
European Journal of Operational Research 236 (2014) 800–810
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
A branch-and-cut-and-price algorithm for the cumulative
capacitated vehicle routing problem
0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.08.032

⇑ Corresponding author. Tel.: +45 8716 4898.
E-mail addresses: lys@asb.dk (J. Lysgaard), sanw@asb.dk (S. Wøhlk).

1 Supported by NordForsk Project No. 25900.
Jens Lysgaard ⇑,1, Sanne Wøhlk 1

CORAL, Department of Economics and Business, Aarhus University, Fuglesangs Allé 4, DK-8210 Århus, Denmark

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 30 August 2013

Keywords:
Routing
Minimum latency
CCVRP
Branch-and-cut-and-price
In this paper we consider the Cumulative Capacitated Vehicle Routing Problem (CCVRP), which is a var-
iation of the well-known Capacitated Vehicle Routing Problem (CVRP). In this problem, the traditional
objective of minimizing total distance or time traveled by the vehicles is replaced by minimizing the
sum of arrival times at the customers. We propose a branch-and-cut-and-price algorithm for obtaining
optimal solutions to the problem. To the best of our knowledge, this is the first published exact algorithm
for the CCVRP. We present computational results based on a set of standard CVRP benchmarks and inves-
tigate the effect of modifying the number of vehicles available.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The Capacitated Vehicle Routing Problem (CVRP) is one of the
most well-studied problems within the area of transportation
optimization. Recently it has, however, become clear to the
research community that the CVRP does not fully capture the
essence of real life transportation problems. This has for instance
led to the introduction of so-called Rich Vehicle Routing Problems
(Hartl, Hasle, & Janssens, 2006), a family of problems which cap-
ture the complications of real life problems far better than the
classical CVRP.

One aspect of rich vehicle routing problems is the consideration
of objective functions that differ from the traditional one of mini-
mizing the total distance or time traveled by the vehicles. These
include minimizing the number of vehicles used and minimizing
the length of the longest tour. The latter is known as a Min–Max
objective and is studied by Golden, Laporte, and Taillard (1997)
and Applegate, Cook, Dash, and Rohe (2002), among others. Other
studies consider simultaneous optimization of multiple objectives
(Bowerman, Hall, & Calamai, 1995; Corberán, Fernández, Laguna, &
Martí, 2002).

In this paper we consider the variation of the CVRP where the
objective is to minimize the sum of arrival times at the customers,
for a fixed starting time of each route. This problem is known as the
Cumulative Capacitated Vehicle Routing Problem (CCVRP). We
note that minimizing the sum of arrival times is equivalent to
minimizing the average arrival time.
The CCVRP occurs in several applications. It is relevant in distri-
bution systems where it is desirable to provide early service
measured across the whole set of customers. In school bus routing,
for example, minimizing average arrival time is one fairness mea-
sure which may have priority over minimizing total distance trav-
eled. A more detailed discussion of performance criteria in the
context of school bus routing is provided in Bowerman et al.
(1995). Furthermore, when natural disasters strike, it is essential
that aid arrives quickly in order to save lives and provide emer-
gency supplies, so the traditional goal of cost minimization must
step aside for fast response and fairness. Several performance mea-
sures can be used in relation to providing aid to multiple locations
quickly, and minimizing the latest arrival time or minimizing the
average arrival time are among the commonly used. The effect
on the quality of one objective function when optimizing another
is investigated by Campbell, Vandenbussche, and Hermann
(2008) in the context of relief effort.

The outline of our paper is as follows. We first consider related
literature in Section 2. Our mathematical model formulation is pre-
sented in Section 3, our algorithm is described in Section 4, and
computational results are given in Section 5. Finally, we present
the conclusion and perspectives in Section 6.
2. Related literature

The CCVRP has recently been studied from a heuristic point of
view in several papers. These studies include Iterated Local Search
(Chen, Dong, & Niu, 2012), Adaptive Large Neighborhood Search
(Ribeiro & Laporte, 2012), Memetic algorithms (Ngueveu, Prins, &
Wolfler Calvo, 2010), and a two-phase heuristic (Ke & Feng,
2013). In Ke and Feng (2013), the performance of three algorithms

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2013.08.032&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.08.032
mailto:lys@asb.dk
mailto:sanw@asb.dk
http://dx.doi.org/10.1016/j.ejor.2013.08.032
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

J. Lysgaard, S. Wøhlk / European Journal of Operational Research 236 (2014) 800–810 801
(Ke & Feng, 2013; Ngueveu et al., 2010; Ribeiro & Laporte, 2012)
were compared. Based on that comparison, the two-phase algo-
rithm (Ke & Feng, 2013) and the Adaptive Large Neighborhood
Search (Ribeiro & Laporte, 2012) each provide the best known solu-
tion for about half of the test instances.

Kara, Kara, and Yetis� (2008) consider a variation of the CCVRP,
where the objective function to be minimized is not the sum of arrival
times, but rather the sum of arrival times multiplied by the demand of
the node. They refer to this problem, which is an extension of the
CCVRP, as CumVRP and study the relationship to various other prob-
lems. Flow based formulations of the problem for both the delivery
and the collection case are presented and based on these, the authors
are able to solve instances with up to 34 locations.

The uncapacitated version of the CCVRP is known as the k-trav-
eling repairman problem, where k is the number of vehicles avail-
able. For this problem, Fakcharoenphol, Harrelson, and Rao (2007)
present an 8.497-approximation algorithm which is partly based
on a result due to Chaudhuri, Godfrey, Rao, and Talwar (2003).
Jothi and Raghavachari (2007) study an extension of the k-travel-
ing repairman problem in which there is a repair time in addition
to the travel time. They present a ð32 bþ 1

2Þ-approximation
algorithm for this problem, where b is the approximation factor
obtainable for the k-traveling repairman problem.

The related single vehicle problem, referred to as the Minimum
Latency Problem (MLP), has attracted many researchers. It is well
studied both from an approximation and an exact point of view.
The current best approximation algorithm for the MLP is due to
Chaudhuri et al. (2003) and achieves an approximation factor of
3.59. Several exact approaches have been proposed for the MLP,
most of which are based on dynamic programming, branch-and-
bound, or a combination of the two (Wu, Huang, & Zhan, 2004).
We refer the reader to Silva, Subramanian, Vidal, and Ochi (2012)
for an overview of research on the MLP.

Dewilde, Cattrysse, Coene, Spieksma, and Vansteenwegen
(2013) study a single vehicle problem, where a profit is obtained
the first time a location is visited and the visit of each location is
optional. The objective is to maximize the sum of profits minus
the sum of arrival times. This problem arises as the subproblem
if the CCVRP is solved using column generation approaches, except
from the exclusion of capacity constraints. The authors present a
tabu seach algorithm for this problem.

Recently, some interesting problem variations, where the MLP
is combined with another problem, have been studied. We point
out a couple of such papers. Levin and Penn (2008) present a
16.31-approximation algorithm for a combination of MLP and
machine scheduling where n jobs are to be processed on a single
machine located at a plant and subsequently are to be delivered
to n individual customer locations by a single vehicle. Processing
times are given for the jobs and travel times are given among the
customers and between the plant and the customers. The goal is
to determine a production sequence for the jobs at the machine
and determine the routing of the vehicle such that the sum of
the delivery times of the jobs at the customers are minimized.
We emphasize that it is fully allowed for the vehicle to pick up jobs
from the plant several times. Li, Vairaktarakis, and Lee (2005) con-
sider a variation of the same problem where several jobs can be
associated with the same customer and the vehicle may or may
not be capacity constrained.

Chakrabarty and Swamy (2011) study a combination of MLP
and facility location. Given a central depot, a set of customers,
and a set of possible facilities, the problem is to determine which
facilities to activate. The objective function to be minimized is
combined of three terms: a fixed cost for each activated facility,
a cost of assigning each customer to a facility (this is not a routing
cost), and a minimum latency cost of a tour connecting the depot
to the facilities.
3. Model formulation

The CCVRP can be defined as follows. Let G = (V, E) be a com-
plete undirected graph, with V = {0, . . ., n}. Vertex 0 represents a
depot, whereas each of the vertices in Vc = {1, . . ., n} represents a
customer. The symmetric travel time between vertices i and j is de-
noted by tij. A number K of identical vehicles, each of capacity Q > 0,
is available. Each customer i has an integer demand qi, with
0 < qi 6 Q. Each customer must be served by a single vehicle and
no vehicle can serve a set of customers whose demand exceeds
its capacity. Each vehicle used must leave the depot at time 0, visit
one or more customers, and return to the depot. The objective is to
minimize the sum of all n arrival times at the customers.

In the following subsections we first describe two individual
formulations (a Set Partitioning and a Vehicle Flow formulation,
respectively) which are then combined into the formulation that
we solve by our algorithm.

3.1. A Set Partitioning formulation

We define a feasible elementary route as a path (0, z1, . . ., zk, 0),
where z1, . . ., zk are k different customers whose total demand does
not exceed the vehicle capacity Q. As such, any feasible elementary
route starts and ends at the depot, and we use the convention that
the starting time at the depot is zero for any route.

For any feasible elementary route r, we define its cost cr as the
sum of arrival times for all customers on the route. Further, let R

denote the set of all feasible elementary routes. Moreover, we let
air be a parameter of value 1 if route r visits customer i and 0 other-
wise, and we let kr be a variable of value 1 if route r is chosen and 0
otherwise. This leads to the following Set Partitioning formulation:

ðSPPÞ
min :

X
r2R

crkr ð1Þ

s:t: :
X
r2R

airkr ¼ 1 8i 2 Vc ð2Þ
X
r2R

kr ¼ K ð3Þ

kr 2 f0;1g 8r 2 R ð4Þ

The objective (1) minimizes the total cost of all routes. Constraints
(2) ensure that each customer is contained in exactly one route, the
constraint (3) specifies the required number of routes K, and (4) are
the binary constraints on the decision variables.

This model can be solved by branch-and-bound (BB), where the
Linear Programming (LP) relaxation in each subproblem is solved
by column generation (CG). This would result in a branch-and-
price (BP) algorithm where the CG subproblem is the problem of
determining a feasible elementary route of minimum reduced cost,
for a given set of dual prices associated with (2) and (3).

In this paper, however, we will develop a different formulation
involving the same set of route variables, and apply branch-and-
cut-and-price (BCP) on this formulation.

3.2. A vehicle flow formulation

While any feasible solution to the CCVRP can be described in
terms of k-variables as in (2)–(4), we also have the alternative of
representing a solution as in the two-index solution space used
in vehicle flow formulations of the CVRP (Laporte, 2009; Lysgaard,
Letchford, & Eglese, 2004), which we reproduce here with the
objective function intentionally omitted. Let xij denote the number
of times a vehicle travels directly between vertices i and j. More-
over, for any S � V, let d(S) denote the set of edges with exactly
one end-vertex in S, where we for simplicity write d(i) instead of

802 J. Lysgaard, S. Wøhlk / European Journal of Operational Research 236 (2014) 800–810
d({i}). Further, for any customer set S # Vc, we let
kðSÞ ¼ d

P
i2Sqi=Qe denote a lower bound on the number of vehicles

required to service the customers in S. Finally, let x(F) denoteP
e2Fxe for any F # E. Then the constraints (5)–(9) describe a feasi-

ble solution to the CVRP.

xðdðiÞÞ ¼ 2 for i ¼ 1; . . . ;n ð5Þ
xðdðSÞÞP 2kðSÞ 8S # Vc; jSjP 2 ð6Þ
xðdð0ÞÞ ¼ 2K ð7Þ
xij 2 f0;1g for i; j ¼ 1; . . . ;n ð8Þ
x0j 2 f0;1;2g for j ¼ 1; . . . ;n ð9Þ

Constraints (5) are the degree equations, (6) are rounded capacity
inequalities (RCIs), and (7) specifies the required number of routes
K. Finally, (8) and (9) are the integrality constraints, where variables
x0j are permitted to take the value 2 in order to allow a vehicle to
serve only a single customer. The formulation in (5)–(9) involves
the requirement that each route begins and ends at the depot. In
other words, in the CVRP each route is required to be closed, unlike
an open route beginning at the depot and ending at a customer, as in
the Capacitated Open Vehicle Routing Problem (COVRP) (Letchford,
Lysgaard, & Eglese, 2007).

For the purpose of working only with closed routes in relation
to the CCVRP, we defined the route set R in Section 3.1 so that
any route ends at the depot. Nonetheless, it is clear from the defi-
nition of route cost that the traversal back to the depot from the
last customer does not influence the route cost at all. Indeed, our
requirement for closed routes is entirely due to our interest in
working with the same solution space as in the CVRP, as specified
by (5)–(9).

3.3. A combined formulation

Following the modeling approach in Fukasawa et al. (2006), as
also described in Laporte (2009), we can combine a formulation
based on route variables, as in the SPP formulation, with the
two-index vehicle flow formulation. Letting be

r denote the number
of times route r traverses edge e 2 E, we have the following
coupling between flow variables and route variables:

xe ¼
X
r2R

be
rkr; 8e 2 E: ð10Þ

The b-coefficients may take values as follows. For a feasible elemen-
tary route r with more than one customer we have that be

r ¼ 1 for
each edge e along the route, whereas be

r ¼ 2 for e = {0, j} if route r
services only customer j.

We are then able to strengthen the SPP formulation by adding
valid inequalities for the 2-index formulation. This leads to a
formulation involving both a large number of rows and columns;
the resulting formulation (SPP-VF) is given in (11)–(18).

ðSPP� VFÞ
min :

X
r2R

crkr ð11Þ

s:t: :
X
r2R

X
e2dðiÞ

be
rkr ¼ 2 8i 2 Vc ð12Þ

X
r2R

kr ¼ K ð13Þ

xðdðSÞÞP 2kðSÞ 8S # Vc; jSjP 2 ð14ÞX
r2R

be
rkr � xe ¼ 0 8e 2 E ð15Þ

kr 2 f0;1g 8r 2 R ð16Þ
xij 2 f0;1g for i; j ¼ 1; . . . ; n ð17Þ
x0j 2 f0;1;2g for j ¼ 1; . . . ;n ð18Þ
We do not attempt to solve (11)–(18) directly; instead, we use
Eq. (15) to reformulate the model so that it contains only route
variables. In this way the RCIs (14) are expressed in route variables,
we avoid the jEj constraints (15), and we obtain a much more
compact formulation. The LP relaxation of the resulting formulation
is given by (19)–(23), which we refer to as the Dantzig-Wolfe Master
problem (DWM), as in Fukasawa et al. (2006).

ðDWMÞ
min :

X
r2R

crkr ð19Þ

s:t: :
X
r2R

X
e2dðiÞ

be
rkr ¼ 2 8i 2 Vc ð20Þ

X
r2R

X
e2dðSÞ

be
rkr P 2kðSÞ 8S # Vc; jSjP 2 ð21Þ

X
r2R

2kr ¼ 2K ð22Þ

kr P 0 8r 2 R ð23Þ

The set of feasible solutions to the CCVRP is given by the set of inte-
ger feasible solutions to DWM. We adopt the general framework of
BB for finding an optimal integer solution to DWM. However, the
presence of both an exponential number of columns (k-variables)
and an exponential number of rows (due to the RCIs in (21)) implies
that we resort to generating both columns and rows dynamically,
i.e., by branch-and-cut-and-price.
4. The algorithm

We have developed a BCP algorithm for the exact solution of the
CCVRP using the DWM formulation. As such, we implement a BB
algorithm in which each node in the search tree consists of an LP
problem which we solve by both column generation and cut
separation.

In the following description of our algorithm, we focus on that
part of the algorithm which in particular deals with the conse-
quences of the particularities of the CCVRP relative to the CVRP.
Essentially, the difference between CCVRP and CVRP lies in the def-
inition of route cost, hence we will give priority to the description
of how to solve the pricing subproblem, although we also briefly
mention the other main ingredients of our BCP algorithm. For fur-
ther details on BCP in relation to the CVRP we refer to (Fukasawa
et al., 2006).

4.1. Initialization

We initialize the solution process by defining an LP containing
only a small number of rows and columns.

The LP contains n + 1 constraints, namely the n degree
equations (20) together with the single constraint (22) specifying
the number of routes.

Moreover, the LP contains a single-customer route for each cus-
tomer. In addition, for the purpose of ensuring that the LP always
has a feasible solution, we create a dummy column which, in any
node of the BB tree, has a coefficient which is identical to the
right-hand side in each of the rows in the LP. In this way, a feasible
LP solution can be obtained simply by setting this dummy variable
to one; obviously, its associated cost is given a prohibitive high
value so that the column will be used only if necessary for the sake
of feasibility.

Together with these n + 1 columns, we add the columns pro-
duced by running a simple nearest neighbor (NN) heuristic, which
works as follows. We start a route at the depot and iteratively
extend the route from its current end point to the nearest yet
unvisited customer subject to the vehicle capacity, where nearest

J. Lysgaard, S. Wøhlk / European Journal of Operational Research 236 (2014) 800–810 803
is measured in terms of travel time. The route extension continues
not necessarily as long as possible, but only until the route under
construction has received an even share of the remaining demand.
Specifically, the first route is completed as soon as its total demand
is at least d

P
i2Vc

qi=Ke. In general, if we let Dk denote the actual
demand on the k’th route, then the required demand on route k
is dð

P
i2Vc

qi �
Pk�1

i¼1 DiÞ=ðK � kþ 1Þe.
This heuristic rule for filling the individual vehicle is introduced

as a very simple attempt to balance the routes in terms of route
lengths and delivered quantities, which in broad terms appears
to be useful in the CCVRP.

4.2. Pricing

Given an optimal solution to the current LP relaxation, we need
to be able to determine whether or not there exists a feasible
elementary route with negative reduced cost. If such a route exists,
we also need to identify one or more such routes.

Under the conventional objective of minimizing route lengths,
the reduced cost of a route can be calculated as the length of a path
from source to sink in an appropriately defined graph, and so that
the length of the path is simply the sum of the lengths of the
individual arcs traversed along the path. This construction is
applied extensively across a wide variety of problem types and
algorithms, where the column generation subproblem is repre-
sented as a resource-constrained shortest path problem. For an
extensive coverage we refer to (Desaulniers et al., 2005; Desrosiers,
Dumas, Solomon, & Soumis, 1995, chap. 2).

However, under the objective in the CCVRP, the cost of travers-
ing an edge is not defined independently from the route on which
the edge is traversed. Basically, in order to evaluate the cost of
traveling directly from i to j, we need to know not only the travel
time from i to j, but also how many customers still remain to be
visited on the route, as the time spent traveling from i to j adds
to the arrival time at each of the remaining customers on the route.

Due to this untraditional cost structure we find it appropriate to
give a detailed description of our pricing calculations in the follow-
ing. We describe the pricing in two stages, where we first consider
how the cost of a route can be calculated, and secondly we describe
how we modify the route cost calculation so as to obtain the re-
duced cost of a route.

4.2.1. Route costs
The total cost cr of a feasible elementary route (0 = z0, z1, . . ., zk, 0)

is the sum of the k arrival times at the customers along the route:

cr ¼
Xj¼k

j¼1

Tzj
ð24Þ

where the arrival time Tzj
at customer zj is calculated as follows:

Tzj
¼ Tzj�1

þ tzj�1zj
for 1 6 j 6 k ð25Þ

with T0 = 0. The recursive nature of (25) highlights the fact that the
travel time from zj�1 to zj is included not only in the arrival time at zj

but in all arrival times at the k � j + 1 last customers on the route.
This suggests an alternative way of calculating the sum of

arrival times, namely as a sum of contributions, one for each edge
traversed from the depot until the last customer on the route, and
where the travel time from zj�1 to zj is weighted by the number of
remaining customers (k � j + 1) on the route:

cr ¼
Xj¼k

j¼1

ðk� jþ 1Þtzj�1zj
ð26Þ

If we would design a procedure where we would build up a route
by repeatedly appending the edge {zj�1zj} to a partial route (0, z1,
. . ., zj�1), then it is seen from (26) that it would be required to
know the number of remaining customers on the route, in order
to determine the cost contribution from traversing the edge {zj�1-

zj}. Not only would this be impractical, but it also leads to our idea
of basically taking the opposite approach, namely to build a route
sequentially in reverse order, i.e., to begin with the end depot and
then repeatedly add an edge before the current first vertex on the
route.

Hence, let us again consider an elementary feasible route with k
customers, but where we now let the subscript increase from the
last to the first customer. As such, we can write the route as
(0 = vk+1, vk, . . ., v1, 0), i.e., vj is the j’th last customer on the route.
The route cost can now be calculated as follows, where the travel
time from vj+1 to vj is weighted by the remaining number (j) of
customers:

cr ¼
Xj¼k

j¼1

jtv jþ1v j
ð27Þ
The important characteristic of (27) is that the cost contribution
from each individual edge is determined without using information
on the preceding part of the route. This allows us to calculate the
cost contribution from each edge immediately while building up a
route in reverse order.

Using the same fundamental idea of building paths in reverse
order, we can define a convenient set of labels for our path calcu-
lations to be used in our pricing of routes. Specifically, we let L(i, a,
q) denote the cost of the minimum cost path from vertex i to the
depot, containing a arcs, and having a total demand of q including
the demand of vertex i. Throughout the calculations we use q0 = 0.

We determine an upper bound ā on a based on how many
customer demands could possibly be loaded onto the same vehicle.
Specifically, ā is the largest integer for which the sum of the ā � 1
smallest demands does not exceed the vehicle capacity,
considering that we have a � 1 customers on a route with a arcs,
starting and ending at the depot.

For computing the L-values we propose the following steps; we
prefix the step numbers by ‘C’ to represent cost calculations, as
opposed to the prefix ‘RC’ which we use later to represent calcula-
tions of reduced costs.

Step (C1). Set L(i, a, q) =1 for i = 0, . . ., n; a = 0, . . ., ā; q = 0, . . ., Q.
Step (C2). Set L(i, 1, qi) = 0, for i = 1, . . ., n.
Step (C3). Compute path costs as follows:
Lði; a; qÞ ¼ min
j2Vcnfig

ðða� 1Þtij þ Lðj; a� 1; q� qiÞÞ;

for i ¼ 0; . . . ;n; a ¼ 2; . . . ; �a; q ¼ qi; . . . ;Q ð28Þ
Proposition 1. The values of L(i, a, q) are determined correctly by
steps C1–C3, for all combinations of i, a, and q.
Proof. In step C1, all entries are set to infinity which effectively
eliminates labels for non-existing paths. In step C2 we set for each
customer i the cost to zero for the combination (i, 1, qi); this is
obviously the only combination that represents the final arc from
customer i back to the depot, and the cost is zero since there are
no customers remaining to be visited. Hence, the values deter-
mined for a = 1 are correct. With respect to the correctness of step
C3, we note that for a P 2 any path starting from vertex i must
necessarily go immediately to some customer j and from there
complete the path along a � 1 arcs to the depot. Along the first
arc from i to j we have a � 1 customers remaining to be visited,

804 J. Lysgaard, S. Wøhlk / European Journal of Operational Research 236 (2014) 800–810
and the travel time tij adds to the arrival time to each of these a � 1
customers, hence we get the contribution of (a � 1)tij from travers-
ing the arc (i, j). In addition, completing the path to the depot must
be made from j along a � 1 arcs with the remaining demand of
q � qi, which by definition is done at minimum cost given by L(j,
a � 1,q � qi). h

4.2.2. Reduced costs
In order to describe how the reduced cost of a route is deter-

mined, we let the dual prices associated with (20)–(22) be denoted
by l, p, and m, respectively.

In the DWM, Eq. (20) may be viewed as constraints (2) of SPP
where both the left hand side and the right hand side have been
multiplied by two. That is, a feasible elementary route will have
a coefficient of two in each constraint of (20) representing a visited
customer on the route, as we on the left hand side of (20) count the
number of traversals in d(i), which equals two for each visit to
customer i. As such, in the calculation of reduced costs, li must
be subtracted twice for each visited customer i on the route.

Concerning constraints (21), we note that the coefficient on the
left hand side equals the number of times that the route traverses
an edge in d(S), hence we must subtract pS for each traversal of an
edge in d(S).

Finally, in relation to (22) we note that m must be subtracted
twice for each route, equivalent to subtracting m once for each
traversal of an edge in d(0).

In order to embed these cost reductions into our pricing algo-
rithm, we define ~ce as the cost reduction induced by each traversal
of edge e, for each e 2 E, and we compute ~ce as follows:

~ce ¼

li þ lj þ
X

SjdðSÞ3e

pS for e ¼ fi; jg 2 E n dð0Þ

mþ lj þ
X

SjdðSÞ3e

pS for e ¼ f0; jg 2 dð0Þ

8>><
>>: ð29Þ

We can now express the reduced cost �cr of route r in the following
form:

�cr ¼ cr �
X
e2E

be
r
~ce ð30Þ

We wish to calculate reduced costs of routes by modifying the
calculations of route costs, i.e., by making modifications to steps
C1–C3. As C1–C3 calculates cr, what remains to be done is to sub-
tract ~ce for each traversal of edge e, for each e 2 E. Accordingly, we
let eLði; a; qÞ denote the reduced cost of the minimum reduced cost
path from vertex i to the depot, containing a arcs, and having a total
demand of q including the demand of vertex i, where the reduced
cost of a path is its cost (as given by L(i, a, q)) minus the cost reduc-
tions for the edges along the path, as given by (29). Effectively, this
leads to steps RC1-RC3, where we use the prefix ‘RC’ to represent
calculations of reduced costs.

Step (RC1). Set eLði; a; qÞ ¼ 1 for i = 0, . . ., n; a = 0, . . ., ā;
q = 0, . . ., Q.
Step (RC2). Set eLði;1; qiÞ ¼ �~ci0, for i = 1, . . ., n.
Step (RC3). Compute reduced path costs as follows:
eLði; a; qÞ ¼ min
j2Vcnfig

ðða� 1Þtij � ~cij þ eLðj; a� 1; q� qiÞÞ;

for i ¼ 0; . . . ;n; a ¼ 2; . . . ; �a; q ¼ qi; . . . ;Q

ð31Þ
In step RC2, the final edge back to the depot has a reduced cost
equal to its cost reduction, as its original cost is zero. With respect
to the recursion in RC3 we note that the calculation is essentially
the same as in step C3, except that we now use ða� 1Þtij � ~cij

instead of (a � 1)tij, i.e., the cost reduction of ~cij is embedded in
the recursion. Correctness of steps RC1-RC3 follows by the same
line of reasoning as in the proof of Proposition 1.

We note that whole routes, i.e., paths that start at the depot, are
associated with values of eLði; a; qÞ for which i = 0.

The recursion in step RC3 does not guarantee the resulting
paths to be elementary. Indeed, we have adopted the strategy of
allowing paths to be non-elementary. However, we eliminate the
occurrence of 2-cycles, as in many previous approaches to column
generation in vehicle routing (see, e.g., Christofides, Mingozzi, &
Toth, 1981; Irnich & Desaulniers, 2005, chap. 2). For the sake of
brevity, we do not describe the details of the well-established
technique of 2-cycle elimination.

Permitting non-elementary paths allows for a pseudo-polyno-
mial running time. The complexity of our CG procedure is Oð�an2QÞ.
4.3. Cut separation

As observed in Section 3.2, in the space of the x-variables we
may use any of the inequalities that are valid for the CVRP.
However, we use only one class of cuts, namely the RCIs (Lysgaard
et al., 2004), as this in a BCP framework seems to be by far the most
effective class in practice for the CVRP (see Fukasawa et al., 2006).
We use the CVRPSEP package (Lysgaard, 2003) for separating the
RCIs.
4.4. Other ingredients

In our implementation, each BB node is processed by first doing
column generation until no more columns are generated, after
which we call the cut separation routine. If this succeeds in finding
at least one violated cut, we reoptimize the LP and repeat the pro-
cess, again beginning with column generation. The process stops
when no columns as well as no RCIs are produced for the given
LP solution.

In the first call to column generation at each BB node, we run
the NN heuristic in Section 4.1 using modified travel times, i.e.,
we replace each tij by tij � ~cij in order to let the routes be influenced
by the current dual prices. Only in the first call to column genera-
tion do we use the heuristic, in all subsequent iterations do we call
our dynamic programming procedure described in Section 4.2.

In each call to our dynamic programming procedure we allow a
maximum of 5n columns to be returned. These are selected as fol-
lows. Given that all eLði; a; qÞ values have been calculated as de-
scribed in Subsection 4.2.2, we loop through the a-values in
decreasing order, and for each a value we loop through all cus-
tomer indices i. For a given combination of a and i, we identify
the route (0, i, . . ., 0) with minimum reduced cost among routes
with a + 1 arcs (i.e., with a arcs from i to 0); as such, we consider
only the best q-value for each pair of a and i. When all combina-
tions of a and i have been examined, or as soon as 5n routes with
negative reduced cost have been identified, the set of identified
routes with negative reduced cost is returned from the dynamic
programming procedure. All these routes are then added as col-
umns to the LP.

With respect to the branching strategy, we choose to branch on
sets as in (Fukasawa et al., 2006; Lysgaard et al., 2004), i.e., to
branch on the disjunction (x(d(S)) = 2 _ x(d(S)) P 4) in the underly-
ing flow network, where S is a set of customers. Given that we use
this disjunction, we must use a customer set S so that 2 < x⁄

(d(S)) < 4 in order to make the current LP solution infeasible in both
subproblems. We use (Lysgaard, 2003) to identify a single
customer set S. The procedure that we call takes as input the target
value that we want x⁄(d(S)) to be close to, and we simply use 3.0 as
the target value of x⁄(d(S)). It may well happen that jSj = 2, which is
just the special case of branching on a single edge.

J. Lysgaard, S. Wøhlk / European Journal of Operational Research 236 (2014) 800–810 805
Our node selection strategy is ‘best-bound’, i.e., when choosing
a BB node to be processed next, we choose the BB node with the
smallest lower bound.

5. Computational results

We have applied our BCP algorithm on CVRP test instances all of
which are available from www.branchandcut.org. More specifi-
cally, in Subsections 5.1 and 5.2 we give results for all A, B, E, M,
and P instances. We use distances rounded to integer values as tra-
vel times in all these instances. For these experiments we have set
a maximum computing time of one hour.
Table 2
Computational results for B instances.

Name UB Root CG Roo

Obj. Time Obj

B-n31-k5 1830⁄ 1815.5 0.1 182
B-n34-k5 2271⁄ 2252.4 0.4 226
B-n35-k5 2846⁄ 2760.6 0.2 283
B-n38-k6 2103⁄ 2086.6 0.3 210
B-n39-k5 1968 1899.3 0.4 193
B-n41-k6 2329⁄ 2297.9 0.2 231
B-n43-k6 2123⁄ 2099.3 0.3 210
B-n44-k7 2295⁄ 2269.5 0.4 229
B-n45-k5 2386⁄ 2298.9 1.5 237
B-n45-k6 – 1947.2 2.2 199
B-n50-k7 2293 2179.3 1.1 222
B-n50-k8 2953⁄ 2941.8 0.7 294
B-n51-k7 3133⁄ 2991.4 0.6 311
B-n52-k7 2573⁄ 2521.5 2.3 255
B-n56-k7 2358⁄ 2353.9 3.2 235
B-n57-k7 – 3786.7 31.6 384
B-n57-k9 4500⁄ 4489.0 0.8 449
B-n63-k10 4379⁄ 4340.3 1.4 436
B-n64-k9 3222 2479.7 2.1 257
B-n66-k9 4872 4075.6 3.6 409
B-n67-k10 2871 2817.2 2.5 284
B-n68-k9 4058⁄ 4046.0 1.4 405
B-n78-k10 4809 3782.8 12.4 381

Table 1
Computational results for A instances.

Name UB Root CG Roo

Obj. Time Obj

A-n32-k5 2192⁄ 2159.4 0.2 218
A-n33-k5 1725⁄ 1687.1 0.1 170
A-n33-k6 1612⁄ 1600.8 0.1 161
A-n34-k5 2104⁄ 2060.1 0.2 208
A-n36-k5 2279⁄ 2267.0 0.3 227
A-n37-k5 1970⁄ 1912.8 0.4 192
A-n37-k6 2241⁄ 2225.4 0.3 222
A-n38-k5 2084⁄ 2028.1 0.3 206
A-n39-k5 2312⁄ 2265.5 0.5 228
A-n39-k6 2216⁄ 2181.0 0.4 218
A-n44-k6 2563⁄ 2532.7 0.5 253
A-n45-k6 2848⁄ 2739.9 4.3 278
A-n45-k7 2831⁄ 2809.0 0.5 281
A-n46-k7 2373⁄ 2354.0 0.5 236
A-n48-k7 3101⁄ 3083.3 0.5 310
A-n53-k7 3115⁄ 3064.8 1.2 308
A-n54-k7 3357⁄ 3318.9 1.4 332
A-n55-k9 2588⁄ 2539.7 0.6 256
A-n60-k9 3446⁄ 3420.0 1.7 342
A-n61-k9 3652 2786.4 1.4 280
A-n62-k8 3925⁄ 3902.1 2.0 390
A-n63-k10 3256⁄ 3210.9 1.9 323
A-n63-k9 4630⁄ 4585.4 1.9 460
A-n64-k9 4135⁄ 4105.7 2.1 411
A-n65-k9 3487⁄ 3422.6 1.3 344
A-n69-k9 3528⁄ 3489.3 2.4 350
A-n80-k10 7174 5872.8 7.5 589
In Subsection 5.1 we report our results obtained by fixing the
number of routes (i.e., the value of K in (3)) at the minimum pos-
sible, taking the vehicle capacity and customer demands into ac-
count; this number equals the optimal objective value for a Bin
Packing Problem with bin capacity given by the vehicle capacity
and item sizes given by customer demands.

In Subsection 5.2 we report our results obtained by increasing K
by one, i.e., we insist on using one more than the minimum num-
ber of routes. Provided that travel times satisfy the triangle
inequality, the CCVRP objective value will generally improve as a
result of increasing the number of routes. While the rounding
convention used in the test instances implies that the triangle
t CG and RCI BCP

. Time LB Time Nodes

8.2 0.2 1830 0 5
3.7 0.6 2271 2 15
8.9 0.5 2846 3 41
2.0 0.5 2103 1 3
4.7 1.0 1949 – 2503
3.8 0.6 2329 16 233
9.2 0.5 2123 18 183
2.5 0.8 2295 5 47
4.7 3.2 2386 16 65
8.0 3.5 2017 – 2325
9.4 1.8 2257 – 6931
9.5 1.2 2953 7 63
5.9 1.9 3133 16 99
3.1 4.8 2573 3536 2837
8.0 3.8 2358 4 3
5.3 42.9 3863 – 2675
8.5 1.4 4500 5 25
6.5 3.1 4379 235 533
9.6 4.2 2597 – 1871
4.0 5.5 4109 – 3557
2.9 4.5 2860 – 2859
4.8 2.5 4058 14 15
3.1 21.8 3828 – 2477

t CG and RCI BCP

. Time LB Time Nodes

4.8 0.3 2192 1 9
4.6 0.2 1725 2 79
0.4 0.2 1612 0 3
0.5 0.3 2104 2 35
0.7 0.3 2279 1 15
8.0 0.5 1970 14 169
8.0 0.4 2241 2 25
0.2 0.6 2084 7 75
5.9 0.8 2312 9 103
9.0 0.5 2216 3 41
6.1 0.6 2563 7 87
5.4 6.0 2848 171 609
2.2 0.6 2831 6 55
3.5 0.8 2373 4 27
1.0 0.7 3101 1 1
2.2 1.8 3115 31 97
6.3 1.8 3357 120 651
3.6 1.0 2588 40 385
4.4 2.5 3446 418 1557
2.9 2.1 2847 – 2337
7.1 2.8 3925 34 105
8.7 2.9 3256 101 627
4.1 3.1 4630 663 1245
4.6 2.9 4135 242 679
8.0 2.4 3487 1683 1325
4.6 3.4 3528 80 291
2.9 8.8 5922 – 3087

http://www.branchandcut.org

806 J. Lysgaard, S. Wøhlk / European Journal of Operational Research 236 (2014) 800–810
inequality may just be violated by a single unit, the results are still
expected to show a decrease in objective function value as a
function of a larger number of vehicles.

Finally, in Subsection 5.3 we report our results from applying
our BCP algorithm on the ‘CMT’ instances which have been used
for testing recently published metaheuristics. Unlike the instances
with integer distances in Subsections 5.1 and 5.2, the CMT in-
stances have real distances. We allow a computing time of eight
hours for the CMT instances.

All computations were done on a PC with a 2.53 GHz Intel Core
2 Duo P8700 processor and 1.86 GB RAM running under Microsoft
Windows XP. We used the IBM ILOG CPLEX 12.2 callable library
and the Microsoft Visual Studio 2005 C/C++ compiler. All comput-
ing times are reported in seconds.
5.1. Results with a minimum number of routes

Tables 1–4 show the results. Column ‘Name’ gives the name of
the instance, where the two numbers in the instance name indicate
the number of vertices including the depot, and the minimum
Table 4
Computational results for P instances.

Name UB Root CG Ro

Obj. Time Ob

P-n16-k8 396⁄ 396.0 0.1 39
P-n19-k2 849⁄ 821.9 0.1 84
P-n20-k2 924⁄ 905.0 0.1 91
P-n21-k2 928⁄ 922.5 0.2 92
P-n22-k2 991⁄ 988.1 0.2 99
P-n22-k8 681⁄ 676.0 0.0 68
P-n23-k8 616⁄ 600.6 0.0 61
P-n40-k5 1541⁄ 1529.7 0.7 15
P-n45-k5 1894⁄ 1885.6 1.1 18
P-n50-k7 1554⁄ 1552.5 0.6 15
P-n50-k8 – 1485.2 1.1 14
P-n50-k10 1347⁄ 1330.9 0.1 13
P-n51-k10 1487⁄ 1455.7 0.3 14
P-n55-k7 1764⁄ 1749.9 1.0 17
P-n55-k8 1768⁄ 1757.6 0.7 17
P-n55-k10 1463⁄ 1449.4 0.3 14
P-n55-k15 1414⁄ 1384.4 0.1 13
P-n60-k10 1704⁄ 1688.4 0.6 16
P-n60-k15 1509⁄ 1486.9 0.2 14
P-n65-k10 1948⁄ 1924.6 0.8 19
P-n70-k10 2121⁄ 2095.7 1.7 21
P-n76-k4 6191 4491.0 126.3 45
P-n76-k5 5463 3728.3 68.8 37
P-n101-k4 8707 6787.9 1889.3 68

Table 3
Computational results for E and M instances.

Name UB Root CG Ro

Obj. Time Ob

E-n22-k4 845⁄ 839.5 0.0 84
E-n23-k3 1908⁄ 1833.3 0.5 18
E-n30-k3 1987 1837.1 0.5 19
E-n33-k4 2852⁄ 2820.9 1.0 28
E-n51-k5 2213⁄ 2190.9 2.4 21
E-n76-k7 3503 2870.5 10.4 28
E-n76-k8 3674 2638.1 7.0 26
E-n76-k10 3364 2325.4 4.5 23
E-n76-k14 – 2052.3 5.8 20
E-n101-k8 5166 3918.8 62.3 39
E-n101-k14 4022 2919.3 34.2 29
M-n101-k10 3566 3523.4 24.9 35
M-n121-k7 8539 7031.1 189.3 70
M-n151-k12 6314 4884.5 260.9 48
possible number of routes, respectively. For example, the instance
A-n32-k5 has 31 customers and requires at least 5 routes.

Column ‘UB’ gives the upper bound, i.e., the objective value of
the best known feasible solution, where a ‘*’ means that the bound
is proven optimal. A ‘–’ represents that no feasible solution were
found in our computations. In our algorithm, the only source of
feasible solutions was the BCP algorithm itself, i.e., only when
the LP solution in the individual BB node was integer and feasible
did we record a feasible solution (possibly using routes produced
by our NN heuristic).

The two columns under the heading ‘Root CG’ show the LP
objective value and the associated computing time at the root node
when it happens for the first time that no columns are produced for
the given LP solution.

Similarly, the next two columns under the heading ‘Root CG &
RCI’ show the LP objective value and the associated computing
time at the root node when it happens for the first time that no col-
umns as well as no RCIs are produced for the given LP solution.

Finally, the three columns under the heading ‘BCP’ show the
overall results for the BCP algorithm, specifically the global lower
bound, the total computing time (where a ‘–’ represents that the
ot CG and RCI BCP

j. Time LB Time Nodes

6.0 0.1 396 0 1
4.0 0.1 849 0 13
6.6 0.2 924 1 9
8.0 0.2 928 0 1
1.0 0.3 991 0 1
1.0 0.0 681 0 1
0.0 0.0 616 0 7
30.6 0.9 1541 5 33
88.1 1.3 1894 4 11
54.0 0.7 1554 1 1
89.8 1.3 1528 – 2637
33.7 0.2 1347 6 155
58.2 0.4 1487 2113 2563
52.8 1.2 1764 13 85
60.7 1.1 1768 5 21
54.7 0.5 1463 3 39
90.4 0.2 1414 51 465
91.3 0.9 1704 13 101
95.6 0.3 1509 3 89
27.0 1.0 1948 70 405
00.7 2.4 2121 73 243
08.1 138.8 4553 – 923
38.2 74.5 3775 – 1579
06.3 1994.8 6807 – 5

ot CG and RCI BCP

j. Time LB Time Nodes

1.0 0.0 845 0 3
61.8 1.0 1908 9 39
19.5 0.8 1984 – 1711
30.7 1.3 2852 15 115
91.4 2.8 2213 26 103
72.5 11.0 2905 – 2645
40.1 7.7 2672 – 2469
30.0 5.4 2357 – 2663
53.7 6.5 2075 – 2761
25.0 68.6 3951 – 1289
22.6 37.5 2941 – 3529
30.2 27.6 3556 – 3267
68.8 259.6 7089 – 727
97.9 300.0 4912 – 669

J. Lysgaard, S. Wøhlk / European Journal of Operational Research 236 (2014) 800–810 807
one hour time limit was reached), and the number of nodes in the
search tree.

For example, the instance A-n32-k5 has an optimal objective
value of 2192, and this is concluded by the BCP in 1 second using
a BB tree with 9 nodes. At the root node of the BB tree, the lower
bound from using only column generation is 2159.4 (found in
0.2 second), whereas the addition of RCIs increases the lower
bound to 2184.8 (found in a total of 0.3 second).

For many instances, the combination of CG and RCIs produces
much tighter bounds than those obtained with CG only (such as
for A-n32-k5), whereas the CG bound for other instances (such
Table 6
Computational results for B instances with an extra vehicle.

Name UB Root CG Ro

Obj. Time Ob

B-n31-k5+1 1790⁄ 1790.0 0.1 17
B-n34-k5+1 2136⁄ 2135.3 0.3 21
B-n35-k5+1 2703⁄ 2689.0 0.1 27
B-n38-k6+1 2053⁄ 2052.8 0.2 20
B-n39-k5+1 1844⁄ 1841.8 0.4 18
B-n41-k6+1 2234⁄ 2204.4 0.1 22
B-n43-k6+1 2055⁄ 2030.8 0.4 20
B-n44-k7+1 2254⁄ 2246.8 0.4 22
B-n45-k5+1 2197⁄ 2140.9 1.7 21
B-n45-k6+1 1884⁄ 1859.0 0.6 18
B-n50-k7+1 2135⁄ 2108.4 1.2 21
B-n50-k8+1 2901⁄ 2895.9 0.7 29
B-n51-k7+1 2895⁄ 2886.3 0.6 28
B-n52-k7+1 2461⁄ 2451.2 1.5 24
B-n56-k7+1 2316⁄ 2309.3 2.0 23
B-n57-k7+1 3689⁄ 3685.4 1.9 36
B-n57-k9+1 4473⁄ 4464.8 0.5 44
B-n63-k10+1 4305⁄ 4286.7 1.2 43
B-n64-k9+1 2444⁄ 2409.0 1.5 24
B-n66-k9+1 3956⁄ 3946.1 4.1 39
B-n67-k10+1 2768⁄ 2768.0 1.6 27
B-n68-k9+1 4015⁄ 4009.7 1.2 40
B-n78-k10+1 3728⁄ 3698.8 2.9 37

Table 5
Computational results for A instances with an extra vehicle.

Name UB Root CG Ro

Obj. Time Ob

A-n32-k5+1 2021⁄ 2021.0 0.2 20
A-n33-k5+1 1571⁄ 1545.8 0.1 15
A-n33-k6+1 1461⁄ 1452.0 0.1 14
A-n34-k5+1 1879⁄ 1854.0 0.2 18
A-n36-k5+1 2133⁄ 2127.7 0.3 21
A-n37-k5+1 1747⁄ 1732.5 0.3 17
A-n37-k6+1 2103⁄ 2093.1 0.5 20
A-n38-k5+1 1794⁄ 1768.8 0.4 17
A-n39-k5+1 2116⁄ 2080.5 0.9 20
A-n39-k6+1 2058⁄ 2049.5 0.4 20
A-n44-k6+1 2377⁄ 2369.3 0.5 23
A-n45-k6+1 2527⁄ 2462.5 0.5 24
A-n45-k7+1 2731⁄ 2715.4 0.3 27
A-n46-k7+1 2242⁄ 2237.0 0.4 22
A-n48-k7+1 3001⁄ 2975.2 0.5 29
A-n53-k7+1 2897⁄ 2886.8 0.8 28
A-n54-k7+1 3188⁄ 3159.7 1.1 31
A-n55-k9+1 2455⁄ 2443.9 0.4 24
A-n60-k9+1 3356⁄ 3347.4 1.2 33
A-n61-k9+1 2640⁄ 2603.6 0.9 26
A-n62-k8+1 3787⁄ 3783.5 1.7 37
A-n63-k10+1 3146⁄ 3113.3 2.1 31
A-n63-k9+1 4509⁄ 4504.6 1.0 45
A-n64-k9+1 4024⁄ 4012.5 1.9 40
A-n65-k9+1 3306⁄ 3268.0 1.0 32
A-n69-k9+1 3294⁄ 3281.2 2.4 32
A-n80-k10+1 5802⁄ 5772.9 3.8 57
as for E-n51-k5) is not improved much by the addition of RCIs.
Viewed across all instances, however, we believe that the results
confirm the effectiveness of combining CG and RCIs as in our BCP.

In general, we do find it encouraging that our algorithm is able
to solve the majority of instances with a limited computational
effort.

For the sake of completeness we note that the instance
M-n200-k16 is omitted from Table 3, as the one hour of computing
time was exceeded without reaching the situation where column
generation produced no columns; moreover, no feasible solution
was obtained.
ot CG and RCI BCP

j. Time LB Time Nodes

90.0 0.1 1790 0 1
35.5 0.3 2136 1 3
02.5 0.3 2703 0 3
53.0 0.2 2053 0 1
43.5 0.5 1844 1 3
19.2 0.3 2234 82 713
37.8 0.5 2055 784 3083
50.1 0.6 2254 6 89
87.2 2.7 2197 15 115
78.6 1.0 1884 5 33
26.3 1.8 2135 14 155
00.0 1.0 2901 3 9
90.8 0.8 2895 3 9
60.5 1.8 2461 6 9
12.7 2.2 2316 11 51
86.6 2.1 3689 5 7
70.4 0.9 4473 22 265
00.4 2.0 4305 14 125
29.6 2.7 2444 446 1239
47.2 4.8 3956 139 771
68.0 1.6 2768 2 1
14.1 2.2 4015 5 5
23.0 6.5 3728 65 153

ot CG and RCI BCP

j. Time LB Time Nodes

21.0 0.2 2021 0 1
53.9 0.2 1571 2 71
58.5 0.2 1461 0 7
63.0 0.3 1879 2 35
29.4 0.3 2133 1 17
35.2 0.4 1747 4 41
97.0 0.6 2103 2 21
94.0 0.5 1794 0 1
81.0 0.9 2116 17 305
49.5 0.4 2058 1 9
71.8 0.7 2377 1 11
93.7 1.0 2527 15 219
19.3 0.5 2731 9 147
40.0 0.5 2242 1 3
91.9 0.6 3001 4 29
90.8 0.9 2897 7 17
64.1 1.4 3188 73 659
50.7 0.6 2455 3 25
50.0 1.5 3356 8 35
14.6 1.3 2640 143 639
83.5 1.7 3787 7 11
31.8 2.7 3146 61 393
08.3 1.5 4509 5 3
15.9 2.7 4024 21 127
78.8 1.5 3306 66 399
87.0 3.0 3294 11 9
89.8 4.9 5802 70 199

808 J. Lysgaard, S. Wøhlk / European Journal of Operational Research 236 (2014) 800–810
5.2. Results with an extra route

Tables 5–8 show the results (under the same headings as in Ta-
bles 1–4) for these instances. We have appended a ‘+1’ to the in-
stance names in order to emphasize that an extra vehicle has
been added.
Table 9
Computational results for CMT instances.

Name Other name Our code

LB Tim

CMT1 E-n51-k5 2230.35⁄ 27
CMT2 E-n76-k10 2391.63⁄ 22,5
CMT3 E-n101-k8 4045.42⁄ 25,0
CMT4 M-n151-k12 4987.52⁄ 780
CMT5 M-n200-k16+1 5775.28 28,8
CMT11 M-n121-k7 7197.69 28,8
CMT12 M-n101-k10 3558.92⁄ 841

Table 7
Computational results for E and M instances with an extra vehicle.

Name UB Root CG

Obj. Time

E-n22-k4+1 712⁄ 712.0 0.1
E-n23-k3+1 1457⁄ 1449.3 0.6
E-n30-k3+1 1638⁄ 1619.3 0.4
E-n33-k4+1 2689⁄ 2687.2 0.8
E-n51-k5+1 1899⁄ 1888.2 2.0
E-n76-k7+1 2640⁄ 2617.2 13.2
E-n76-k8+1 2457⁄ 2428.8 6.3
E-n76-k10+1 2206⁄ 2188.8 2.7
E-n76-k14+1 1976⁄ 1968.5 1.0
E-n101-k8+1 3644⁄ 3615.7 64.1
E-n101-k14+1 3660 2820.3 6.4
M-n101-k10+1 4591 3408.8 11.5
M-n121-k7+1 9073 6785.8 393.6
M-n151-k12+1 6222 4648.2 783.3
M-n200-k16+1 7685 5638.6 1375.3

Table 8
Computational results for P instances with an extra vehicle.

Name UB Root CG R

Obj. Time O

P-n16-k8+1 388⁄ 387.5 0.1 3
P-n19-k2+1 620⁄ 618.5 0.0 6
P-n20-k2+1 693⁄ 691.0 0.1 6
P-n21-k2+1 710⁄ 710.0 0.1 7
P-n22-k2+1 763⁄ 762.2 0.1 7
P-n22-k8+1 618⁄ 618.0 0.0 6
P-n23-k8+1 567⁄ 564.5 0.0 5
P-n40-k5+1 1360⁄ 1350.0 0.5 1
P-n45-k5+1 1670⁄ 1656.7 0.7 1
P-n50-k7+1 1439⁄ 1434.5 0.4 1
P-n50-k8+1 1366⁄ 1361.9 0.2 1
P-n50-k10+1 1264⁄ 1256.8 0.1 1
P-n51-k10+1 1370⁄ 1364.2 0.2 1
P-n55-k7+1 1609⁄ 1605.1 0.7 1
P-n55-k8+1 1620⁄ 1607.5 0.6 1
P-n55-k10+1 1386⁄ 1383.5 0.3 1
P-n55-k15+1 1299⁄ 1287.2 0.1 1
P-n60-k10+1 1595⁄ 1595.0 0.4 1
P-n60-k15+1 1459⁄ 1451.7 0.1 1
P-n65-k10+1 1834⁄ 1823.3 0.6 1
P-n70-k10+1 1974⁄ 1971.5 0.9 1
P-n76-k4+1 3767 3689.4 81.3 3
P-n76-k5+1 4119 3203.2 20.1 3
P-n101-k4+1 7501 5592.0 1695.7 5
In addition to obtaining the smaller objective function value as
expected, we also observe that the instances seem much easier to
solve with an extra vehicle. For the B instances, this may very well
be due to the structure of the location of customers. Indeed, in the
B instances the customers are located in clusters, and the number
of clusters exceed the minimum number of vehicles (see Augerat,
Metaheuristics

e NPC RL KF

2230.35⁄ 2230.35⁄ 2230.35⁄

11 2426.12 2391.63⁄ 2391.63⁄

33 4045.42⁄ 4045.42⁄ 4045.42⁄

1 4987.52⁄ 4987.52⁄ 4987.52⁄

00 5817.75 5838.32 5809.59
00 7317.98 7315.87 7314.55

3558.92⁄ 3558.92⁄ 3558.92⁄

Root CG and RCI BCP

Obj. Time LB Time Nodes

712.0 0.1 712 0 1
1453.1 0.8 1457 1 3
1636.3 0.5 1638 1 3
2689.0 0.9 2689 1 1
1889.8 2.3 1899 10 31
2619.2 13.7 2640 611 941
2428.9 6.4 2457 1343 2023
2192.1 3.3 2206 84 439
1971.4 1.3 1976 4 17
3622.2 69.7 3644 1832 767
2821.6 7.2 2839 – 4041
3413.3 12.5 3430 – 5151
6799.4 427.5 6814 – 773
4660.9 822.0 4674 – 367
5662.0 1474.0 5665 – 17

oot CG and RCI BCP

bj. Time LB Time Nodes

88.0 0.1 388 0 3
20.0 0.0 620 0 1
91.0 0.1 693 0 5
10.0 0.1 710 0 1
62.2 0.1 763 0 3
18.0 0.0 618 0 1
66.5 0.0 567 0 3
350.7 0.5 1360 2 37
656.7 0.7 1670 7 37
435.6 0.5 1439 1 9
362.5 0.3 1366 1 15
258.0 0.2 1264 1 21
367.0 0.2 1370 0 5
605.2 0.8 1609 2 7
607.7 0.7 1620 11 103
386.0 0.3 1386 0 1
295.1 0.2 1299 1 25
595.0 0.4 1595 0 1
457.6 0.2 1459 0 7
827.2 0.8 1834 5 43
971.7 0.9 1974 2 5
701.4 90.7 3736 – 1435
206.4 22.0 3243 – 2319
603.8 1776.7 5604 – 5

J. Lysgaard, S. Wøhlk / European Journal of Operational Research 236 (2014) 800–810 809
1995), which necessitates some inter-cluster driving by one or
more vehicles if K is fixed at the minimum possible. With an extra
vehicle, there will be more flexibility towards having clusters ser-
viced by separate vehicles.

However, also for the A and P instances do we find that the ex-
tra vehicle makes the problems more easily solved. Further, most
of the E instances are also easily solved with the extra vehicle.

From a practical perspective, this seems to be a very promising
result. Indeed, the nature of the objective function does in itself
suggest that it will be beneficial for customers to allow for more
routes. Our results seem to suggest that under such circumstances
with a higher number of routes, many CCVRP instances are solv-
able with a limited computational effort.
5.3. Results for CMT instances

Finally, we have performed some further computational results
to assess the quality of heuristic methods for the CCVRP. In
particular, the CMT instances used by Christofides, Mingozzi, and
Toth (1979, chap. 11) have been used for testing the metaheuristics
for the CCVRP in Ke and Feng (2013), Ngueveu et al. (2010), Ribeiro
and Laporte (2012), and we have accordingly made an attempt to
solve them by our code. The first three of these instances were
actually introduced in Christofides and Eilon (1969), whereas the
remaining four instances were introduced in Christofides et al.
(1979, chap. 11). In Table 9 we have also given the other name
by which the individual instance is known, using our naming
convention from Tables 1–8. As noted, all distances are real-valued
in these instances.

In six of the seven instances in Table 9, the number of vehicles is
fixed at the minimum possible, whereas an extra vehicle is avail-
able in CMT5. Following our naming convention, for this instance
we have used the alternative name M-n200-k16+1 in order to
emphasize that the number of vehicles is actually one more than
the minimum possible.

Table 9 shows the results. For each of the instances, the table
shows our lower bound and the time spent by our code, respec-
tively. Our LB is marked by a ‘*’ if it is proven to be optimal, other-
wise we report the LB obtained after eight hours. For each instance
we also report the upper bounds obtained by three metaheuristics,
namely those of Ngueveu, Prins and Wolfler Calvo (NPC) (Ngueveu
et al., 2010), Ribeiro and Laporte (RL) (Ribeiro & Laporte, 2012), and
Ke and Feng (KF) (Ke & Feng, 2013), respectively.

We find it very encouraging that our code was able to find the
proven optimal solution to five of the CMT instances, including
the instance M-n151-k12 with as many as 150 customers.

The results in Table 9 also show that both RL and KF found the
optimal solution to all five instances that we solved to optimality,
whereas NPC reached the optimum to four of the five instances. As
such, our results do indeed confirm the high quality of the three
metaheuristics.
6. Conclusion and perspectives

In this paper we have proposed an exact algorithm for the
CCVRP. Our algorithm is a BCP algorithm, which previously has
shown to be an effective type of algorithm for the CVRP. Our com-
putional experiments on well-known CVRP instances show that
our algorithm is able to solve many CCVRP instances with a limited
computational effort. Our algorithm has shown to be particularly
effective in solving the CCVRP instances if we allow for one more
than the minimum number of routes.

While our work is concerned with the CCVRP itself, we consider
this work on the CCVRP also as a contribution towards being able
to solve a wider spectrum of vehicle routing problems, taking into
account issues of sustainability in transportation.

In particular, fuel consumption and CO2 emission do not de-
pend solely on distance but are also influenced by factors such as
type of vehicle and engine, speed, street surface, and load of the
vehicle (we refer to Sbihi & Eglese (2006) for a survey).

The cost structure in the CCVRP may actually be viewed as one
where the cost per distance unit along an arc is proportional to the
weight of the vehicle when traversing the arc, provided that the
number of customers on board the vehicle is used as the measure
of weight of the vehicle.

More generally, a vehicle’s fuel consumption might be
modeled as a product of distance travelled and vehicle weight
(see, e.g., Kara, Kara, & Yetis�, 2007), but where the vehicle
weight includes both the weight of the empty vehicle and the
load on board the vehicle when traversing the individual arc.
We consider our model and algorithm for the CCVRP to be a step
in the direction towards being able to handle such more general
structures.
Acknowledgement

The authors thank two anonymous referees for their helpful
comments which led to an improved paper.
References

Applegate, D., Cook, W., Dash, S., & Rohe, A. (2002). Solution of a min–max vehicle
routing problem. INFORMS Journal of Computing, 14(2), 132–143.

Augerat, P. (1995). Approche polyédrale du Problème de Tournées de Véhicules.
PhD thesis, Laboratoire ARTEMIS-IMAG, Institut National Polytechnique de
Grenoble, France.

Bowerman, R., Hall, B., & Calamai, P. (1995). A multi-objective optimization
approach to urban school bus routing: Formulation and solution method.
Transportation Research Part A, 29A(2), 107–123.

Campbell, A. M., Vandenbussche, D., & Hermann, W. (2008). Routing for relief
efforts. Transportation Science, 42(2), 127–145.

Chakrabarty, D., & Swamy, C. (2011). Facility location with client latencies: Linear
programming based techniques for minimum latency problems. Lecture Nodes
in Computer Science, 6655, 92–103.

Chaudhuri, K., Godfrey, B., Rao, S., & Talwar, K. (2003). Paths, trees, and minimum
latency tours. In Proceedings of the 44th annual IEEE symposium on the
foundations of computer science (pp. 36–45).

Chen, P., Dong, X., & Niu, Y. (2012). An iterated local search algorithm for the
cumulative capacitated vehicle routing problem. In Honghua Tan (Ed.),
Technology for education and learning. Advances in intelligent and soft
computing (Vol. 136, pp. 575–581). Berlin/Heidelberg: Springer.

Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle-dispatching
problem. Operations Research Quarterly, 20(3), 309–318.

Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In N.
Christofides, A. Mingozzi, P. Toth, & C. Sandi (Eds.), Combinatorial optimization.
Wiley & Sons.

Christofides, N., Mingozzi, A., & Toth, P. (1981). Exact algorithms for the vehicle
routing problem, based on spanning tree and shortest path relaxations.
Mathematical Programming, 20(1), 255–282.

Corberán, Á., Fernández, E., Laguna, M., & Martí, R. (2002). Heuristic solutions to the
problem of routing school buses with multiple objectives. Journal of the
Operational Research Society, 53(4), 427–435.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (Eds.). (2005). Column generation.
New York, NY, USA: Springer.

Desrosiers, J., Dumas, Y., Solomon, M. M., & Soumis, F. (1995). Time constrained
routing and scheduling. In M. O. Ball, T. L. Magnanti, C. L. Monma, & G. L.
Nemhauser (Eds.), Network routing. Elsevier.

Dewilde, T., Cattrysse, D., Coene, S., Spieksma, F. C. R., & Vansteenwegen, P. (2013).
Heuristics for the traveling repairman problem with profits. Computers &
Operations Research, 40(7), 1700–1707.

Fakcharoenphol, J., Harrelson, C., & Rao, S. (2007). The k-traveling repairman
problem. ACM Transactions on Algorithms, 3(4).

Fukasawa, R., Longo, H., Lysgaard, J., Poggi de Aragão, M., Reis, M., Uchoa, E., et al.
(2006). Robust branch-and-cut-and-price for the capacitated vehicle routing
problem. Mathematical Programming, 106(3), 491–511.

Golden, B. L., Laporte, G., & Taillard, E. D. (1997). An adaptive memory heuristic for a
class of vehicle routing problems with minmax objective. Computers &
Operations Research, 24(5), 445–452.

Hartl, R. F., Hasle, G., & Janssens, G. K. (2006). Special issue on rich vehicle routing
problems, editorial. Central European Journal of Operations Research, 14(2),
103–104.

http://refhub.elsevier.com/S0377-2217(13)00697-8/h0005
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0005
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0010
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0010
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0010
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0015
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0015
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0020
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0020
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0020
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0025
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0025
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0025
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0025
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0030
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0030
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0035
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0035
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0035
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0040
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0040
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0040
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0045
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0045
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0045
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0050
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0050
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0055
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0055
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0055
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0060
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0060
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0060
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0065
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0065
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0070
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0070
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0070
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0075
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0075
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0075
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0080
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0080
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0080

810 J. Lysgaard, S. Wøhlk / European Journal of Operational Research 236 (2014) 800–810
Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource
constraints. In Desaulniers et al. (2005).

Jothi, R., & Raghavachari, B. (2007). Approximating the k-traveling repairman
problem with repairtimes. Journal of Discrete Algorithms, 5(2), 293–303.

Kara, _I., Kara, B. Y., & Yetis�, M. K. (2008). Cumulative vehicle routing problems. In T.
Caric, & H. Gold (Eds.), Vehicle routing problem. InTech.

Kara, _I., Kara, B. Y., & Yetis�, M. K. (2007). Energy minimizing vehicle routing
problem. In A. Dress, Y. Xu, & B. Zhu (Eds.), Combinatorial optimization and
applications. LNCS (Vol. 4616, pp. 62–71).

Ke, L., & Feng, Z. (2013). A two-phase metaheuristic for the cumulative capacitated
vehicle routing problem. Computers & Operations Research, 40(2), 633–638.

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4),
408–416.

Letchford, A. N., Lysgaard, J., & Eglese, R. W. (2007). A branch-and-cut algorithm for
the capacitated open vehicle routing problem. Journal of the Operational
Research Society, 58(12), 1642–1651.

Levin, A., & Penn, M. (2008). Approximation algorithm for minimizing total latency
in machine scheduling with deliveries. Discrete Optimization, 5(1), 97–107.

Li, C.-L., Vairaktarakis, G., & Lee, C.-Y. (2005). Machine scheduling with deliveries to
multiple customer locations. European Journal of Operational Research, 164(1),
39–51.
Lysgaard, J. (2003). CVRPSEP: A package of separation routines for the
capacitated vehicle routing problem. Working Paper 03-04, Department
of Management Science and Logistics, Aarhus School of Business.
<www.hha.dk/ � lys>.

Lysgaard, J., Letchford, A. N., & Eglese, R. W. (2004). A new branch-and-cut algorithm for
the capacitated vehicle routing problem. Mathematical Programming, 100(2),
423–445.

Ngueveu, S. U., Prins, C., & Wolfler Calvo, R. (2010). An effective memetic algorithm
for the cumulative capacitated vehicle routing problem. Computers & Operations
Research, 37(11), 1877–1885.

Ribeiro, G. M., & Laporte, G. (2012). An adaptive large neighborhood search heuristic
for the cumulative capacitated vehicle routing problem. Computers & Operations
Research, 39(3), 728–735.

Sbihi, A., & Eglese, R. W. (2006). The relationship between vehicle routing and
scheduling and green logistics – A literature survey. Management science
working paper series, Lancaster University.

Silva, M. M., Subramanian, A., Vidal, T., & Ochi, L. S. (2012). A simple and effective
metaheuristic for the minimum latency problem. European Journal of
Operational Research, 221(3), 513–520.

Wu, B. Y., Huang, Z.-N., & Zhan, F.-J. (2004). Exact algorithm for the minimum
latency problem. Information Processing Letters, 92(6), 303–309.

http://refhub.elsevier.com/S0377-2217(13)00697-8/h0085
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0085
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0090
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0090
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0095
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0095
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0100
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0100
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0100
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0105
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0105
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0110
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0110
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0110
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0115
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0115
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0115
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0120
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0120
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0120
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0125
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0125
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0125
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0130
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0130
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0130
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0135
http://refhub.elsevier.com/S0377-2217(13)00697-8/h0135

	A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem
	1 Introduction
	2 Related literature
	3 Model formulation
	3.1 A Set Partitioning formulation
	3.2 A vehicle flow formulation
	3.3 A combined formulation

	4 The algorithm
	4.1 Initialization
	4.2 Pricing
	4.2.1 Route costs
	4.2.2 Reduced costs

	4.3 Cut separation
	4.4 Other ingredients

	5 Computational results
	5.1 Results with a minimum number of routes
	5.2 Results with an extra route
	5.3 Results for CMT instances

	6 Conclusion and perspectives
	Acknowledgement
	References

