
between ξ(1)(t) and ξ(2)(t). Define

J1 =


0(nu×ny)
(I − B)∗


, J2 =


Inu

−0∗

b


. (92)

Then,

ξ(2)(t) = J1η(t)+ J2u0(t)

= (J1Mb + J2Ma) ξ
(1)(t)

, Pξ(1)(t), (93)
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where the second equality follows from the use of (84). The
dimensions of the involvedmatrices are such that P has dimension
nξ × nξ .

5. Simulation examples

By simulation examples, we evaluate the performance of the
different SEM-based estimators discussed in Section 3 for the two
formulations presented in Section 4. As a reference, we include the
CM estimator (Söderström et al., 2009). The SEM-based estimators
are computed using the commercial software LISREL (Jöreskog
& Sörbom, 1996), whereas the CM estimator is programmed in
Matlab. Some algorithmic aspects of the implementation will also
be considered.

5.1. Simulation setup

The default minimization routine in LISREL is the Davidon–
Fletcher–Powell (DFP) algorithm. The implementation of the algo-
rithm allows the user to optimize performance by adjusting the
default settings; see Jöreskog and Sörbom (1996) for additional de-
tails. Minimization in Matlab is performed using the Nelder–Mead
simplex algorithm (Mathworks, 2014). Initial values are derived by
first applying the Frisch estimator to obtain θ(0) (Beghelli et al.,
1990). Then in a second step, the remaining elements of ϑ(0) are
found by the procedures outlined in Appendix B.

The LISREL software comes with several built-in features to
ensure the stability (or admissibility) of the final solution. These
features may cause the program to issue warning statements,
indicating either non-convergence (NC) or problems of identifying
specific system parameters. Warnings may also be related to the
definiteness of the model covariance matrices. In the simulation
setup, warning statements are handled according to the rules: if
convergence is not reachedwithin a fixednumber of iterations, or if
9ϵ (alternatively,9ϵ1 and9ϵ2 ) is not positive definite, the solution
is deemed improper and is discarded. We treat the elements of 8
as auxiliary parameters and ignore any warnings related to the
definiteness of thismatrix. Note that even if the estimate of8 is not
positive definite, the remaining parameter estimatesmay still be of
sufficient quality. The Matlab implementation of the CM approach
is equipped with similar features.

The considered system is second order and takes the form

y0(t) =
1.0q−1

+ 0.5q−2

1 − 1.5q−1 + 0.7q−2
u0(t). (94)

The input signal is described by the ARMA process

u0(t) =
1 + 0.7q−1

1 − 0.5q−1
e(t), (95)

where e(t) is a zero mean white noise process with unit variance.
The variance of the white measurement noises are

ψỹ = 10, ψũ = 1, (96)

and the user choices are

ny = 6, nu = 5. (97)

It follows from (46) and (47) that v∗
= v = 0. The user choices for

the CM approach are

py = p2 = 5, pu = −p1 = 4; (98)

see Söderström et al. (2009) for more details. This choice ensures
that the same covariance elements are used across the two
approaches.

The estimators considered in the examples are summarized as
follows:
Table 1
Simulated means and standard deviations for the 1st formulation.

Method V1 GLS ULS CM

Param. True value

a1 −1.5 −1.5006 −1.5003 −1.5006 −1.5004
±0.0228 ±0.0230 ±0.0219 ±0.0219

a2 0.7 0.7005 0.7003 0.7005 0.7004
±0.0179 ±0.0180 ±0.0173 ±0.0173

b1 1.0 0.9933 0.9935 0.9968 0.9962
±0.0981 ±0.0985 ±0.0954 ±0.0977

b2 0.5 0.5023 0.5038 0.4989 0.5001
±0.1427 ±0.1437 ±0.1363 ±0.1382

ψỹ 10.0 9.9974 9.8640 9.9961 9.9963
±0.5837 ±0.5803 ±0.5813 ±0.5779

ψũ 1.0 0.9758 0.9722 0.9852 0.9894
±0.1324 ±0.1319 ±0.1650 ±0.1752

(a) Main parameters

rz0 (0) 73.766 74.431 74.265 74.374 74.303
±9.853 ±9.859 ±9.592 ±9.526

rz0 (1) 68.077 68.680 68.524 68.629 68.563
±9.233 ±9.239 ±8.990 ±8.923

rz0 (2) 53.021 53.461 53.331 53.419 53.367
±7.599 ±7.604 ±7.402 ±7.341

rz0 (3) 33.148 33.362 33.271 33.332 33.297
±5.572 ±5.575 ±5.442 ±5.402

rz0 (4) 13.242 13.209 13.163 13.192 13.176
±4.216 ±4.214 ±4.173 ±4.162

rz0 (5) −3.022 −3.294 −3.294 −3.291 −3.288
±4.393 ±4.385 ±4.404 ±4.406

rz0 (6) −13.644 −14.115 −14.079 −14.085 −14.069
±5.306 ±5.292 ±5.296 ±5.296

(b) Auxiliary parameters

• The minimizer of the criterion V1(ϑ) from (21), implemented
in LISREL. This estimator is labeled V1 (note that ML is not an
appropriate label since the data are not independent).

• Theminimizer of the criterionV3(ϑ) from (23) usingQ1 = Q2 =

R̂
−1

in (30), implemented in LISREL. This estimator is labeled
GLS.

• Theminimizer of the criterionV3(ϑ) from (23) usingQ1 = Q2 =

I in (30), implemented in LISREL. This estimator is labeled ULS.
• The CM estimator, implemented in Matlab. For simplicity no

weighting is applied. This estimator is labeled CM.

To obtain the empirical means and standard deviations of the
parameter estimates, the system is simulated nRep = 1000 times
with sample length N = 1000. All estimators are subject to the
same data records.

5.2. Examples

Example 5.1. In the first example, the implementation of the first
formulation is considered. For this case, k = 6 and hence the
number of auxiliary processes in ξ(t) is 7.

The simulation results are summarized in Table 1. From the
table, it is evident that the different estimation procedures behave
rather similarly. In all cases, the mean parameter estimates are
close to the true parameter values, and the biases are considerably
smaller than the standard deviations. Although the differences are
marginal, it is observed that the realized accuracy of the estimates,
as measured by the standard deviation, tend to be better for
ULS and CM. For any of the estimation procedures, no negative
estimates of the measurement noise variances were recorded.

We briefly comment on the numerical performance of the
optimization algorithms applied in this study. No occurrences of
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Table 2
Simulated means and standard deviations for the 2nd formulation.

Method V1 GLS ULS

Param. True value

a1 −1.5 −1.5004 −1.4999 −1.5006
±0.0229 ±0.0231 ±0.0218

a2 0.7 0.7004 0.7001 0.7005
±0.0180 ±0.0181 ±0.0173

b1 1.0 0.9930 0.9935 0.9966
±0.0998 ±0.1002 ±0.0960

b2 0.5 0.5033 0.5046 0.4994
±0.1446 ±0.1458 ±0.1367

ψỹ 10.0 9.9956 9.8637 9.9960
±0.5836 ±0.5803 ±0.5832

ψũ 1.0 0.9765 0.9725 0.9848
±0.1321 ±0.1318 ±0.1651

(a) Main parameters
Ru0


11 2.920 2.942 2.935 2.933

±0.258 ±0.258 ±0.277
Ru0


21 2.160 2.158 2.159 2.159

±0.203 ±0.203 ±0.206
Ru0


31 1.080 1.074 1.073 1.075

±0.181 ±0.181 ±0.188
Ru0


41 0.540 0.531 0.529 0.533

±0.170 ±0.170 ±0.176
Ru0


51 0.270 0.263 0.261 0.262

±0.169 ±0.169 ±0.177
Rνu0


11 −0.071 −0.016 −0.012 −0.029

±0.882 ±0.883 ±0.879
Rνu0


12 −0.143 −0.088 −0.092 −0.098

±0.884 ±0.883 ±0.870
Rνu0


13 −0.286 −0.236 −0.244 −0.244

±0.884 ±0.884 ±0.868
Rνu0


14 −0.572 −0.526 −0.526 −0.530

±0.889 ±0.889 ±0.879
Rνu0


15 −1.144 −1.098 −1.087 −1.101

±0.938 ±0.940 ±0.930
Rνu0


21 0.397 0.318 0.317 0.325

±1.266 ±1.267 ±1.265
Rνu0


22 0.794 0.721 0.725 0.723

±1.267 ±1.267 ±1.268
Rνu0


23 1.588 1.521 1.524 1.520

±1.275 ±1.274 ±1.274
Rνu0


24 3.177 3.111 3.107 3.110

±1.304 ±1.303 ±1.302
Rνu0


25 6.353 6.283 6.281 6.286

±1.361 ±1.361 ±1.365

[Rν]11 74.822 74.879 74.849 74.903
±8.449 ±8.465 ±8.360

[Rν]21 −98.290 −98.058 −98.035 −98.118
±10.480 ±10.492 ±10.435

[Rν]22 160.285 159.894 159.951 159.897
±15.791 ±15.790 ±15.790

(b) Auxiliary parameters

NC for any of the estimators were detected. However, some initial
trials for the SEM-based estimators showed that in a few instances
the algorithm failed to satisfy the convergence criteria. Note that
the DFP algorithm involves obtaining a step-length parameter
between iterations. The problem of NC was solved by changing
the default settings, allowing for more accurate computations of
the step-length parameter. It was additionally noticed that the
numerical performance somewhat depends on choice of ϑ(0).

Example 5.2. In the second example, the implementation of the
second formulation is considered. For this case, nν = na = 2.
Table 3
Standard deviations of the difference between parameter estimates obtained from
the two formulations.

Method V1 GLS ULS

Param.

sâ(1)1 −â(2)1
±6.082 · 10−4

±7.770 · 10−4
±1.849 · 10−3

sâ(1)2 −â(2)2
±4.325 · 10−4

±5.919 · 10−4
±1.190 · 10−3

sb̂(1)1 −b̂(2)1
±5.645 · 10−3

±5.773 · 10−3
±1.109 · 10−2

sb̂(1)2 −b̂(2)2
±6.505 · 10−3

±6.822 · 10−3
±1.652 · 10−2

s
ψ̂
(1)
ỹ −ψ̂

(2)
ỹ

±4.704 · 10−3
±4.127 · 10−3

±1.557 · 10−2

s
ψ̂
(1)
ũ −ψ̂

(2)
ũ

±2.560 · 10−3
±2.552 · 10−3

±5.735 · 10−3

Using (61), with κj = 3 + j for j = 1, 2, the auxiliary processes
become

ν1(t) = − a2y0(t − 6)+ b2u0(t − 6), (99)
ν2(t) = − a1y0(t − 6)− a2y0(t − 7)+ b1u0(t − 6)

+ b2u0(t − 7). (100)

To ensure convergence in all cases, we applied the same settings to
the optimization algorithm as in the previous example.

The simulation results are summarized in Table 2. As before,
the different estimation procedures tend to behave similarly. From
Table 2(a), it is seen that the results for the main parameters
are close to those obtained in the previous example. Clearly, the
estimates of these parameters appear to be of the same quality
across the two formulations. Considering the auxiliary parameters,
the results in Table 2(b) show some tendency to underestimate the
covariation among the latent processes. Again, no occurrences of
the estimated measurement noise variances being negative were
recorded.

In terms of numerical performance, the second formulation
showed to be less sensitive to the choice of ϑ(0), and therefore had
a smoother implementation.

Example 5.3. In the following example, we investigate to what
extent the main parameter estimates obtained from the two
formulations deviate. To do so, it is useful to introduce

ρ =


θT ψT

T
. (101)

Let sρ̂h denote the empirical standard deviation of the hth element
of ρ̂ for h = 1, . . . , 6. For small deviations, we expect that

s
ρ̂
(1)
h −ρ̂

(2)
h

≪ s
ρ̂
(1)
h

≈ s
ρ̂
(2)
h
. (102)

Note that our approach is rather conservative in the sense that
(102) is expressed in terms of standard deviations instead of
variances. The computations of s

ρ̂
(1)
h −ρ̂

(2)
h

are presented in Table 3,
while s

ρ̂
(1)
h

and s
ρ̂
(2)
h

are found in Tables 1(a) and Table 2(a),
respectively.

As can be observed from the tables, the general pattern is that
s
ρ̂
(1)
h −ρ̂

(2)
h

is quite a bit smaller than s
ρ̂
(1)
h

and s
ρ̂
(2)
h
. This observation

supports the conjecture that the estimates obtained from the two
formulations are in close agreement. It is additionally noticed that
among the three estimators, the agreement is closer for V1 and GLS
than for ULS.

Example 5.4. In the final example, the empirical variance of
the transfer function for the various SEM-based estimators is
considered. Let the empirical variance be given by

s2
Ĝ
(ω) =

1
nRep

nRep
i=1


|Ĝi| − |G|

2
, 0 ≤ ω ≤ π, (103)
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Fig. 2. Empirical variance of the transfer function.

where G = G(eiω) follows from (6) with na = nb = 2. Evaluating
the estimation performance using (103) is useful since s2

Ĝ
(ω) is

influenced not only by the variance of the individual estimates in
θ̂ but also their covariances. The results of the computations are
summarized in Fig. 2.

As clearly seen from the figure, the variance is nearly identical
across the various estimation procedures. Moreover, no noticeable
differences between the two formulations are evident. Thus, the
results are shown to be well in line with those reported in
Example 5.3.

6. Concluding remarks

EIV identification using SEM has been examined. More specifi-
cally, two formulations of the EIV SISO system leading to the same
covariance structure were presented. The proposed formulations
allow for quick implementation using standard statistical software.
To make the SEM framework more specific for the EIV problem,
several extensions were proposed. First, for the sake of parsimony,
it was shown how to eliminate the redundancy originating from
the block Toeplitz form of the considered covariance matrix. Sec-
ond, when the system admits a CFA representation, the estimation
problem can be formulated as a separate least squares problem.

Statistical performance was evaluated using simulated data.
The main conclusion from the simulation examples is that SEM-
based estimation of dynamic EIV systemsworks well. Performance
across the two formulations showed to be nearly identical in
terms of bias and accuracy. As compared to existing procedures,
here represented by the CM approach, SEM-based estimators
provide estimates of similar quality. Algorithmic aspects were
briefly considered. Although the optimization algorithm in LISREL
performed well in the simulations, one cannot exclude the
possibility that other algorithms may be better suited for the EIV
problem.

It is clear that more work is needed to fully understand the
potential of applying SEM to the EIV problem. Future research
should include a rigorous investigation of the accuracy of the SEM-
based estimators. It may also be of interest to extend the present
work to include formulations of Multiple-Input Multiple-Output
(MIMO) systems.
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Appendix A. Deriving K

We now provide a treatment of how to obtain the matrix Kn for
various forms of R, where R denotes an n-dimensional symmetric
matrix. Let Ln denote a selection matrix of dimension n2

× n∗

consisting of ones and zeros such that

vec(R) = Lnvecnr(R), (A.1)

where

vec(R)

=

r11 · · · rn1 r12 · · · rn2, · · · , r1n · · · rnn

T
,

(A.2)

and n∗ is the number of non-repeated elements in R. ThematrixKn
is then chosen as

Kn = Ln

LTnLn

−1
. (A.3)

In this form, Kn possesses the property described in (25). The
matrices in (A.3) are typically derived using double subscript
notation; see Browne (1974) and Fuller (2006). It is now
demonstrated how to apply this type of notation to obtain Ln for
various forms of R.

Case 1: First, consider the case when R is symmetric and no
other restrictions are placed on its elements. A vector of the non-
repeated elements is given by

vecnr(R) =


r11 · · · rn1 r22 · · · rn2, · · · , rnn

T
, (A.4)

where the number of elements follows from (18). Thus, the
dimension of Ln is n2

× 2−1n(n + 1).
Applying double subscript notation involves indexing the

elements of Ln using the same subscripts as for the elements of
vec(R) and vecnr(R). The indexing scheme is illustrated by

Ln

=



l11,11 · · · l11,n1 l11,22 · · · l11,n2 · · · · · · l11,nn
...

. . .
...

...
. . .

...
. . .

. . .
...

ln1,11 · · · ln1,n1 ln1,22 · · · ln1,n2 · · · · · · ln1,nn
l12,11 · · · l12,n1 l12,22 · · · l12,n2 · · · · · · l12,nn
...

. . .
...

...
. . .

...
. . .

. . .
...

ln2,11 · · · ln2,n1 ln2,22 · · · ln2,n2 · · · · · · ln2,nn
...

. . .
...

...
. . .

...
. . .

. . .
...

...
. . .

...
...

. . .
...

. . .
. . .

...
l1n,11 · · · l1n,n1 l1n,22 · · · l1n,n2 · · · · · · l1n,nn
...

. . .
...

...
. . .

...
. . .

. . .
...

lnn,11 · · · lnn,n1 lnn,22 · · · lnn,n2 · · · · · · lnn,nn



.

(A.5)
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In order to describe the individual elements of (A.5), let i, j =

1, . . . , n and u ≥ v = 1, . . . , n. The elements are then determined
by

lij,uv =

1 if (i, j) = (u, v)
1 if (i, j) = (v, u)
0 otherwise.

(A.6)

Example 3.1 illustrates the case when n = 3, in which L3 takes the
form of (28). Using (A.3), we obtain (27) with α1 = α2 = α3 = 0.5.

Case 2: In the second case, R is a matrix that is both symmetric
and Toeplitz. The vector of non-repeated elements simplifies to the
first column of R

vecnr(R) =


r11 · · · rn1

T
, (A.7)

and the dimension of Ln becomes n2
× n. Before describing the

elements of this matrix, it is useful to introduce the following
general notation. Let Hu = {0, . . . , ıu} denote an integer set. Now,
define

{(u + h, v + h)}h∈Hu = {(u, v), . . . , (u + ıu, v + ıu)} . (A.8)

If i, j, u = 1, . . . , n, v = 1 and ıu = n − u, then

lij,uv =

1 if (i, j) ∈ {(u + h, v + h)}h∈Hu
1 if (i, j) ∈ {(v + h, u + h)}h∈Hu
0 otherwise.

(A.9)

The set {(u + h, v + h)}h∈Hu additionally depends on u throughHu.
Thus, columns further to the right in Ln are characterized by fewer
non-zero elements. Note that the first column is a special case in
which the first two conditions in (A.9) coincide.

Using (A.6) and (A.9), either separately or in combination, one
can handle a variety of matrices. This is further demonstrated in
the remaining two cases.

Case 3: In the third and more involved case, R is a matrix with
a block Toeplitz structure

R =

 R11
(n1×n1)

R12
(n1×n2)

R21
(n2×n1)

R22
(n2×n2)

 , (A.10)

where n = n1 + n2. Let [Rkl]fg denote the fgth element of the klth
block of R. The vector of non-repeated elements is

vecnr(R) =

[R11]11 · · · [R11]n11 [R21]11 · · · [R21]n21

[R12]21 · · · [R12]n11 [R22]11 · · · [R22]n21
T
.

(A.11)

It will be convenient to let Ln be a matrix composed of four
partitions, where each partition corresponds to a block in R. The
selection matrix then takes the general form

Ln =


L11

(n2×n1)
L12

(n2×n2)
L13

(n2×(n1−1))
L14

(n2×n2)


, (A.12)

with overall dimension n2
× (2n−1). As before, let i, j = 1, . . . , n.

By appropriately specifying the range of u and v, one can obtain the
individual elements of Ln by its partitions. This is accomplished by

L11: (A.9), using u = 1, . . . , n1, v = 1 and ıu = n1 − u.
L12: (A.9), using u = n1+1, . . . , n, v = 1 and ıu = min(n1−1, n−

u).
L13: (A.9), using u = 2, . . . , n1, v = n1 + 1 and ıu = min(n2 −

1, n1 − u).
L14: (A.9), using u = n1 + 1, . . . , n, v = n1 + 1 and ıu = n − u.
Case 4: In the final case, R is written in the form of (A.10), but
only R11 has a Toeplitz structure. An example of such a matrix is
given in (73). The vector of non-repeated elements is in this case

vecnr(R) =
[R11]11 · · · [R11]n11 [R21]11 · · · [R21]n21, . . . ,

[R21]1n1 · · · [R21]n2n1 [R22]11 · · · [R22]n21

[R22]22 · · · [R22]n22, · · · , [R22]n2n2

T
, (A.13)

and the selection matrix is written as

Ln =


L11

(n2×n1)
L12

(n2×(n2n1+n∗
2))


. (A.14)

The overall dimension of Ln is n2
× (n1 + n2n1 + n∗

2), where
n∗

2 = 2−1n2(n2 + 1). Let i, j = 1, . . . , n. The individual elements of
Ln are then obtained by

L11: (A.9), using u = 1, . . . , n1, v = 1 and ıu = n1 − u.
L12: (A.6), using u = n1 + 1, . . . , n and u ≥ v = 1, . . . , n.

Appendix B. WLS as a separable least squares problem

The functional form of the WLS criteria allows it to be
formulated as separate least squares problem. Applying the WLS
estimator involves

ϑ̂ = argmin
ϑ

V3(ϑ), (B.1)

where

V3(ϑ) = r̃T (ϑ)Wr̃(ϑ) (B.2)

is the criterion function presented in (23). From (24), one canwrite

r̃(ϑ) = r̂ − r(ϑ)

= r̂ − F(θ)rζ , (B.3)

where

rζ =

rTξ ψT T . (B.4)

In what follows, it is assumed that F(θ) is a matrix of full column
rank. Using (B.3), the WLS criteria can be written in the form

V3(θ, rζ ) = ∥r̂ − F(θ)rζ∥2
W. (B.5)

For a given θ, and using that rζ enters linearly into (B.5), the
minimization problem with respect to rζ is solved by linear least
squares

r̂ζ =

FT (θ)WF(θ)

−1FT (θ)Wr̂, (B.6)

which in turn leads to the modified criterion functionV3(θ) =r̂TWr̂ − r̂TWF(θ)

FT (θ)WF(θ)

−1FT (θ)Wr̂. (B.7)

The minimization of (B.7) describes a variable projection problem
that can be solved using standard optimization routines.

To make (B.6) and (B.7) applicable, one must derive an
expression for F(θ). Recall that both formulations described in
Section 4 have a CFA representation. The simple form of the system
implied covariance matrix, as given in (54), simplifies the problem
of determining F(θ). It is useful to introduce the following lemma:

Lemma B.1. Let A, B and C be matrices such that the product ABC is
well defined. Then it holds that

vec(ABC) =

CT

⊗ A

vec(B). (B.8)

Proof. See Bernstein (2009). �
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Applying the lemma to the covariance matrix in (54) allows us
to write

vec

R(ϑ)


=


3⊗3


vec(8)+ vec(9ϵ). (B.9)

Use that

vec

R(ϑ)


= K−T

n r(ϑ), vec(8) = K−T
nξ rξ , (B.10)

such that (B.9) can be written as

r(ϑ) = KT
n


(3⊗3)K−T

nξ rξ + vec(9ϵ)

. (B.11)

Moreover, note that

vec(9ϵ) = (ιy ιu)ψ, (B.12)

where ιy and ιu are vectors obtained from

ιy = vec


Iny 0(ny×nu)
0(nu×ny) 0(nu×nu)


, (B.13)

ιu = vec


0(ny×ny) 0(ny×nu)
0(nu×ny) Inu


. (B.14)

It now follows that

r(ϑ) = KT
n


(3⊗3)K−T

nξ ιy ιu

 
rξ
ψ


, F(θ) rζ . (B.15)

The exact form and dimension of F(θ) depends on Kn and Knξ .
The relevant matrices are found by the procedures outlined in
Appendix A. Considering the first formulation, we obtain

K(1)nξ : by Case 3 using n1, n2 = ny, nu.

K(1)nξ : by Case 2 using nξ = k + 1.

The dimension of F(θ) is then (2n − 1) × (k + 3). For the second
formulation, we obtain

K(2)nξ : by Case 1 using n = ny + nu.

K(2)nξ : by Case 4 using n1, n2 = nu, nν .

The dimension of F(θ) is in this case n∗
× (nrξ + 2), where n∗ and

nrξ are determined by (18) and (75), respectively.
It follows from the preceding analysis that if estimates of r(ϑ0)

and θ0 are available, then estimates of rξ,0 andψ0 can be obtained
from the use of (B.6).

Appendix C. Imposing additional constraints on the elements
of8

It is possible to achieve a more parsimonious implementation
of the second formulation by further constraining the elements
of8.

As defined in (32), let ru0(τ ) denote the covariance function of
the undisturbed input signal u0(t). Further, define

ry0u0(τ ) = E {y0(t + τ)u0(t)} , (C.1)

rνju0(τ ) = E

νj(t + τ)u0(t)


, (C.2)

where νj(t) is the auxiliary process obtained from (61). For j =

2, . . . , nν , one can modify (61) so that

νj(t) = −

na
i=1

1{κj+i=ny}aiy0(t − ny)

+

nb
i=1

1{κj+i=nu+1}biu0(t − nu − 1)+ νj−1(t − 1). (C.3)
Note that (C.3) becomes applicable for j = 1 by canceling the last
term.

By the use of (C.3), and letting h = 2, . . . , nu, one can express
the elements of Rνu0 as
Rνu0


jh =rνju0(h)

= −

na
i=1

1{κj+i=ny}airy0u0(h − ny)

+

nb
i=1

1{κj+i=nu+1}biru0(h − nu − 1)

+ rνj−1u0(h − 1), (C.4)

where

Rνu0


jh denotes the jhth element of Rνu0 . As before,

canceling the last term makes (C.4) applicable for j = 1. To make
use of (C.4), one must obtain an expression for ry0u0(h − ny). To do
so, consider

y0(t − ny + 1) =

nb
i=1

1{κnν+i<nu+1}biu0(t − κnν − i)

+ νnν (t). (C.5)

Multiplying both sides of (C.5) by u0(t − h + 1) and taking
expectations, while using that κnν = ny − 1, gives

ry0u0(h − ny) =

nb
i=1

1{κnν+i<nu+1}biru0(h − ny − i)

+ rνnν u0(h − 1). (C.6)

In (C.6), when the condition in the indicator function is satisfied,
ru0(h − ny − i) for h = 2, . . . , nu are guaranteed to be contained
in Ru0 . It follows that ry0u0(h − ny) can be obtained from the
elements of θ, Ru0 and Rνu0 . The expressions in (C.4) and (C.6)
implies that the complete set of constraints can be obtained by
recursive substitution.

After imposing the constraints, the dimension of rξ becomes

nrξ = nu + nν +
1
2
nν(nν + 1)

= nu +
1
2
nν(nν + 3). (C.7)

As an illustration, consider the system used in Example 5.2.
Using (C.3), the auxiliary processes are given by

ν1(t) = −a2y0(t − 6)+ b2u0(t − 6) (C.8)
ν2(t) = −a1y0(t − 6)+ b1u0(t − 6)+ ν1(t − 1). (C.9)

The choice of ny and nu are such that (C.5) simplifies to

y0(t − ny + 1) = y0(t − 5) = ν2(t), (C.10)

and from the use of (C.4) and (C.6)
Rνu0


1,h = − a2


Rνu0


2,h−1 + b2


Ru0


5,h−1 (C.11)

Rνu0

2,h = − a1


Rνu0


2,h−1 + b1


Ru0


5,h−1

+

Rνu0


1,h−1 . (C.12)

The desired covariance elements for h = 2, . . . , 5 are now found
by applying recursive substitution to (C.11) and (C.12).
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