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a b s t r a c t

In this paper, an elementary time unit (ETU) method is proposed to study the problem of estimating the
admissible delay in the identification of the active mode in the analysis and design of switched systems.
The activation interval of a subsystem is considered to consist of a finite-time number of segments called
ETUs, by which a novel class of time-scheduled Lyapunov function is used to estimate the admissible
delay inmode identification for switched systems. Further, the ETUmethod is applied for switching-delay
tolerant control problem, and a class of time-scheduled state feedback controllers are designed to achieve
the exponentially stability. Several numerical examples are presented to validate the theoretic findings.
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1. Introduction

Switched systems have emerged as an important class of hybrid
systems representing a very active research area in the field
of systems and control (Chesi, Colaneri, Geromel, Middleton, &
Shorten, 2012; Dehghan & Ong, 2012; Duan & Wu, 2014; Geromel
& Colaneri, 2006; Hu, Shen, & Zhang, 2011; Lee & Dullerud, 2007;
Lin & Antsaklis, 2007, 2009; Lu, Wu, & Kim, 2006; Margaliot,
2006; Shorten, Wirth, Mason, Wulff, & King, 2007; Zhang, Hu, &
Abate, 2012). Switched system can be efficiently used to model
many practical systems that are inherently multi-model in the
sense that several dynamical subsystem models are required to
describe their behaviors, e.g. see Morse (1996). A basic issue
in control of switched systems is the mode identification to
implement mode-dependent controllers. The mode identification
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is necessary in practice, and the process with multiple operating
modes has to be controlled by a set of multiple controllers along
with a mode estimator. Therefore, to determine the admissible
mode-identifying time for concrete switched systems will be of
great significance as a priori information to evaluate different
identification methods. However, note that the problem still
remains largely open in the area.

In most of real applications, the value of switching signal σp(t)
is unavailable once the switching of process occurs. One would
naturally try to first identify the switching signal at the beginning
of each time interval using a short time period [tk, tk+τ) (generally
τ ≪ tk+1 − tk), e.g. some design results for mode estimator in
Baglietto, Battistelli, and Tesi (2013), Battistelli (2013), and then
control the identified system in the rest of the time interval. As
what has been suggested in numerous articles (Mahmoud & Shi,
2012; Vu & Morgansen, 2010; Xiang, Xiao, & Iqbal, 2011; Zhang &
Gao, 2010; Zhang& Shi, 2009), the very first and important concern
is that the inappropriately large (inadmissible) mode-identifying
time τ would turn the stable closed loop to be unstable since the
correct controller cannot be activated in time. Thus, the problem
arises here:

• Problem A. Given a set of feedback controllers, how to esti-
mate the admissible mode-identifying time τ by which the sta-
bility of closed loop holds?
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Then, from the control point of view, designing a set of controllers
stabilizing the closed loop in the presence of a mode-identifying
time (producing switching delay) τ is of interest. Furthermore, the
controller is expected to tolerate the switching delay as large as
possible. Therefore, as an opposite to Problem A, the switching-
delay tolerant control problem considered in this paper is:

• Problem B. How to design a set of stabilizing feedback
controllers, which is capable of being tolerant to the switching
delay τ as large as possible?

Due to the inevitable and necessary existence of mode-identifying
process in actual applications, both of above problems are not only
theoretically interesting and challenging, but also very important
in practical applications, whichmotivates the present study in this
paper.

Inspired by the discretized Lyapunov function approach widely
used in time-delay systems (Gu, Kharitonov, & Chen, 2003), and
also inspired by the recent articles for switched systemwith dwell
time constraint (Allerhand & Shaked, 2011, 2013), the elementary
time unit (ETU) approach is proposed to solve the problems
presented in this paper. Briefly speaking, the ETU is the activation
interval being classified by mode-identifying interval and normal-
working interval, and both of which consist of a finite number of
segments with different resolutions. It is worth mentioning that
some previous results such as Mahmoud and Shi (2012), Zhang
and Gao (2010), Zhang and Shi (2009) and Xiang et al. (2011),
concerned with asynchronously switched system are covered by
our ETU approach. The remainder of this paper is organized as
follows. In Section 2, the considered systems and problems are
formulated. In Section 3, the ETU technique is introduced and the
mode-identifying time estimation is studied. The switching-delay
tolerant control is studied in Section 4. Conclusions are given in
Section 5.
Notations: Let R denote the field of real numbers, R≥0 stand for
non-negative real numbers, and Rn be the n-dimensional real
vector space. ∥·∥ stands for Euclidean norm. The notation P ≻

0 (P ≽) means matrix P is real symmetric and positive definite
(semi-positive definite). P⊤ denotes the transposition of matrix P
and He{P} = P⊤

+ P . Function int[x] rounds the x to the nearest
integer towards zero. ξi(·) : [0, ∞) → {0, 1} are indication
functions for switching signal σ(t), it is defined as ξi(t) = 1 if
σ(t) = i, otherwise ξi(t) = 0.

2. System description and problem formulation

In this paper, the switched system is in the form of

ẋ(t) = Aσp(t)x(t) + Bσp(t)u(t) (1)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the control
input. Define index set I := {1, 2, . . . ,N} where N is the number
of subsystems. σp(t) : [0, ∞) → I denotes the switching signal,
which is assumed to be a piecewise constant function continuous
from right. Ai ∈ Rn×n and Bi ∈ Rn×m are known matrices
of appropriate dimension. The discontinuities of σp(t) are called
switches and the switching sequence is expressed by

Sp := {(i0, t0), . . . , (ik, tk), . . . |ik ∈ I, k = 0, 1, . . .}

where t0 denotes the initial time, tk is the kth switching instant and
dk = tk+1 − tk, k = 0, 1, . . .. It is assumed that there exists a lower
bound of dk, i.e., dk ≥ dmin > 0, ∀k = 0, 1, . . ., where dmin is called
minimal dwell time.

The mode-dependent controller is considered as

u(t) = Kσc (t)x(t) (2)

where Ki ∈ Rm×n, for σc(t) = i ∈ I are constant matrix
gains already designed. σc(t) : [0, ∞) → I is the switching
signal of controller. In the presence of mode-identifying process,
the identification time is denoted as τ which directly leads to
σc(t) = σp(t − τ). Trivially, it is assumed 0 < τ < dmin. Hence,
the switching sequence generated by σc(t) can be expressed by

Sc :=

(i0, t̂0), . . . , (ik, t̂k), . . . |ik ∈ I, k = 0, 1, . . .


in which t̂k = tk + τ < tk+1, ∀k = 0, 1, . . .. Combining the
sequences Sp and Sc and inspired by the idea in Vale and Miller
(2011), each interval [tk, tk+1) can be essentially classified into the
mode-identifying period M1 := [tk, tk + τ) with σp(t) ≠ σc(t),
and the normal-working period M2 := [tk + τ , tk+1) with σp(t) =

σc(t).
Let Āi,j := Ai +BiKj and I2

:= I×I, I2
M1

be the set of all indices
in I2 such that i ≠ j, ∀i, j ∈ I, and I2

M2
:= I2

\ I2
M1

includes all
indices such that i = j, ∀i, j ∈ I. Substituting controller (2) into
system (1) and considering the mode estimator, the dynamics of
closed loop in interval [tk, tk+1) with σp(t) = i, t ∈ [tk, tk+1) and
σc(t) = j, t ∈ [tk, tk + τ) can be derived as follows:

ẋ(t) =


Āi,jx(t) t ∈ [tk, tk + τ), (i, j) ∈ I2

M1
Āi,ix(t) t ∈ [tk + τ , tk+1), (i, i) ∈ I2

M2

(3)

where 0 < τ < dmin is the mode-identifying time.

Definition 1. System (3) is said to be exponentially stable with a
decay rate β > 0 if ∥x(t)∥ < Ce−β(t−t0) ∥x(t0)∥ holds for any x(t0),
any t ≥ t0 and a constant C > 0.

Then, given amode-identifying time τ , the first problem is restated
as follows.

Problem 1. Find sufficient conditions on the controller (2) for
system (1) and on themode-identifying time τ such that the closed
loop (3) is exponentially stable.

When τ is uncertain, one could expect that an upper bound on
it denoted by τ ∗, below which the stability of the closed loop is
guaranteed.

Problem 2. Given the controller (2) for system (1), estimate the
upper bound of admissible mode-identifying time τ ∗ such that the
exponential stability of closed loop (3) can hold for any τ ≤ τ ∗.

As to switching-delay tolerant control problem, the following
time-varying controller covering (2) is considered

u(t) = Kσc (t)(t)x(t) (4)

where Ki(t), i ∈ I are time-varying gain matrices to be
determined. The closed loop system can be expressed by

ẋ(t) =


Āi,j(t)x(t) t ∈ [tk, tk + τ), (i, j) ∈ I2

M1
Āi,i(t)x(t) t ∈ [tk + τ , tk+1), (i, i) ∈ I2

M2

(5)

where Āi,j(t) = Ai + BiKj(t), Āi,i(t) = Ai + BiKi(t).

Problem 3. Consider switched system (1) with a switching delay
τ , design a state feedback control scheme (4) guaranteeing the
exponential stability of closed loop (5).

At last when τ is uncertain, Problem 3 can be developed
accordingly as follows.

Problem 4. Consider switched system (1) with switching delay,
design a state feedback control scheme (4) with maximal ability
of tolerating switching delay τ ∗ guaranteeing the exponential
stability of closed loop (5).

The above four linked problems are the main concerns to be
addressed in the rest of this paper.
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Fig. 1. ETUs for the time interval [tk, tk+1).

3. Mode-identifying time estimation

3.1. Elementary time unit approach

Due to the existence of mode-identifying process, each time
interval [tk, tk+1) can be classified into two categories as mode-
identifying interval M1 := [tk, tk + τ) and normal-working mode
interval M2 := [tk + τ , tk+1). For each interval Mp, p = 1, 2,
we define the elementary time unit (ETU) which is the basic
segment constituting the time intervals. Suppose that the interval
[tk, tk + τ) is constituted by L1 elementary segments, the series
of elementary segments are called the ETUs for M1, which are
denoted as N1,k,n := [tk + θ1,n, tk + θ1,n+1), n = 0, 1, . . . , L1 − 1
of equal length h1. The value of h1 is called the resolution of ETU
for M1, and θ1,n = nh1. The ETUs for M2 can be defined likewise.
However, since the length of interval [tk + τ , tk+1) is uncertain,
the interval [tk + τ , tk+1) is supposed to be classified into the
certain interval Mc

2 := [tk + τ , tk + dmin) and uncertain interval
Mu

2 := [tk + dmin, tk+1). Obviously, only the certain time interval
Mc

2 can be possibly divided into L2 segments with equal length.
The ETUs for Mc

2 are denoted as N2,k,n := [tk + τ + θ2,n, tk +

τ + θ2,n+1), n = 0, 1, . . . , L2 − 1 with resolution h2, and then
θ2,n = nh2. Afterwards the rest uncertain interval Mu

2 is denoted
as N2,k,L2 . Finally, the ETUs in [tk, tk+1) = M1 ∪ M2 explicitly
have properties that

L1−1
n=0 N1,k,n = M1,

L2
n=0 N2,k,n = M2 and

Np,k,n ∩ Np,k,m = ∅, n ≠ m, ∀p = 1, 2. The ETUs in the interval
[tk, tk+1) are illustrated by Fig. 1.

Based on ETU, a set of time-scheduled Lyapunov functions
Vi(t, x) = x⊤(t)Pi(t)x(t), i ∈ I is constructed as

Vi(t, x) =

x⊤(t)P1,i,n(α1,n)x(t) t ∈ N1,k,n

x⊤(t)P2,i,n(α2,n)x(t) t ∈ N2,k,n

x⊤(t)P2,i,L2x(t) t ∈ N2,k,L2

(6)

where P1,i,n(α1,n) = (1 − α1,n)P1,i,n + α1,nP1,i,n+1 with α1,n =

(t − tk − θ1,n)/h1, P2,i,n(α2,n) = (1−α2,n)P2,i,n +α2,nP2,i,n+1 with
α2,n = (t − tk − τ − θ2,n)/h2, and Pp,i,n ≻ 0, n = 0, 1, . . . , Lp, p =

1, 2, i ∈ I.

3.2. Admissible mode-identifying time estimation

At first, two useful lemmas are given as below.

Lemma 1. Given a scalar η1 > 0 and consider system (3), if there
exists a set of matrices P1,i,n ≻ 0, n = 0, 1, . . . , L1, i ∈ I such that
Ω

(1)
1,i,n ≺ 0, Ω

(2)
1,i,n ≺ 0, ∀n = 0, 1, . . . , L1 − 1, ∀i, j ∈ I, where

Ω
(1)
1,i,n = He{P1,i,nĀi,j} + Ψ1,i,n − η1P1,i,n (7)

Ω
(2)
1,i,n = He{P1,i,n+1Āi,j} + Ψ1,i,n − η1P1,i,n+1 (8)

Ψ1,i,n = (P1,i,n+1 − P1,i,n)/h1, (9)

then during interval M1 := [tk, tk + τ), it follows that

Vi(t, x) < eη1(t−tk)Vi(tk, x), ∀t ∈ M1. (10)

Proof. See Appendix. �
Lemma 2. Given a scalar η2 > 0 and consider system (3), if there
exists a set of matrices P2,i,n ≻ 0, n = 0, 1, . . . , L2, i ∈ I such that
Ω

(1)
2,i,n ≺ 0, Ω

(2)
2,i,n ≺ 0, ∀n = 0, 1, . . . , L2 − 1, ∀i ∈ I, Ω2,i,L2 ≺ 0,

where

Ω
(1)
2,i,n = He{P2,i,nĀi,i} + Ψ2,i,n + η2P2,i,n (11)

Ω
(2)
2,i,n = He{P2,i,n+1Āi,i} + Ψ2,i,n + η2P2,i,n+1 (12)

Ω2,i,L2 = He{P2,i,L2 Āi,i} + η2P2,i,L2 (13)
Ψ2,i,n = (P2,i,n+1 − P2,i,n)/h2, (14)

then during interval M2 := [tk + τ , tk+1), it follows that

Vi(t, x) < e−η2(t−tk−τ)Vi(tk + τ , x), ∀t ∈ M2. (15)

Proof. See Appendix. �

Based on the above lemmas, we are ready to present our first result
with respect to Problem 1. Since the mode-identifying time τ is
given in advance, the resolutions of ETUs h1 and h2 for Problem 1
are naturally selected by h1 = τ/L1 and h2 = (dmin − τ)/L2, where
L1 and L2 are the numbers of dividing points for intervals [tk, tk+τ)

and [tk + τ , tk + dmin), respectively.

Theorem 1. Consider switched system (1) with controller (2) and
a mode estimator with mode-identifying time τ , given the division
parameters Lp, p = 1, 2, if there exist scalars µ1 > 0, µ2 > 0, η1 >

0, η2 > 0, and a set of matrices Pp,i,n ≻ 0, n = 0, 1, . . . , Lp, p =

1, 2, i ∈ I such that

(i) Ω
(1)
1,i,n ≺ 0, Ω

(2)
1,i,n ≺ 0, ∀n = 0, 1, . . . , L1 − 1;

(ii) Ω
(1)
2,i,n ≺ 0, Ω

(2)
2,i,n ≺ 0, ∀n = 0, 1, . . . , L2 − 1, Ω2,i,L2 ≺ 0;

(iii) P2,i,0 ≼ µ1P1,i,L1 , P1,i,0 ≼ µ2P2,j,L2 , i ≠ j;
(iv) lnµ1 + lnµ2 + η1τ − η2(dmin − τ) < 0;

whereΩ
(1)
1,i,n, Ω

(2)
1,i,n, Ω

(1)
2,i,n, Ω

(2)
2,i,n, Ω2,i,L2 are defined in (7)–(9), (11)–

(14), then the closed loop system (3) is exponentially stable.

Proof. For the closed loop (3), the Lyapunov function is chosen to
be V(t) =

N
i=1 ξi(t)Vi(t, x) where ξi(t), i ∈ I are the indication

functions andVi(t, x), i ∈ I are defined in (6).We define notations
V(t−) = limt→t− V(t), V(t+) = limt→t+ V(t), and Condition (iii)
means that

V(t̂+k ) ≤ µ1V(t̂−k ), t̂k = tk + τ ∈ [tk, tk+1) (16)

V(t+k ) ≤ µ2V(t−k ). (17)

Then, from Conditions (i), (ii) and using (10), (15) by Lemmas 1 and
2, it follows that

V(t) < Ce−η2(t−tk)V(t+k ), t ∈ [tk, tk+1) (18)

where C = max{µ1e(η1+η2)τ , e(η1+η2)τ }. Likewise, the following
inequality holds

V(t+k ) < µ1µ2e(η1+η2)τ−η2(tk−tk−1)V(t+k−1) (19)

Combining (18) and (19), we can obtain

V(t) < Ce−η2(t−tk)µ1µ2e(η1+η2)τ−η2(tk−tk−1)V(t+k−1)

< · · · < Ce−η2(t−t0)

µ1µ2e(η1+η2)τ

k
V(t0). (20)

If µ1µ2e(η1+η2)τ < 1, it is straightforward from (20) that

V(t) < Ce−η2(t−t0)V(t0), t ∈ [tk, tk+1). (21)
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On the other hand, if µ1µ2e(η1+η2)τ ≥ 1, due to k ≤ (t −

t0)/dmin, t ∈ [tk, tk+1), it follows from (20) that

V(t) < Ce−η2(t−t0)

µ1µ2e(η1+η2)τ

 t−t0
dmin V(t0)

which can be rewritten as

V(t) < Ce−ρ(t−t0)V(t0), t ∈ [tk, tk+1) (22)

where ρ = η2 − (lnµ1 + lnµ2 + (η1 + η2)τ )/dmin > 0 according
to Condition (iv). Thus the exponential stability can be established
by (21) and (22). �

Remark 1. Several previous results can be viewed as particular
cases of Theorem 1, such as

(1) Let Pi = Pp,i,n, ∀n = 0, 1, . . . , Lp, ∀p = 1, 2, i ∈ I, so it
has µ1 = 1 and µ2 > 1, which reduces Condition (iii) to
Pi < µ2Pj, i ≠ j. Then, Condition (iv) implies the dwell time
dmin has to satisfy dmin > [(η1 + η2)τ + lnµ2]/η2 to ensure
the stability, which is exactly the result for asynchronously
switched systems in Zhang and Gao (2010), Zhang and Shi
(2009) by MLF approach.

(2) Moreover, if further ignore the impact of mode estimator, that
is to say, τ = 0, the dwell time condition reduces to dmin >
lnµ/η2, which is the well-known result in Morse (1996).

(3) Then, reconsidering Theorem 1 with τ = 0, this implies there
only exists M2 so that Condition (i) can be eliminated. Then,
if we particularly let µ1 = 1 and µ2 = 1, Condition (iv)
can be also eliminated since −η2dmin < 0 is always satisfied.
Furthermore, by particularly enforcing η2 = 0 in Condition (ii),
it directly leads to the results in Allerhand and Shaked (2011,
2013), where the case without mode estimator is considered.

As we move forward to Problem 2 where the mode-identifying
time is unknown and has to be estimated, Condition (iii) in
Theorem 1 has to be modified as follows,

(iii′) P2,i,0 ≼ µ1P1,i,n, ∀n = 0, 1, . . . , L1, P1,i,0 ≼ µ2P2,j,L2 , i ≠ j.

Then, the following result can be obtained.

Proposition 1. If Theorem 1 with modified Condition (iii′) holds
with τ ∗ and d∗

min, then it still holds with any τ ∈ [0, τ ∗
] and dmin ∈

[d∗

min, ∞).

Proof. The modified Condition (iii′) means that V(t̂+k ) ≤ µ1V

(t̂−k ), ∀t̂k ∈ [tk, tk + τ ∗), taking place of (16) in the proof of
Theorem 1. Then, the rest of the proof can be conducted through
similar guidelines in Theorem 1, and it is omitted here. �

Based on Proposition 1, themaximal value of τ ∗ can be determined.
At first, we pre-specified η2 for some control objectives. Then, we
setµ1 = µ2 = µ for the sake of simplicity, and fromCondition (iv)
in Theorem 1, it can be seen that lnµ < [η2dmin −τ(η1 +η2)]/2 ≤

η2dmin/2, which impliesµ ∈ (0, eη2dmin/2). So it is possible to check
all the values in (0, eη2dmin/2) with discretized step ∆µ. Then, with
each µ in (0, eη2dmin/2) and an η∗

1 can be figured out to satisfy

η∗

1 = [η2(dmin − τ) − 2 lnµ]/τ (23)

and η1 can be selected as 0 < η1 < η∗

1 . As a result, the maximal τ ∗

can be computed by

τ ∗
= max

0<τ<dmin
{τ : (i), (ii), (iii)′ in Theorem 1 hold}. (24)

In summary, the computation on the maximal admissible mode-
identifying time τ ∗ is given by Algorithm 1.
Algorithm 1 Computation on τ ∗ with dmin and η2

1: Initialize µ = 0, loop counter M = 0, and set a variation
∆µ > 0;

2: while µ < eη2dmin/2 do
3: Set M = M + 1 and µ = µ + ∆µ;
4: Solve (24) to obtain τ ∗;
5: if (24) is feasible and η∗

1 > 0 by (23) then
6: Record D(M) = τ ∗;
7: else
8: Record D(M) = 0;
9: end if

10: end while
11: if ∃m = 1, 2, . . . ,M such that D(m) ≠ 0 then
12: τ ∗

= maxm=1,2,...,M{D(m)} and exit;
13: else
14: The stability cannot be established and exit;
15: end if

Table 1
Admissible mode-identifying time τ ∗ with L1 and L2 .

τ ∗ L2 = 1 L2 = 2 L2 = 3 L2 = 4 L2 = 5

L1 = 1 0.200 0.217 0.228 0.230 0.243 Small
L1 = 2 0.209 0.224 0.236 0.242 0.252 ∥

L1 = 3 0.214 0.230 0.240 0.249 0.256 ∥

L1 = 4 0.218 0.235 0.246 0.254 0.259 ⇓

L1 = 5 0.222 0.238 0.249 0.257 0.264 Large
Small ================⇒ large

3.3. Numerical example

Consider the switched system with two subsystems as

A1 =


0.2 −0.5
0.5 − 0.3


, A2 =


0.2 0.3
−1 0.4


B⊤

1 =

−0.4 1.8


, B⊤

2 =


− 0.1 0.5

.

The switching signalσp(t) is assumed to have aminimal dwell time
dmin = 5. At first, the feedback gains to ensure a decay rate η2 = 2
are given as

K1 = [5.8524 − 0.6080], K2 = [−56.5114 1.9070].

By the MLF approach (Zhang & Gao, 2010), it is estimated as τ ∗
=

0.143. From Theorem 1, the τ ∗ with different L1 and L2 are listed
in Table 1. It can be observed that less conservative results can be
obtained in contrast to MLF approach. Furthermore, the estimated
τ ∗ tends to be larger as L1 and L2 are increased, which implies
the denser divisions of intervals lead to a less conservative result.
Finally, a periodical switching signal σp(t) satisfying tk+1 − tk =

5, k = 0, 1, 2, · · · is given. Supposing the mode-identifying time
τ = 0.29, the exponential stability should hold according to τ ∗

=

0.298 with L1 = L2 = 10. Given an initial state as x⊤(0) = [15 30],
the switching instants and state responses are shown in Fig. 2. It
can be seen that state trajectories converge to the origin in the
presence of a switching delay τ = 0.29, though some divergence
of the state can be observed during the mode identifying interval.

4. Switching-delay tolerant control synthesis

4.1. ETUs for control synthesis problem

The interval [t̂k, t̂k+1) concerned with the switching signal of
controller σc(t) is considered, which can be classified as normal-
working interval M2 := [t̂k, tk+1) and mode-identifying interval
M1 := [tk+1, t̂k+1). The intervals M2 and M1 are constituted by a
series of ETUsN2,k,n := [t̂k+θ2,n, t̂k+θ2,n+1), n = 0, 1, . . . , L2 and
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Fig. 2. Switching instants of system and controller.

N1,k,n := [tk+1 +θ1,n, tk+1 +θ1,n+1), n = 0, 1, . . . , L1 −1, in which
θ2 = nh2 and θ1 = nh1 with resolutions h2 and h1. Moreover, M2
consists of Mc

2 := [t̂k, tk + dmin) and Mu
2 := [tk + dmin, tk+1).

Then, a set of continuous matrix functions Qi(t), i ∈ I is
introduced. In the ETUs N2,k,n, n = 0, 1, . . . , L2 − 1 in Mc

2, Qi(t) is
defined by

Qi(t) = Q2,i,n(α2,n) = (1 − α2,n)Q2,i,n + α2,nQ2,i,n+1 (25)

where α2,n = (t − t̂k − θ2,n)/h2. Also, in Mu
2 which is equivalent to

N2,k,L2 , Qi(t) is determined as

Qi(t) = Q2,i,L2 , ∀t ∈ N2,k,L2 , i ∈ I. (26)

Then, as to N1,k,n in M1, Qi(t) is defined by

Qi(t) = Q1,i,n(α1,n) = (1 − α1,n)Q1,i,n + α1,nQ1,i,n+1 (27)

where α1,n = (t − tk+1 − θ1,n)/h1.
Letting Qp,i,n ≻ 0, ∀n = 0, 1, . . . , Lp, ∀p = 1, 2, ∀i ∈ I

which implies Qi(t) ≻ 0, ∀i ∈ I and straightforwardly leads
to Q−1

i (t) ≻ 0, ∀i ∈ I, the time-scheduled Lyapunov function
candidates Vi(t, x) = x⊤(t)Q−1

i (t)x(t), i ∈ I can be constructed
as

Vi(t, x) =


x⊤(t)Q−1

2,i,n(α2,n)x(t) t ∈ N2,k,n

x⊤(t)Q−1
2,i,L2

x(t) t ∈ N2,k,L2

x⊤(t)Q−1
1,i,n(α1,n)x(t) t ∈ N1,k,n.

(28)

4.2. Feedback control with detectable switching instants

The following assumption on the detection of switching signal
is needed.

Assumption 1. The switching instants tk, ∀k = 0, 1, . . . generated
by σp(t) can be detected online.

At first, Problem 3 is taken into account, where the switching delay
τ is available.

Theorem 2. Assuming Assumption 1 holds and there exist scalars
µ1 > 0, µ2 > 0, η1 > 0, η2 > 0, and a set of matrices Qp,i,n ≻

0, Xp,i,n, n = 0, 1, . . . , Lp, p = 1, 2, i ∈ I such that

(i) Υ
(1)
1,i,n ≺ 0, Υ

(2)
1,i,n ≺ 0, ∀n = 0, 1, . . . , L1 − 1;

(ii) Υ
(1)
2,i,n ≺ 0, Υ

(2)
2,i,n ≺ 0, ∀n = 0, 1, . . . , L2 − 1, Υ2,i,L2 ≺ 0;

(iii) Q2,i,L2 ≼ µ1Q1,i,0,Q1,j,L1 ≼ µ2Q2,i,0, i ≠ j;
(iv) lnµ1 + lnµ2 + η1τ − η2(dmin − τ) < 0;
where

Υ
(1)
1,i,n = He{AjQ1,i,n + BjX1,i,n} − Ψ1,i,n − η1Q1,i,n

Υ
(2)
1,i,n = He{AjQ1,i,n+1 + BjX1,i,n+1} − Ψ1,i,n − η1Q1,i,n+1

Υ
(1)
2,i,n = He{AiQ2,i,n + BiX2,i,n} − Ψ2,i,n + η2Q2,i,n

Υ
(2)
2,i,n = He{AiQ2,i,n+1 + BiX2,i,n+1} − Ψ2,i,n + η2Q2,i,n+1

Υ2,i,L2 = He{AiQ2,i,L2 + BiX2,i,L2} + η2Q2,i,L2

Ψ1,i,n = L1(Q1,i,n+1 − Q1,i,n)/τ

Ψ2,i,n = L2(Q2,i,n+1 − Q2,i,n)/(dmin − τ)

then the closed loop system (5) is exponentially stable, and controller
gains are given by Ki(t) = Xi(t)Q−1

i (t), i ∈ I, where Qi(t) is
defined by (25)–(27) and Xi(t) is

Xi(t) =


X2,i,n(α2,n) t ∈ N2,k,n, n = 0, 1, . . . L2 − 1
X2,i,L2 t ∈ N2,k,L2
X1,i,n(α1,n) t ∈ N1,k,n, n = 0, 1, . . . L1 − 1

(29)

with α2,n, α1,n defined in (25), (27), and X2,i,n(α2,n) = (1 −

α2,n)X2,i,n+α2,nX2,i,n+1, X1,i,n(α1,n) = (1−α1,n)X1,i,n+α1,nX1,i,n+1.

Proof. By constructing Lyapunov function Vi(t, x) = x⊤(t)
Q−1

i (t)x(t), i ∈ I defined by (28), and following the guidelines of
Theorem 1, we have to prove that

Vi(t, x) < e−η2(t−t̂k)Vi(t̂k, x), ∀t ∈ M2 (30)

Vi(t, x) < eη1(t−tk+1)Vi(tk+1, x) ∀t ∈ M1 (31)

which can be implied by

Q̇−1
i (t) + He{Q−1

i (t)Āi,i(t)} + η2Q
−1
i (t) ≺ 0 (32)

Q̇−1
i (t) + He{Q−1

i (t)Āj,i(t)} − η1Q
−1
i (t) ≺ 0 (33)

where Āj,i(t) = Aj + BjKi(t) and Āi,i(t) = Ai + BiKi(t). Due to
fact Q̇−1

i (t) = −Q−1
i (t)Q̇i(t)Q−1

i (t), i ∈ I, multiplying both sides
of (32) and (33) by Qi(t) and from Xi(t) = Ki(t)Qi(t), (32) and
(33) become

−Q̇i(t) + He{AiQi(t) + BiXi(t)} + η2Qi(t) ≺ 0 (34)

−Q̇i(t) + He{AjQi(t) + BjXi(t)} − η1Qi(t) ≺ 0. (35)

Due to h2 = (dmin − τ)/L2 and h1 = τ/L1, it is obtained

Q̇i(t) = L2(Q2,i,n+1 − Q2,i,n)/(dmin − τ), t ∈ M2

Q̇i(t) = L1(Q1,i,n+1 − Q1,i,n)/τ , t ∈ M1.

FromConditions (i), (ii) and by simplemanipulations, (34) and (35)
can be established, hence (30) and (31) hold.

Then,we constructV(t) =
N

i=1 ξi(t)Vi(t, x)where ξi(t), i ∈ I
are the indication functions for controller. If Q2,i,L2 ≼ µ1Q1,i,0 in
Condition (iii) holds, we have −Q1,i,0 + µ−1

1 Q2,i,L2 ≼ 0. By Schur
complement, it equals Q−1

1,i,0 ≼ µ1Q−1
2,i,L2

, leading to V(t+k ) ≤

µ1V(t−k ). Similarly, Q1,j,L1 ≼ µ2Q2,i,0 in Condition (iii) yields
V(t̂+k ) ≤ µ2V(t̂−k ). Then, Condition (iv) has µ1µ2eη1τ−η2(dmin−τ) <
1. By similar guidelines in Theorem 1, the exponential stability can
be proved. �

Two points have to be clarified for controller realization.

(1) The first one is to determine the working ETU at t, t ∈

[t̂k, t̂k+1). Since tk, t̂k are detectable, one sees:
(a) If t̂k ≤ t < tk+1, we have t ∈ N2,k,n where n =

int[(t − t̂k)/h2] 0 ≤ n < L2
L2 n ≥ L2

.

(b) If tk+1 ≤ t < t̂k+1, we have t ∈ N1,k,n where n =

int[(t − tk+1)/h1].
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(2) The second point is to calculate α1,n and α2,n as:
(a) For t ∈ N2,k,n, one has α2,n = (t − t̂k − θ2,n)/h2. Then, by

θ2,n = nh2, we can obtain α2,n = (t − t̂k)/h2 − n.
(b) For t ∈ N1,k,n, we see that α1,n = (t − tk+1 − θ1,n)/h1, and

due to θ1,n = nh1, we get α1,n = (t − tk+1)/h1 − n.

Furthermore, as to Problem 4, we have to reformulate Condition
(iii) in Theorem 2 as

(iii′) Q2,i,L2 ≼ µ1Q1,i,0,Q1,j,n ≼ µ2Q2,i,0, ∀n = 0, 1, . . . , L1, i ≠ j.

Then, we can derive the following proposition.

Proposition 2. If Theorem 2 with Condition (iii′) holds with a
switching delay τ ∗ and minimal dwell time d∗

min, then it still holds for
any τ ∈ [0, τ ∗

] and dmin ∈ [d∗

min, ∞).

Proof. It can be demonstrated by similar proof lines in Proposi-
tion 1, which is omitted here. �

Remark 2. By the similar discussion for Problem2, if the Lyapunov
function decay rate η2 for subsystems is prescribed andwe letµ =

µ1 = µ2, the feedback controller (4) maximizing the switching-
delay tolerant capability τ ∗ can be obtained by

τ ∗
= max

0<τ<dmin
{τ : (i), (ii), (iii)′ in Theorem 2 hold} (36)

in which µ is fixed and η1 is computed by (23). By checking
the values µ in (0, eη2dmin) with a step ∆µ, the feedback gains
maximizing τ ∗ can be obtained by executing Algorithm 1with (24)
replaced by (36).

4.3. Feedback control with undetectable switching instants

As to the case with undetectable switching, Ki(t) has to
maintain its value in M1 to wait for the correct identification for
the σp(t). Thus, the controller gains become

Ki(t) =


X2,i,n(α2,n)Q

−1
2,i,n(α2,n) t ∈ N2,k,n

X2,i,L2Q
−1
2,i,L2

t ∈ N2,k,L2 ∪ N1,k,n
(37)

where Q2,i,n(α2,n), X2,i,n(α2,n) are defined by (25), (29). The time-
scheduled Lyapunov function is constructed as

Vi(t) =


x⊤(t)Q−1

2,i,n(α2,n)x(t) t ∈ N2,k,n

x⊤(t)Q−1
2,i,L2

x(t) t ∈ N2,k,L2 ∪ N1,k,n.
(38)

Then, the following theorem can be obtained.

Theorem 3. Assuming Assumption 1 holds and there exist scalars
µ > 0, η1 > 0, η2 > 0, and a set of matrices Qi,n ≻ 0, Xi,n, n =

0, 1, · · · , L, i ∈ I such that

(i) Υ1,i ≺ 0;
(ii) Υ

(1)
2,i,n ≺ 0, Υ

(2)
2,i,n ≺ 0, ∀n = 0, 1, . . . , L − 1, Υ2,i,L ≺ 0;

(iii) Qj,L ≼ µQi,0, i ≠ j;
(iv) lnµ + η1τ − η2(dmin − τ) < 0;

where

Υ1,i = He{AjQi,L + BjXi,L} − η1Qi,L

Υ
(1)
2,i,n = He{AiQi,n + BiXi,n} − Ψi,n + η2Qi,n

Υ
(2)
2,i,n = He{AiQi,n+1 + BiXi,n+1} − Ψi,n + η2Qi,n+1

Υ2,i,L = He{AiQi,L + BiXi,L} + η2Qi,L

Ψi,n = L(Qi,n+1 − Qi,n)/(dmin − τ)
Fig. 3. Capability of tolerating switching delay τ ∗ with detectable tk .

then the closed loop system (5) is exponentially stable, and the
controller gains Ki(t), i ∈ I are given as

Ki(t) =


Xi,n(αn)Q

−1
i,n (αn) t ∈ Nk,n

Xi,LQ−1
i,L t ∈ N2,k,n ∪ N1,k,n

(39)

where Qi,n(αn) = (1 − αn)Qi,n + αnQi,n+1, Xi,n(αn) = (1 −

αn)Xi,n + αnXi,n+1 and αn = (t − t̂k)/h − n in which h =
dmin−τ

L

and n =


int[(t − t̂k)/h] 0 ≤ n < L
L n ≥ L. .

Proof. By settingQ1,i,n = Qi,L, ∀n = 0, 1, . . . , L1, µ1 = 1, µ2 = µ
Q2,i,n = Qi,n, h = h2 and L = L2, Theorem 3 becomes Theorem 2,
which completes the proof. �

The following property of Theorem 3 can be obtained.

Proposition 3. If Theorem 3 holds with a switching delay τ ∗ and
minimal dwell time d∗

min, then it still holds for any τ ∈ [0, τ ∗
] and

dmin ∈ [d∗

min, ∞).

Proof. It can be proved by letting Q1,i,n = Qi,L, ∀n = 0, 1, . . . , L1
and Q2,i,n = Qi,n in Proposition 2. �

Remark 3. Similar to (36), if η2 is prescribed, the controller with
maximal τ ∗ can be obtained by

τ ∗
= max

0<τ<dmin
{τ : (i), (ii), (iii) in Theorem 3 hold} (40)

where µ is fixed and η1 < [η2(dmin − τ) − lnµ]/τ .

4.4. Numerical example

Consider a switched linear system with 3 subsystems as

A1 =


−0.6 −1.0 1.3
−1.0 −0.1 0.1
−0.2 0.3 −0.5


, B1 =


−2.3
1.8
0.4



A2 =

1.6 0.6 0.2
0.8 −0.5 0.6
0.2 0.8 −1.0


, B2 =

 0.0
−0.4
−1.5



A3 =

 1.5 0.4 1.3
0.4 1.2 1.3

−1.9 0.6 −0.9


, B3 =

 0.2
−1.3
−0.8


.

Assume dmin = 5 and η2 = 2, both cases with detectable
and undetectable tk are considered. Given different L1, L2 and L,
the obtained τ ∗ are shown in Figs. 3 and 4. The capability of
tolerating switching delay τ ∗ increasesmonotonically as L1, L2 or L
increases. This is consistent with the mode-identifying estimation
problem, that is, a denser division of intervals leads to a less
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Fig. 4. Capability of tolerating switching delay τ ∗ with undetectable tk .

Fig. 5. State response with switching delay τ = 5.

conservative result. In addition, the τ ∗ obtained with detectable
tk is larger than that with undetectable tk. This phenomenon is
because Theorem 3 is only a particular case of Theorem 2. From
the practical point of view, the employment of information tk can
provide less conservativeness, but its cost is an online detection of
switching instants of controlled plant.

Finally, assume tk is undetectable and the maximal switching
delay is 10% of the minimal dwell time, i.e. τ ∗

= 0.5. From Fig. 4,
the controller with L = 1 (τ ∗

= 0.54) can tolerate this switching
delay. Given a σp(t) with tk+1 − tk = 5, k = 0, 1, . . . , the
subsystem activating order is cyclic, i.e., 3 → 2 → 1 → 3 → · · · .
The switching instants and state responses are shown in Fig. 5, by
which the closed loop system is asymptotically stable.

5. Conclusions

In this paper, an elementary timeunitmethod (ETU) is proposed
to solve mode-identifying time estimation and switching-delay
tolerant control problems. A class of time-scheduled Lyapunov
functions involving the information of switching signal are
constructed to deal with the problems. By deriving a sufficient
condition guaranteeing exponential stability in the presence of
mode-identifying time, an algorithm is proposed for the estimation
on the maximal admissible mode-identifying time. Then, the
switching-delay tolerant control is studied, where the cases
with detectable and undetectable switching instants are both
considered. Several numerical examples are used to validate our
results. Some extension based on ETU can be directly made
such as to the case with all modes unstable (Xiang & Xiao,
2014a), asynchronously switching control (Xiang & Xiao, 2012;
Zhang & Shi, 2009), and discrete-time switched system (Briat,
2014; Xiang & Xiao, 2014b). As in Allerhand and Shaked (2011,
2013), the proposed ETU approach is particularly suitable to deal
with uncertainties. Moreover, this paper only considers the state
feedback with all states accessible, the extension to more general
case with output feedback control such as in Duan and Wu (2014)
and Lu et al. (2006) will be our future study.

Appendix

Proof of Lemma 1. Considering the time-scheduled Lyapunov
function Vi(t, x), i ∈ I defined by (6), and in each ETU N1,k,n, one
has Ṗi(t) = (P1,i,n+1 − P1,i,n)α̇1,n. Due to α1,n = (t − tk − θ1,n)/h1,
we have α̇1,n = 1/h1 and further Ṗi(t) = Ψ1,i,n, t ∈ N1,k,n. Thus,
we obtain

V̇i(t, x) = x⊤(t)Ξ1,i,n(α1,n)x(t)

where Ξ1,i,n(α1,n) = Ā⊤

i,jP1,i,n(α1,n) + P1,i,n(α1,n)Āi,j + Ψ1,i,n.
By the linear interpolation relationship as shown in Subsection
3.1, we have Ξ1,i,n(α1,n) = (1 − α1,n)Ξ

(1)
1,i,n + α1,nΞ

(2)
1,i,n, where

Ξ
(1)
1,i,n = Ā⊤

i,jP1,i,n + P1,i,nĀi,j + Ψ1,i,n and Ξ
(2)
1,i,n = Ā⊤

i,jP1,i,n+1 +

P1,i,n+1Āi,j + Ψ1,i,n. Thus, from Ω
(1)
1,i,n ≺ 0, Ω

(2)
1,i,n ≺ 0, ∀n =

0, 1, . . . , L1 − 1, ∀i ∈ I. it follows that V̇i(t, x) < η1Vi(t, x), t ∈
n=0,1,...,L1−1 N1,k,n = [tk, tk + τ). Thus the inequality (10) can be

established. �

Proof of Lemma 2. As for certain interval Mc
2 constituted by ETUs

N2,k,n, n = 0, 1, . . . , L2 − 1, from Ω
(1)
2,i,n ≺ 0, Ω

(2)
2,i,n ≺ 0, ∀n =

0, 1, . . . , L2 − 1, ∀i ∈ I and the similar guidelines for interval M1
in Lemma 1, we obtain that V̇i(t, x) < −η2Vi(t, x), ∀t ∈ Mc

2.
Similarly, as to the uncertain interval Mu

2, Ω2,i,L2 ≺ 0, ∀i ∈ I,
ensures V̇i(t, x) < −η2Vi(t, x), ∀t ∈ Mu

2 . At last, since M2 =

Mc
2 ∪ Mu

2 , we can conclude (15) holds. �
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