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This paper addresses a location-routing problem with simultaneous pickup and delivery (LRPSPD) which
is a general case of the location-routing problem. The LRPSPD is defined as finding locations of the depots
and designing vehicle routes in such a way that pickup and delivery demands of each customer must be
performed with same vehicle and the overall cost is minimized. We propose an effective branch-and-cut
algorithm for solving the LRPSPD. The proposed algorithm implements several valid inequalities adapted
from the literature for the problem and a local search based on simulated annealing algorithm to obtain
upper bounds. Computational results, for a large number of instances derived from the literature, show
that some instances with up to 88 customers and 8 potential depots can be solved in a reasonable com-
putation time.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

In today’s competitive environment, it is obvious that companies should make strategic and operational decisions in order to optimize
and manage the processes in their supply chain more efficiently. One of the most important strategic decisions concerns the design of dis-
tribution networks since it offers great potential to reduce costs and to improve service quality. The main elements in designing a distri-
bution network are location and routing decisions. As these elements are interdependent in many distribution networks, the overall system
cost can increase if routing decisions are ignored when locating facilities (Salhi and Rand, 1989). The location-routing problem (LRP) over-
comes this drawback by simultaneously dealing with location and routing decisions.

The location-routing problem (LRP) deals with determining the location of facilities and the routes of the vehicles for serving the cus-
tomers under some constraints such as facility and vehicle capacities, route length, etc. to satisfy demands of all customers and to minimize
total cost including routing costs, vehicle fixed costs, facility fixed costs and facility operating costs. Some of the application areas of the LRP
in practice can be given as food and drink distribution, military equipment location, parcel delivery and telecommunication network
design.

After the importance of the considering location and routing decisions simultaneously was stressed by Webb (1968) and Christofides
and Eilon (1969), different models and solution approaches for the LRP have been proposed in the literature to formulate and solve distri-
bution network design problems. Laporte (1988) is the first researcher who classifies the LRP models. Min et al. (1998) review the LRP lit-
erature using a hierarchical taxonomy based on the problem characteristics such as the number of depots, the presence of capacity, the
form of the objective function, etc. More recently, Nagy and Salhi (2007) provide a comprehensive literature review for the LRP models,
solution approaches and application areas.

The facility location problem (FLP) and vehicle routing problem (VRP) are two main components of the LRP. Since both problems belong
to the class of NP-hard problems, the LRP is also NP-hard problem. Because of its complexity, some mathematical models and exact solu-
tion procedures have been developed for a small number of LRP models. Laporte and Nobert (1981, 1988), Laporte et al. (1986) propose
mixed integer formulations (MIP) with two-index and exact solution algorithms for the single-depot LRP, multi-depot capacitated LRP
and some asymmetric versions of the LRP, respectively. Another MIP formulation with two-index and an exact algorithm for the multi-de-
pot LRP is developed by Laporte et al. (1983). Labbe et al. (2004) propose a branch and cut algorithm for plant cycle location problem, which
ll rights reserved.
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is a different version of the LRP arising in telecommunication network design. A multi-echelon version of the LRP with inventory is con-
sidered in Ambrosino and Grazia ScutellaI (2005). The authors propose a MIP formulation for the problem and investigate the complexity of
the problem on several test problems. Belenguer et al. (2006) develop two new MIP formulations and branch-and-cut algorithms based on
these formulations for the LRP. Berger et al. (2007) consider the uncapacitated LRP with route length constraints in their study and they
propose a branch-and-price algorithm to solve the problem.

Different heuristic approaches have been also proposed in the literature to solve larger LRPs. Perl and Daskin (1984, 1985), Srivastava
and Benton (1990), Srivastava (1993) and Hansen et al. (1994) use classic heuristic approaches. Barreto et al. (2007) propose a cluster anal-
ysis based sequential heuristic algorithm. Meanwhile meta-heuristic approaches have been successfully implemented for the problem.
Several examples for the application of meta-heuristic approaches can be given as: tabu search (Tuzun and Burke, 1999; Albareda-Sambola
et al., 2005), simulated annealing (Wu et al., 2002; Yu et al., 2010), greedy randomized adaptive search procedure (GRASP) (Prins et al.,
2006a; Duhamel et al., 2009), memetic algorithms (Prins et al., 2006b), variable neighborhood search algorithms, (Melechovsky and Prins,
2005) and particle swarm optimization (Marinakis and Marinaki, 2008).

All the studies cited above have considered classical VRP in the LRP, i.e. each vehicle starts from a depot, traverses through a number of
customers, delivers goods to each customer and returns the same depot. However, in practice, customers can have pickup and delivery
demands and they request that both demands should be met at the same time. This kind of problem is known in the literature as vehicle
routing problem with simultaneous pickup and delivery (VRPSPD). A number of applications of the VRPSPD can be found in the distribution
system of grocery store chains, blood banks, etc. Reverse logistics is also another area in which the planning of vehicle routes takes the form
of a VRPSPD. We refer the interested readers to the papers of Berbeglia et al. (2007) and Parragh et al. (2008) for an extensive review about
this problem and its variations.

In this paper, we consider LRP with simultaneous pickup and delivery (LRPSPD) which is a general case of the LRP by considering simul-
taneously pickup and delivery demands of each customer. The LRPSPD is also a general case for the traveling salesman location problem
with pickup and delivery (TSPPD) introduced by Mosheiov (1995) in terms of the number of depots to be located and the capacity of vehi-
cles. Finally, the LRPSPD can be considered as a special case of many to many LRP introduced by Nagy and Salhi (1998) in which several
customers wish to send goods to others and flows between depots are permitted. Although the LRP has been studied extensively in the
literature, the LRPSPD has received no attention from researchers so far. To the best of our knowledge, we are first to address the LRPSPD.
In our previous study (Karaoglan et al., 2009a), we have proposed two MIP formulations, which are two-index node-based and flow-based
formulations, for the problem and presented several polynomial-size valid inequalities adapted from literature to strengthen the formu-
lations. Our experimental studies revealed that the flow-based formulation with valid inequalities, i.e. strong formulation, can solve most
small-size LRPSPD instances up to 30 customers and 5 depots to optimality within two hours of computation time by CPLEX.

Motivated by the successful applications of branch-and-cut algorithms in solving various routing problems such as capacitated vehicle
routing problem (e.g. Baldacci et al., 2004), prize collecting traveling salesman problem (e.g. Berube et al., 2009), pickup and delivery trav-
eling salesman problem (e.g. Cordeau et al., 2009) and the LRP (e.g. Belenguer et al., 2006), in this paper we propose a branch-and-cut algo-
rithm based on flow-based formulation with two-index to solve larger LRPSPD instances to optimality. In addition, we present a new set of
valid inequalities for the problem adapted from the literature to strengthen linear programming relaxation of the formulation within the
branch-and-cut algorithm and a local search based on simulated annealing algorithm to obtain upper bounds. Computational results, for a
large number of instances derived from the literature, show that some instances with up to 88 customers and 8 potential depots can be
solved within a reasonable computation time.

The contribution of this paper is threefold. First, the well known subtour elimination constraints, generalized large multistar inequalities
and Y-capacity constraints in the VRP and LRP literature are generalized for the LRPSPD. Second, an exact algorithm based on branch and
cut is proposed to solve LRPSPD instances to optimality. Finally, a heuristic approach based on simulated annealing is developed to improve
initial solution and upper bounds found during the search process of the branch and cut algorithm.

The rest of this paper is organized as follows. Problem definition and mathematical formulation are given in Section 2. While Section 3
describes the valid inequalities used to obtain tight bounds, the proposed branch-and-cut algorithm is explained in Section 4. Section 5
reports computational results and conclusions follow in Section 6.

2. Problem definition and mathematical formulation

The location-routing problem with simultaneous pickup and delivery (LRPSPD) can be defined as follows: let G=(N,A) be a complete
directed network where N = N0 [ NC is a set of nodes in which N0 and NC represent the potential depot nodes and customers, respectively,
and A = {(i, j): i, j 2 N} is the set of arcs. Each arc(i, j) 2 N has a nonnegative cost (distance) cij and triangular inequality holds (i.e.,
cij + cjk P cik). A capacity CDk and a fixed cost FDk are associated with each potential depot k 2 N0. An unlimited fleet of homogeneous vehi-
cles with capacity CV and fixed operating cost FV including the cost of acquiring the vehicles used in the routing is available to serve the
customers. Each customer i 2 NC has pickup (pi) and delivery (di) demands, with 0 < di,pi 6 CV. The problem is to determine the locations of
depots, the assignment of customers to opened depots and the corresponding vehicle routes with minimum total cost under following
constraints:

� Each vehicle is used at most one route.
� Each customer is served by exactly one vehicle.
� Each route begins and ends at the same depot.
� The total vehicle load at any point of the route does not exceed the vehicle capacity.
� The total pickup and total delivery load of the customers assigned to a depot does not exceed the capacity of the depot.

To formulate the LRPSPD, following decision variables are used:
xij ¼
1 if a vehicle travels directly from node i to node j ð8i; j 2 NÞ
0 otherwise

�
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yk ¼
1 if depot k is opened ð8k 2 N0Þ
0 otherwise

�

zik ¼
1 if customer i is assigned to depot k ð8i 2 NC ; 8k 2 N0Þ
0 otherwise

�

Uij; demand to be delivered to customers routed after node i and transported in arc(i, j) if a vehicle travels directly from node i to node

j("i, j 2 N), otherwise 0.
Vij; demand to be picked-up from customers routed up to node i (including node i) and transported in arc (i, j) if a vehicle travels directly
from node i to node j ("i, j 2 N), otherwise 0.

The two-index flow-based formulation of the LRPSPD is given as follows:
min
X
i2N

X
j2N

cijxij þ
X
k2N0

FDkyk þ
X
k2N0

X
i2NC

FVxki ð1Þ

s:t:
X
j2N

xij ¼ 1 8i 2 NC ð2Þ
X
j2N

xji ¼
X
j2N

xij 8i 2 N ð3Þ
X
j2N

Uji �
X
j2N

Uij ¼ di 8i 2 NC ð4Þ
X
j2N

Vij �
X
j2N

Vji ¼ pi 8i 2 NC ð5Þ

Uij þ Vij 6 CVxij 8i; j 2 N; i – j ð6ÞX
j2NC

Ukj ¼
X
j2NC

zjkdj 8k 2 N0 ð7Þ
X
j2NC

Ujk ¼ 0 8k 2 N0 ð8Þ
X
j2NC

Vjk ¼
X
j2NC

zjkpj 8k 2 N0 ð9Þ
X
j2NC

Vkj ¼ 0 8k 2 N0 ð10Þ

Uij 6 ðCV � diÞxij 8i 2 NC ; 8j 2 N ð11Þ
Vij 6 ðCV � pjÞxij 8i 2 N; 8j 2 NC ð12Þ
Uij P djxij 8i 2 N; 8j 2 NC ð13Þ
Vij P pixij 8i 2 NC ; 8j 2 N ð14ÞX
k2N0

zik ¼ 1 8i 2 NC ð15Þ
X
i2NC

dizik 6 CDkyk 8k 2 N0 ð16Þ
X
i2NC

pizik 6 CDkyk 8k 2 N0 ð17Þ

xik 6 zik 8i 2 NC ; 8k 2 N0 ð18Þ
xki 6 zik 8i 2 NC ; 8k 2 N0 ð19Þ
xij þ zik þ

X
m2N0 ;m–k

zjm 6 2 8i; j 2 NC ; i – j; 8k 2 N0 ð20Þ

xij 2 f0;1g 8i; j 2 N ð21Þ
zik 2 f0;1g 8i 2 NC ; 8k 2 N0 ð22Þ
yk 2 f0;1g 8k 2 N0 ð23Þ
Uij;Vij P 0 8i; j 2 N ð24Þ
where xij is set to zero when max{di + dj; pi + pj; dj + pi} > CV, "i,j 2 NC,i – j. This restriction guaranties that any incompatible customer pair
whose total demands are greater than the vehicle capacity is not appeared in the same route. In this formulation, objective function (1) min-
imizes the total system cost including transportation, depot and vehicle fixed costs. Constraints (2) and (3) are known as degree constraints.
While constraints (2) ensure that each customer must be visited exactly once, constraints (3) guarantee that entering and leaving arcs to each
node are equal. Constraints (4) and (5) are flow conservation constraints for delivery and pickup demands, respectively. These constraints
eliminate subtour and guarantee that pickup and delivery demands are satisfied for each customer. Constraints (6) imply that total load
on any arc must not exceed the vehicle capacity. While constraints (7) ensure that total delivery load dispatching from each depot equals
to total delivery demand of customers which are assigned to the corresponding depot, constraints (8) guarantee that the total amount of
delivery load returning to the depots must be equal to zero. Similarly, while constraints (9) ensure that total pickup load entering to each
depot equals to total pickup demand of customers which are assigned to the corresponding depot, constraints (10) guarantee that the total
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amount of pickup load dispatching from the depots must be equal to zero. Constraints (11)–(14) are bounding constraints for additional vari-
ables. Constraints (15) ensure that each customer must be assigned to only one depot. Constraints (16) and (17) guarantee that total delivery
and pickup loads on any depot must not exceed the corresponding depot capacity, respectively. Constraints (18)–(20) forbid the illegal routes
i.e. the routes which do not start and end at the same depot. Finally, constraints (21)–(24) are known as integrality constraints which define
the nature of the decision variables.

In the given formulation, any integer solution does not contain illegal routes because of the constraint sets (18)–(20) together with (15).
The validity of these constraints can be proven by contradiction. Let us consider an infeasible route P = {vk,v1,v2, . . . ,vs�1,vs,vl} with s arbi-
trary number of customers where k, l 2 N0 and k – l. Constraints (18) imply that zv1 ;k ¼ 1. Since xv1 ;v2 ¼ 1 and zv1 ;k ¼ 1, constraints (20) en-
sure that zv2 ;k ¼ 1. By introducing constraint (20) to all adjacent pairs in route P up to node vs, it is obtained that zvs ;k ¼ 1 which contradict
with constraints (15) and (19).

This formulation includes O((jNcj + jN0j)2) binary variables, O((jNcj + jN0j)2) additional variables and O(jNcj2jN0j) constraints.

3. Valid inequalities for the LRPSPD

Valid inequalities are one of the most practical ways to strengthen the linear relaxations of the formulations. These inequalities elim-
inate some fractional solutions from the solution space such that a stronger lower bound can be obtained for the problem. In this paper, we
utilize seven valid inequalities, which were developed for the VRP and FLP in the literature, in our branch-and-cut algorithm. It is worth
noting that four out of seven inequalities, which are polynomial-size inequalities, have been adapted to the LRPSPD in our previous study,
(Karaoglan et al., 2009a), to strengthen the formulations. Nevertheless, in this paper, we adapt other inequalities to solve the LRPSPD for the
first time. Hence, for the sake of the completeness of the paper, all of the inequalities are introduced in this section.

First simple and efficient polynomial-size valid inequality is given as follows:
zik 6 yk 8i 2 NC ; 8k 2 N0 ð25Þ
This inequality has been used by Labbe et al. (2004) for plant cycle location problem and still valid for the LRPSPD. This imposes that cus-
tomer i 2 NC cannot be assigned to the depot k 2 N0 if depot k is not open.

Another polynomial-size valid inequality which bounds below the number of routes originating from depots is given as follows:
X
k2N0

X
i2NC

xki P rLRPSPDðNCÞ ð26Þ
where rLRPSPDðNCÞ ¼ max
P

i2NC
di;
P

i2NC
pi

� �l .
CV
m

and d�e is the smallest integer bigger than �. Similar bounding constraint has been used by

Achuthan et al. (2003) for the VRP. Validation of this inequality for the LRPSPD is given in Karaoglan et al. (2009a).
Similarly, following polynomial-size constraint which bounds below the number of opened depots is valid for the LRPSPD (Belenguer

et al. (2006)):
X
k2N0

yk P ymin ð27Þ
where ymin denotes the number of opened depots until satisfying
P

k2SCDk P maxðdðNCÞ; pðNCÞÞ after the depots are listed in non-increasing
order of their capacities.

Last polynomial-size valid inequality is given as follow:
xij þ xji 6 1 8i; j 2 NC ð28Þ
Constraints (28) ensure that any feasible route cannot contain subtour with only two customers. This constraint is a special case of following
exponential-size constraints which are derived from capacity and subtour elimination constraints of the VRP (Laporte et al., 1983). Let S be
the subset of customers Nc, i.e. S # Nc. The subtour elimination constraints adapted for delivery and pickup demands are given as follows:
X

ði;jÞ2S

xij 6 jSj � rLRPSPDðSÞ 8S # NC ; S > 2 ð29Þ
where rLRPSPD(S) is calculated as in constraints (26). The constraints (29) guarantee that the number of vehicles visiting a set of customers is
not less than the corresponding lower bound.

Another exponential-size inequality for the LRPSPD is based on the generalized large multistar (GLM) inequalities which have been orig-
inally proposed for the VRP (Gouveia, 1995; Letchford and Salazar-Gonzalez, 2006). We have adapted the GLM for delivery and pickup de-
mands as follows:
X
i2S

X
j2NC=S

xij P 1=CV
X
i2S

di þ
X
i2S

X
j2NC=S

djðxij þ xjiÞ
 !

8S # NC ; S – £ ð30Þ

X
i2S

X
j2NC=S

xij P 1=CV
X
i2S

pi þ
X
i2S

X
j2NC=S

pjðxij þ xjiÞ
 !

8S # NC ; S – £ ð31Þ
The constraints (30) and (31) are valid inequalities for the LRPSPD and facet inducing especially when
P

i2Sdi=CV
� �

or
P

i2Spi=CV
� �

are close to
the next integer because constraints (29) may not be violated in this situation.

The inequalities (25)–(31) adapted to the LRPSPD are based on feasibility requirement. It means that any feasible solution must satisfy
these constraints. We now consider another exponential-size inequality which eliminates some feasible solutions based on a special struc-
ture of an optimal LRPSPD solution. Similar constraints have been proposed in literature for the VRP and LRP by Achuthan et al. (2003) and
Belenguer et al. (2006), respectively. This inequality is given as follows:
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X
ði;jÞ2ðS[kÞ

xij 6 jSj þ ykr�ðk; SÞ
8k 2 N0; 8S # NC ; jSjP 2

max
P
i2S

di;
P
i2S

pi

� �
6 CDk

ð32Þ
where r⁄(k,S) is the optimal number of vehicles for serving the customer set S from depot k. Constraints (32) impose that the number of
routes originating from any depot and serving only customer set S must not greater than the optimal number of routes. Validity of this
inequality for the LRPSPD is given in Proposition 1.

Proposition 1.
P
ði;jÞ2ðS[kÞxij 6 jSj þ ykr�ðk; SÞ is a valid inequality for the LRPSPD.
Proof. Firstly, consider a subproblem including a depot k and serving only two disjoint subsets S1 and S2 of customers with two different
routes, and merging these two routes is feasible in terms of vehicle load, i.e. total load of vehicle on any arc of route is not greater than
vehicle capacity. Given that these conditions and the triangular inequality hold, following inequality is valid for the LRPSPD;
X
ði;jÞ2ðS[kÞ

xij 6 jSj þ 1
8k 2 N0; 8S # NC ; jSjP 2

max
P
i2S

di;
P
i2S

pi

� �
6 minðCV ; CDkÞ

ð33Þ
where S = S1 [ S2. Constraints (33) impose that two routes originating from depot k and satisfying the conditions given above can be merged
into a single route. This procedure produces a new route in which total cost is not greater than the previous one. At this point, satisfying the
feasibility in terms of vehicle load is the key factor. In the case of classical demand structure (i.e. there are only delivery or pickup demands),P

i2Sdi 6minðCV ; CDkÞ is necessary and sufficient condition for merging. However, in the case of simultaneous pickup and delivery demands,
modified version of this condition (i.e., max

P
i2Sdi;

P
i2Spi

� �
6 minðCV ;CDkÞ) is necessary but not sufficient condition because of the load

fluctuation at the customers. Therefore, constraints (33) are modified for the simultaneous pickup and delivery demands as follows:
X
ði;jÞ2ðS[kÞ

xij 6 jSj þ r�ðk; SÞ
8k 2 N0; 8S1; S2 # NC ; jSjP 2

max
P
i2S

di;
P
i2S

pi

� �
6minðCV ;CDkÞ

ð34Þ
The constraints (34) can be generalized to more than two routes by relaxing the necessary condition as max
P

i2Sdi;
P

i2Spi

� �
6 CDk. Finally, in

order to lift the constraints we obtain constraints (32) by replacing the right hand side of constraints (34) with jSj + ykr⁄(k,S), which are valid
for the LRPSP. h

Since there is only one depot and subset of all customers with delivery and pickup demand in constraints (32), the problem under con-
sideration reduces to VRPSPD. Thus, r⁄(k,S) is obtained by solving the VRPSPD to optimality. Although the VRPSPD is an NP-hard problem,
optimal solution can be obtained in a very short computation time for the small-size instances by using efficient MIP models. In this paper,
we implement a flow-based MIP model proposed by Karaoglan et al. (2009b) for the VRPSPD.

4. Branch and cut algorithm

In this section, we describe a branch-and-cut algorithm for the exact solution of the LRPSPD. A branch-and-cut algorithm implements a
combination of cutting planes and implicit enumeration to solve any combinatorial optimization problem. The basic idea is based on the
identification of the violated inequalities that are valid throughout the enumeration tree. Thus, at each step of the algorithm, violated
inequalities, which are identified by solving the separation problem, are added to the formulation and the corresponding linear program
is reoptimized.

Fig. 1 presents the steps of the branch-and-cut algorithm developed for the LRPSPD, where LP(P) is the LP-relaxation of model P, S�t is the
optimal solution of LP(P) at the particular node t, Sbest is the best feasible solution for the LRPSPD, f(St) is the objective function value of the
solution at node t, Sinit is the initial feasible solution, U is the set of unexplored nodes of enumeration tree, ns is the number of nodes se-
lected from U, smax is the maximum number of the selected nodes.

The main steps of the algorithm can be summarized as follows: Step 1 obtains an initial solution (Sinit) and an initial LP, and also initialize
the set of unexplored nodes of enumeration tree (U). Step 2 specifies the termination criterion and selects a node with the smallest objec-
tive function value from enumeration tree for additional processing. Step 3 solves the LP-relaxation of the model P and obtains S�t . Steps 4
and 5 prune the current node (t) if S�t is infeasible or its objective function value is worse than that of the best feasible solution (Sbest),
respectively. Step 6 prunes the current node (t) after Sbest is updated if it is possible. If S�t is not integer and the number of selected nodes
(ns) from U reaches to a predetermined value (smax), a new integer and feasible solution (Sfeas

t Þ is obtained from S�t by using a special pro-
cedure in Step 7. If a tailing off (i.e. an improvement on the best solution is not greater than a predetermined value in the last successive pt
iterations at the same branching node) does not exist, separation problem is solved for S�t in Step 8. Step 9 adds the violated inequalities to
the model and the LP relaxation is reoptimized in Step 3. Step 10 creates two new nodes by applying branching rule, if a tailing off exists or
new violated inequalities are not identified for S�t . The subsequent sections discuss the main building blocks of the branch-and-cut algo-
rithm developed for the LRPSPD in detail.

4.1. Initial solution

At the root node of the branching tree, an initial solution is obtained. The cost of this solution gives an upper bound of the optimal solu-
tion value. The procedure to obtain an initial solution in our algorithm can be summarized as follows: after an initial feasible solution is
generated by a greedy heuristic, it is improved by SA algorithm and the improved solution is considered as an initial solution to branch-
and-cut algorithm.
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4.1.1. Generating initial feasible solution
In order to obtain an initial feasible solution, we implement Extended Clarke and Wright Algorithm (ECWA), which is a greedy heuristic.

The ECWA is an extension of the well-known Clarke and Wright heuristic (Clarke and Wright, 1964) and firstly introduced by Prins et al.
(2006b) for the LRP. The implementation of this heuristic to the LRPSPD can be summarized as follows: initially, a penalty cost (pci) arising
when the customer is assigned to the second closest depot instead of the closest one is calculated for each customer, and the customers are
listed in non-increasing order of their penalty costs. Then, each customer is assigned to the closest depot starting from top of the list. If
some of the customers are not assigned to their closest depots because of the depots’ capacity, their penalty costs are recalculated consid-
ering closest ones with enough capacity and the assignment of these customers to appropriate depots is tried again. These steps are re-
peated until all customers are assigned. After that depots without customers are closed and a simple route for each customer from
whose depot is constructed. Then, each pair of routes (R1,R2) in the feasible solution are examined in terms of cost saving obtained by their
combination and a pair of nodes providing largest cost saving is combined. This strategy is repeated until no capacity-feasible combination
is found.

4.1.2. Improving the initial feasible solution with SA
A straightforward SA is implemented to obtain an initial solution (Sinit) for the branch-and-cut algorithm. SA, which stems from the sim-

ulation of the annealing of solids, is a stochastic search technique that is able to escape local optima using a probability function (Suman
and Kumar, 2006). It starts with an initial feasible solution S0init

� �
and improves it until stopping criterion is met. We employ following four

moving strategies, which are well-known in the VRP literature and also extended to the LRP by Prins et al. (2006b), to define neighborhoods
for the SA:

� Insert: One customer is inserted to a new position, which is in the same route or in two different routes belonging to same depot or two
different depots, from its current position.
� Swap: Two customers, which are in the same route or in two different routes belonging to same depot or two different depots, are

exchanged.
� Opt: Two non-consecutive arcs, which are in the same route or in two different routes belonging to same depot or different depots, are

deleted. If the deleted arcs are in the same route, two new arcs are created and the path lying between the created arc pair is reversed. If
the deleted arcs are in two different routes of the same depot, each route is divided into two parts as starting and terminating part. Then
two new arcs are created in such a way that starting and terminating parts of two different routes are connected. Otherwise, i.e. the
deleted arcs belong to two different routes of different depots, after two different parts coming from different routes are connected
by two new arcs, they are revised such that each route starts and finishes at the same depot.
� Merge: Two routes, R1 and R2, belonging to same or different depots are selected and merged into new one, R, considering following four

alternatives: route R is assigned to the depot r1 of R1, to the depot r2 of R2, or to another depot r, opened or not. Hence, after four alter-
natives are evaluated in each merge operation, the one with largest cost saving is applied.

At each iteration of the SA, neighbors of the current solution are generated by using all of the moving strategies and the best one among
the neighbors is chosen as a new solution (Snew) for the problem. The SA algorithm implements a candidate list strategy in generating the
neighbors since searching whole neighborhood of the current solution by a moving strategy is a very time consuming process. According to
this strategy, each moving strategy generates randomly a subset of neighbors, LS, that satisfying vehicle and depot capacity constraints and
they are gathered in a pool to select a new solution (Snew). If the new solution is better than current solution then it is accepted as the cur-
rent solution, otherwise it is accepted with probability of exp(�Ds/Titr) as the current solution. Ds is a relative percent deviation of quality
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of the new solution from the current solution and calculated by [(f(Snew) � f(Scur))/f(Scur)] � 100. In each iteration of SA, temperature (Titr) is
reduced using a geometric cooling schedule, i.e. Titr = aTitr�1 where a is a cooling rate. SA stops when the temperature reaches to final
temperature.

4.2. Initial linear program

To initialize the LP model, we relax constraints (11)–(14) and (18)–(20), which are having at least O(jNcjjN0j) complexity, in addition to
integrality constraints of the original formulation. The rationale behind the relaxation of constraints (11)–(14) and (18)–(20) is that their
relaxation reduces the size of the LP model and thus helps to solve the model efficiently. Hence, the initial LP model includes constraints
(2)–(10), (15)–(17), (24) together with the valid inequalities (26) and (27), which are bounding below the number of routes originating
from depots and below the number of opened depots at the root node.

4.3. Separation procedures

We utilize mainly two different separation procedures in order to identify violated inequalities. While polynomial-size inequalities,
namely (11)–(14), (18)–(20), (25) and (28), are separated by a straightforward way, we propose greedy constructive heuristics in separa-
tion of exponential-size inequalities (29)–(32).

The separation of constraints (11) is carried out by considering each arc (i, j) with x�ij > 0 i 2 NC , j 2 N and evaluating the constraint. Other
polynomial-size constraints are also separated in a similar way after determining the corresponding arcs for each constraint. Note that, in
the separation of the constraints (25), depots with yk > 0 should be considered in addition to corresponding arcs, i.e. (i,k), i 2 NC, k 2 N0 and
xik > 0.

We separate the constraints (29) by means of a greedy constructive heuristic. In each iteration of the heuristic, a node from the set of
customer nodes, X, is considered as a seed, s. After the set C is initialized by this seed, i.e. C s, it is iteratively expanded by a new cus-
tomer node, t⁄, that minimizing the slack of the constraint, and then the constraint violation is checked for C [ t⁄. If the constraint is vio-
lated, then it is stored into a set, H, consisting of the constraints to be added to the model. When the current set C is not expanded without
generating a previously generated set, the next seed from X is considered and these steps are repeated until X = ;. Fig. 2 presents the steps
of the heuristic used for the separation of the constraint (29). It is worthy to note that set X can be initialized considering all customer
nodes in Nc. However, our preliminary experiments show that there is no difference in the set H in terms of included constraints. Therefore,
in order to eliminate unnecessary computations, X is initialized with the half of the customer nodes which are selected randomly.

We also implement the same heuristic given in the Fig. 2 in the separations of the constraints (30) and (31) after changing the definition
used in the selection of node t⁄with minimum slack value. Following definitions (35) and (36) are used to select node t⁄ in Step 2.3.1 for the
constraints (30) and (31), respectively.
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The greedy constructive heuristic used in the separation of constraint (32) differs from the heuristic given in Fig. 2 in terms of initializing
the set C and calculating the slack value at the selected node t⁄. In this approach, after set C is initialized with depot k and customer s with
x�ks > 0, C is successively updated by adding a new customer node t⁄considering approximated slack value, which is calculated using the
lower bound of the number of optimal routes (rLRPSPD (C [ t)) instead of r⁄(k,C [ t). The rationale behind using approximated slack value is
that the calculation of (rLRPSPD(C [ t)) is much easier than that of r⁄(k,C [ t) such that it helps the reducing computational burden of the
branch-and-cut algorithm. After a customer node t⁄ is selected among candidate nodes, its exact slack value based on r⁄(k,C [ t⁄) is used
during the checking the violation of the constraint (32) in order to maintain the optimality of LRPSPD solution. As one depot k and a subset
of customers assigned to this depot are considered in each iteration of the greedy heuristic, the problem under consideration is reduced to
Fig. 2. Separation algorithm for the constraint (29).
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the VRPSPD. Therefore, we implement a flow-based MIP model, proposed by Karaoglan et al. (2009b) for the VRPSPD, to find r⁄(k,C [ t⁄).
Since the VRPSPD is an NP-hard problem, we restrict the number of nodes to be examined in set C by Nmaxto obtain an optimal solution in a
very short computation time. After our preliminary experiments, Nmax is set to 10.

The separation approaches are applied sequentially until one succeeds in our branch-and-cut algorithm. Based on our preliminary
experiments, the order in which the separation approaches are executed is determined as follows: we first call the separation approaches
for the polynomial-size inequalities, i.e. (11)–(14) and (18)–(20), (25) and (28) to generate violated cuts and these cuts are imposed into the
LP model one at a time. If violated cuts for polynomial-size inequalities are not found, the heuristic procedures for the exponential-size
inequalities (29)–(32) are called sequentially until reaching a set of violated cuts. After violated cuts are identified and imposed to the
LP model, the model is reoptimized.

The objective function value of the LP model is not always improved by adding violated cuts to the LP model. This phenomenon is called
tailing off and it can be reduced by forcing the algorithm to branch instead of generating new violated cuts. The branching in our algorithm
is forced whenever the improvement in the objective function value of the LP model is not greater than 0.01 in the last five iterations at the
same branching node.

4.4. Upper bound

An effective upper bounding procedure can speed up the branch-and-cut algorithm by reducing the number of explored nodes. Thus,
we implement a three-stage heuristic approach to generate feasible solutions from fractional solutions. While first stage decides which
depots will be opened, next two stages assign each customer to one of the opened depots and construct routes in each depot, respec-
tively. Let x�ij; y�k; z�ik be optimal fractional solution of any node on enumeration tree. In the first stage, depots are sorted in non-increas-
ing order of y�k and then first ymin depots satisfying total delivery and total pickup demands of customers are opened. Second stage
selects largest z�ik value and assigns customer i⁄ to opened depot k⁄ if its capacity is sufficient. This assignment process continues until
all customers are assigned to opened depots. If there are some customers who are not assigned to any opened depot, new depots se-
lected among closed ones considering y�k are opened and those customers are assigned to opened depots considering z�ik. In the final
stage, feasible routes are constructed for each opened depot k using following procedure: firstly, a route R is started by selecting cus-
tomer i⁄ with largest x�ki and then appending a new customer j⁄ with largest x�ij to the last customer i⁄ in the route R continues as long as
their total pickup and delivery loads do not exceed vehicle capacity. This step is repeated until all customers are assigned to routes in
the depot k. Note that a simple route is constructed for customer j who is not assigned to any routes in the depot k since x�ij ¼ 0. After
generating a feasible solution ðS0feasÞ, an improved solution (Sfeas) is obtained by implementing SA algorithm explained in Section 4.1. The
main steps of the heuristic approach are given in Fig. 3 where X is the set of opened depots and Wk is the set of customers assigned to
depot k. To reduce the computation time spent by the upper bounding procedure, it is applied after ten consecutive nodes are
evaluated.

4.5. Branching strategy

If the separation algorithms tail off or the solution is not integer, branching is performed. We implement straightforward branching
strategy based on variables. Since there are three different binary decision variables in the formulation, we implement following order
in branching stage: firstly the algorithm tries to branch on the most fractional yk variable which is closer to 0.5 and generate two subprob-
lems in such a way that one by fixing yk = 1 and the other by fixing yk = 0. If all the yk variables are integer, the algorithm branches on the
most fractional zik variable. If all yk and zikvariables are integer, the most fractional xij variable is used in branching.

5. Computational study

This section presents the results from our computational experiments which were organized into two stages. The first stage investigates
the effects of valid inequalities in the proposed formulation. The second stage evaluates the performance of the proposed branch-and-cut
algorithm. Before the computation results, firstly we give a brief information about the test problems.

5.1. Test problems

Since there are no benchmark instances in the literature for the LRPSPD, we have derived LRPSPD instances from two LRP test sets gen-
erated by Prodhon (2008) and Barreto (2003) using demand separation approaches proposed by Salhi and Nagy (1999) and Angelelli and
Mansini (2002). In both sets, coordinates are given for each customer and the cost between two customers is the Euclidean distance
rounded to the real number with four digits.

Barreto’s set includes 20 test instances which were taken from the LRP literature or obtained by adding depots to classical VRP instances.
While the number of customers varies between 8 and 318, the number of depots is between 2 and 15. We consider the names of original
LRP and VRP instances to denote an instance from this set in sequel. The name of each instance includes the information about the name of
the author, who generated the instance, the publication year of the instance, the number of customers, jNCj, and the number of potential
depots, jN0j (i.e. Author-Year-jNCjxjN0j).

Prodhon’s set consists of 28 LRP instances with capacitated routes and depots. The main characteristics of the set are given as follows:
the number of customers jNcj in {20,50,100,200}, the number of potential depots jN0j in {5,10}, uniform demands in [11,20], the number of
clusters clu in {1,2,3} (1 means that all nodes scatter on Euclidean plane), vehicle capacity CV in {a, b} where a = 70 and b = 150. In the set,
depot capacities have been determined in such way that at least two or three depots are opened. In rest of the paper, we utilize following
coding structure to denote an instance from this set: jNCj � jN0j � cluCV.

We consider test instances up to 100 customers of both test sets (i.e. first 15 and 22 instances from Barreto’s and Prodhon’s test sets,
respectively) in our computational study. In order to generate the delivery and pickup demands of the customers in each test instance, we



Fig. 3. The algorithm to generate a feasible solution from the fractional LRPSPD solution.

326 I. Karaoglan et al. / European Journal of Operational Research 211 (2011) 318–332
utilize demand separation approaches proposed by Salhi and Nagy (1999) and Angelelli and Mansini (2002). These approaches are briefly
defined as follows. In Salhi and Nagy’s approach, a ratio ri = min(xi/yi;yi/xi), where xi and yi are the coordinates of customer i, is calculated
for each customer i, and then the delivery and pickup demands are generated as di = ri � qi andpi = qi � di, where qi is the original demand of
customer i. We refer to this type of problems as X. Similarly, another type of problem, called Y, is generated by exchanging delivery and
pickup demands of each customer. In Angelelli and Mansini’s approach, the original demand of each customer i is considered as delivery
demand (di = qi) and the pickup demand of the corresponding customer is generated as pi = b(1 � c)qic if i is even and pi = b(1 + c)qic if i is
odd. In this paper, we consider two c values as 0.2 and 0.8 to generate two different types of problems called Z and W, respectively. As a
result, the number of LRPSPD instances generated from Barreto’s and Prodhon’s test sets by using 4 different separation strategies (X,Y,Z
and W type) are equal to 60 and 88 instances, respectively. The interested readers can reach the LRPSPD instances from authors.

5.2. Effects of valid inequalities

Following Cordeau et al. (2009) study, we conduct two experiments to investigate the effect of valid inequalities on LP relaxation of
problem. In the experimental study, we utilize test instances derived from Barreto’s set.

The first experiment is to show that adding one family of valid inequalities at a time to original formulation improves the LP relaxation
bounds. We analyze computational results using lower bound percentage gap for each test instance. The lower bound percentage gap, DLB,
Table 1
Effect of valid inequalities added to original formulation.

Instancesa
Average percentage gap (DLBÞ

Original (25) (26) (27) (28) (29) (30), (31) (32)

Srivastava86-8�2 15.71 11.88 15.33 14.09 14.39 8.73 15.71 12.12
Perl83-12�2 20.71 10.55 15.89 10.55 20.15 16.13 20.71 20.66
Gaskell67-21�5 24.43 22.69 22.56 16.06 20.20 13.89 23.79 24.36
Gaskell67-22�5 23.36 17.85 22.98 20.50 15.77 11.89 23.11 23.03
Min92-27�5 35.56 32.30 35.43 33.73 25.34 18.03 35.51 34.02
Gaskell67-29�5 30.07 23.73 29.11 26.84 25.58 17.94 30.06 29.66
Gaskell67-32�5_1 24.43 19.94 22.68 22.72 18.17 11.95 24.43 24.36
Gaskell67-32�5_2 23.28 18.66 21.32 20.91 14.80 10.04 22.67 23.19
Gaskell67-36�5 18.04 7.12 16.19 8.85 18.04 17.16 18.04 18.04
Ch69-50�5 24.49 15.10 23.66 18.69 21.59 20.23 24.49 24.29
Perl83-55�15 25.66 23.57 24.46 18.12 24.92 24.10 25.66 25.54
Christofides69-75�10 28.34 19.47 27.26 24.58 26.28 24.27 28.15 27.91
Perl83-85�7 27.55 26.80 27.30 17.86 26.51 25.58 27.55 27.54
Daskin95-88�8 29.76 31.04 29.48 24.98 34.86 32.13 30.01 29.76
Christofides69-100�10 23.76 16.92 22.61 20.08 20.60 19.26 23.72 23.69

Average 25.01 19.84 23.75 19.90 21.81 18.09 24.91 24.54

a Instances are derived from Barreto’s set.
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is the gap between the LP relaxation bound (LB) produced by a particular formulation and upper bound (UB). It is calculated as
DLB = 100 � [(UB � LB)/UB] where UB is the optimal/best solution obtained by the proposed branch-and-cut algorithm. Table 1 reports
the results. Each cell in the table reports average lower bound percentage gap, DLB, over four instances, which are obtained from original
LRP instance by applying four separation strategies (i.e., X,Y,Z and W type). The first column gives the names of the original VRP instances
used to produce LRPSPD instances. In the next column, named Original, DLB for the original formulation is reported. The other columns in
Table 2
Marginal contribution of each family of valid inequality.

Instances*
Average percentage gap (DLBÞ

Original Full (25) (26) (27) (28) (29) (30), (31) (32)

Srivastava86-8�2 15.71 3.21 8.74 4.75 4.65 4.65 8.80 4.65 4.65
Perl83-12�2 20.71 2.54 13.16 5.79 2.94 2.94 5.71 2.94 2.94
Gaskell67-21�5 24.43 5.96 13.86 5.99 12.35 12.35 20.59 12.35 12.35
Gaskell67-22�5 23.36 4.20 11.91 5.02 4.16 4.16 15.75 4.16 4.16
Min92-27�5 35.56 13.23 17.96 13.53 13.67 13.67 30.69 13.67 13.67
Gaskell67-29�5 30.07 10.58 17.98 10.66 10.65 10.65 21.76 10.65 10.65
Gaskell67-32�5_1 24.43 7.71 11.92 8.91 7.74 7.74 18.32 7.74 7.74
Gaskell67-32�5_2 23.28 5.75 9.40 7.26 5.84 5.84 16.86 5.84 5.84
Gaskell67-36�5 18.04 4.42 15.90 7.08 4.42 4.42 4.43 4.42 4.42
Ch69-50�5 24.49 9.15 19.41 10.97 9.04 9.04 12.96 9.04 9.04
Perl83-55�15 25.66 13.79 23.34 15.26 20.92 20.92 22.05 20.92 20.92
Christofides69-75�10 28.34 14.59 24.14 16.04 14.52 14.52 17.30 14.52 14.52
Perl83-85�7 27.55 15.48 25.45 15.69 24.82 24.82 26.57 24.82 24.82
Daskin95-88�8 29.76 21.77 26.76 28.11 29.70 29.53 29.70 29.70 29.70
Christofides69-100�10 23.76 10.55 18.46 12.78 10.45 10.45 14.76 10.45 10.45

Average 25.01 9.53 17.23 11.19 11.72 11.71 17.75 11.72 11.72

* Instances are derived from Barreto’s set.

Table 3
Computational results for the instances derived from Barreto’s test set by Salhi and Nagy’s separation approach (i.e. BSN).

Instances DSS UB B&C B&C1 CPLEX

Gap Nodes Cuts SolTime Gap Nodes Cuts SolTime Gap SolTime

Srivastava86-8�2 X 625.43 0.00 0 20 0.38 0.00 0 20 0.27 0.00 0.41
Y 625.43 0.00 3 16 0.26 0.00 3 16 0.20 0.00 0.67

Perl83-12�2 X 242.41 0.00 2 13 0.60 0.00 2 14 0.40 0.00 0.78
Y 242.41 0.00 2 12 0.55 0.00 4 12 0.36 0.00 3.47

Gaskell67-21�5 X 454.48 0.00 153 54 13.34 0.00 416 79 32.75 0.00 2243.03
Y 454.48 0.00 141 43 8.98 0.00 290 53 16.13 0.00 1984.16

Gaskell67-22�5 X 629.51 0.00 3494 203 109.62 0.00 3494 203 99.65 0.00 1440.88
Y 629.51 0.00 3310 175 64.99 0.00 1896 129 41.30 0.00 980.93

Min92-27�5 X 2998.80 0.00 1078 121 91.87 0.00 1378 139 126.64 6.75 14400.00
Y 2998.80 0.00 1440 114 190.62 0.00 1159 104 130.73 7.27 14400.00

Gaskell67-29�5 X 490.34 0.00 12 33 6.63 0.00 12 33 5.97 1.13 14400.00
Y 490.34 0.00 33 32 6.57 0.00 33 32 5.40 1.80 14400.00

Gaskell67-32�5_1 X 563.47 0.00 90 87 18.77 0.00 217 194 58.66 1.37 14400.00
Y 563.47 0.00 120 92 27.31 0.00 153 156 58.76 1.55 14400.00

Gaskell67-32�5_2 X 507.03 0.00 53 54 13.72 0.00 37 59 14.87 0.00 720.88
Y 507.03 0.00 4 39 7.87 0.00 4 39 7.15 0.00 461.29

Gaskell67-36�5 X 494.86 0.00 8 94 18.36 0.00 227 168 56.33 1.97 14400.00
Y 494.86 0.00 8 117 18.13 0.00 72 123 29.55 2.49 14400.00

Christofides 69-50�5 X 576.69 2.40 2087 792 14400.00 2.65 3019 1225 14400.00 4.95 14400.00
Y 578.97 2.69 2681 840 14400.00 3.00 2697 1428 14400.00 5.14 14400.00

Perl83-55�15 X 985.56 2.94 422 778 14400.00 4.09 356 710 14400.00 20.52 14400.00
Y 988.06 3.14 502 743 14400.00 4.31 297 518 14400.00 20.70 14400.00

Christofides 69-75�10 X 888.16 10.33 127 542 14400.00 12.01 140 673 14400.00 17.26 14400.00
Y 884.00 8.90 129 593 14400.00 8.98 130 643 14400.00 17.53 14400.00

Perl83-85�7 X 1381.57 5.88 80 649 14400.00 5.88 80 749 14400.00 26.06 14400.00
Y 1368.64 4.96 96 655 14400.00 4.96 101 673 14400.00 25.40 14400.00

Daskin95-88�8 X 399.17 11.20 0 34 14400.00 18.71 0 0 4826.98 N/A 14400.00
Y 401.98 0.00 0 45 14068.40 1.05 0 25 14400.00 N/A 14400.00

Christofides 69-100�10 X 880.18 7.45 14 279 14400.00 7.89 16 234 14400.00 13.90 14400.00
Y 880.89 6.17 100 339 14400.00 5.59 64 344 14400.00 13.90 14400.00

Average 2.20 540 254 5768.90 2.64 543 193 5463.74 9861.22
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the table give DLBs for the original formulation with an extra family of valid inequalities in the column caption introduced. The last row in
table reports the average over all instances for each column.

As seen in Table 1, the original formulation has large lower bound percentage gaps which range from 15.71% to 35.56%. The average
percentage gap is around 25%. The performance of the original formulation is improved by adding a family of valid inequalities at a time.
The inequality (29) is the most efficient one and its inclusion in the original formulation reduces the average percentage gap to 18.09% and
improvement is around 7% on average. The inequalities (25) and (29) are also efficient ones and they improve the percentage gaps around
5.17% and 5.11% on average, respectively. Another efficient inequality (28) leads to improvement on the percentage gaps around 3.20%. The
inequalities (26) and (32) in the original formulation provide slightly improvement on the percentage gaps around 1.26% and 0.47% on
average, respectively.

In the second experiment, we investigate the marginal contributions of each family of inequalities. The column named Full in Table 2
gives average percentage gap (DLBÞ of the linear relaxation of the full formulation which is obtained by adding all the inequalities to the
original formulation. Following columns report the gaps obtained by removing a family of inequalities from the full formulation. The re-
moved inequalities are denoted in the column caption. As seen in Table 2, the full formulation improves the lower bounds according to the
original formulation and the average percentage gap reduces to 9.53%. Removing inequalities (25) and (29) increase the percentage gaps
around 7.70% and 8.22% on average, respectively. It is also possible to observe smaller but a significant increase (around 2% on average) on
the percentage gaps by removing other inequalities. These results reveal that all valid inequalities should be in the formulation.

5.3. Results for the branch-and-cut algorithm

We have coded the branch-out-cut algorithm in C++ by using LP/MIP solver CPLEX 11.1 Callable Library. All experiments have been per-
formed on Intel Xeon 3.16 GHz equipped with 1 GB RAM computer and a time limit of 4 hours has been imposed on each instance.

Regarding to the SA algorithm, which is used to improve the upper bounds obtained in the nodes of the enumeration tree, we have
implemented following parameter values selected based on our previous experience: the initial temperature (To) is taken as 665 in which
an inferior solution (inferior by 70% relative to current solution) is accepted with a probability of 0.90, the final temperature (Tf) is taken as
0.15 such that a solution which is inferior by 1% relative to current solution is accepted with a probability of 0.1% and the number of neigh-
bors (LS) generated by each moving strategy is set to number of customers, jNCj, of the instance.

It is important to note that a comparison of B&C with a state-of-the-art algorithm is not possible since, to the best our knowledge, there
is no competing approach in this research area. Thus, the performance of our approach has been compared to that of LP/MIP solver CPLEX
Table 4
Computational results for the instances derived from Barreto’s test set by Angelelli and Mansini’s separation approach (i.e. BAM).

Instances DSS UB B&C B&C1 CPLEX

Gap Nodes Cuts SolTime Gap Nodes Cuts SolTime Gap SolTime

Srivastava86-8�2 W 873.58 0.00 0 1 0.00 0.00 0 1 0.00 0.00 0.03
Z 806.06 0.00 0 3 0.00 0.00 0 3 0.00 0.00 0.03

Perl83-12�2 W 243.98 0.00 0 12 0.57 0.00 0 12 0.41 0.00 2.37
Z 243.98 0.00 0 11 0.65 0.00 0 11 0.46 0.00 3.48

Gaskell67-21�5 W 528.42 0.00 2078 351 290.18 0.00 5747 788 1405.25 0.00 12777.80
Z 513.30 0.00 701 151 89.43 0.00 2244 485 487.41 0.00 7564.93

Gaskell67-22�5 W 653.80 0.00 1 12 3.76 0.00 3 13 3.87 0.00 34.30
Z 653.80 0.00 0 10 2.66 0.00 3 15 3.29 0.00 50.87

Min92-27�5 W 3142.02 0.00 137 86 19.66 0.00 183 97 30.89 1.79 14400.00
Z 3142.02 0.00 181 76 18.12 0.68 13278 1372 14400.00 2.38 14400.00

Gaskell67-29�5 W 592.10 0.00 6 45 6.76 0.00 9 47 10.92 3.51 14400.00
Z 592.10 0.00 444 110 100.91 0.00 1074 318 489.22 10.02 14400.00

Gaskell67-32�5_1 W 696.38 0.00 13009 617 5694.09 0.00 10899 725 5225.26 7.27 14400.00
Z 643.37 0.00 1219 308 259.67 0.00 9554 1069 4999.97 4.29 14400.00

Gaskell67-32�5_2 W 595.27 0.00 8 80 15.68 0.00 3582 364 304.35 3.20 14400.00
Z 564.33 0.00 87 100 30.90 0.00 194 137 59.93 0.00 8179.27

Gaskell67-36�5 W 540.37 0.00 18 165 27.20 0.00 1962 403 657.10 1.67 14400.00
Z 540.37 0.00 40 148 46.46 0.00 258 291 151.88 2.55 14400.00

Christofides 69-50�5 W 708.37 4.52 1056 1169 14400.00 4.67 953 1297 14400.00 8.53 14400.00
Z 701.91 3.67 835 1266 14400.00 3.74 920 1522 14400.00 11.21 14400.00

Perl83-55�15 W 1330.85 20.93 540 1398 14400.00 22.56 490 1271 14400.00 23.90 14400.00
Z 1338.30 20.81 387 1492 14400.00 22.93 344 1363 14400.00 24.41 14400.00

Christofides 69-75�10 W 1177.65 17.55 120 628 14400.00 17.55 157 715 14400.00 19.13 14400.00
Z 1108.82 12.81 194 688 14400.00 14.62 182 663 14400.00 15.65 14400.00

Perl83-85�7 W 1901.09 23.56 90 728 14400.00 23.53 95 735 14400.00 25.67 14400.00
Z 1893.28 23.41 148 679 14400.00 23.42 119 700 14400.00 25.44 14400.00

Daskin95-88�8 W 533.37 21.96 0 0 14400.00 21.60 0 0 14400.00 N/A 14400.00
Z 487.81 15.57 0 19 14400.00 14.87 0 34 14400.00 N/A 14400.00

Christofides 69-100�10 W 1079.41 12.88 16 541 14400.00 12.74 40 521 14400.00 19.29 14400.00
Z 1038.26 9.26 19 420 14400.00 9.26 30 480 14400.00 16.25 14400.00

Average 6.23 712 377 5980.23 6.41 1744 515 6701.01 11033.77
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11.1 and a new variant of B&C, called B&C1. We run CPLEX under default settings directly on the flow-based formulation of the LRPSPD in
Section 2. The B&C1 is derived by excluding SA algorithm from the B&C. Note that SA algorithm is implemented only to improve the initial
feasible solution in the B&C1. The rationale behind this implementation is to assess the effectiveness of SA algorithm on the performance of
B&C. These two approaches have also been run on Intel Xeon 3.16 GHz equipped with 1 GB RAM computer for a time limit of 4 hours.

Tables 3–6 depict computational results for the B&C, B&C1 and CPLEX on LRPSPD instances derived from Barreto’s and Prodhon’s sets by
applying Salhi and Nagy’s and Angelelli and Mansini’s demand separation approaches, respectively. The first column in the tables is the
same as in previous tables. The column labeled DSS denotes demand separation strategy. The column labeled UB reports the upper bound
value for the corresponding instance. It is important to note that the upper bound shows the optimal value for the instances which are
solved to optimality within 4 hours. Successive four columns summarize computational results for the B&C. The column labeled Gap re-
ports the percentage gap. The column labeled Nodes gives the number of nodes explored by the enumeration tree. The column labeled Cuts
presents the number of violated inequalities added to the model. The column labeled Soltime reports the CPU time in seconds required to
run the algorithm. The next four columns present computational results for the B&C1. The last two columns report percentage gap and CPU
time in seconds for the CPLEX. Note that the percentage gaps for each algorithm are computed as 100[(UB⁄ � LB⁄)/UB⁄] where UB⁄ is the
best upper bound obtained by any of three algorithms and LB⁄ is the lower bound found by the corresponding algorithm.
Table 5
Computational results for the instances derived from Prodhon’s test set by Salhi and Nagy’s separation approach (i.e. PSN).

Instances DSS UB B&C B&C1 CPLEX

Gap Nodes Cuts SolTime Gap Nodes Cuts SolTime Gap SolTime

20-5-1a X 16816.50 0.00 2641 195 84.51 0.00 3101 207 153.08 4.45 14400.00
Y 16816.00 0.00 2048 160 73.77 0.00 10003 417 496.34 4.41 14400.00

20-5-1b X 9167.14 0.00 0 1 1.86 0.00 0 1 0.44 0.00 0.65
Y 9167.14 0.00 0 1 0.27 0.00 0 1 0.38 0.00 0.46

20-5-2a X 17814.70 0.00 459 152 27.93 0.00 961 317 118.38 1.95 14400.00
Y 17814.70 0.00 390 104 16.02 0.00 754 256 74.81 1.94 14400.00

20-5-2b X 10257.30 0.00 0 15 1.61 0.00 14 21 2.86 0.00 22.70
Y 10257.30 0.00 0 20 1.38 0.00 0 20 1.38 0.00 29.25

50-5-1a X 16350.00 0.17 1835 823 14400.00 0.23 1060 1114 14400.00 1.72 14400.00
Y 16355.20 0.22 1800 1161 14400.00 0.24 1380 1290 14400.00 1.76 14400.00

50-5-1b X 13132.90 0.04 3069 499 14400.00 0.09 3060 1011 14400.00 2.57 14400.00
Y 13132.90 0.04 6964 364 14400.00 0.07 5519 802 14400.00 0.23 14400.00

50-5-2a X 26395.60 0.10 1251 1309 14400.00 1.25 1250 1272 14400.00 2.73 14400.00
Y 26392.70 0.09 1602 1049 14400.00 1.24 1854 1642 14400.00 2.71 14400.00

50-5-2b X 22268.50 0.00 440 140 213.75 0.02 1502 1070 14400.00 2.68 14400.00
Y 22268.50 0.00 3086 210 1147.76 0.03 1660 939 14400.00 2.66 14400.00

50-5-3a X 11624.20 0.24 3224 1278 14400.00 0.25 3565 1904 14400.00 0.47 14400.00
Y 11626.60 0.25 4066 1214 14400.00 0.28 2745 2017 14400.00 0.50 14400.00

50-5-3b X 8472.39 0.12 6584 495 14400.00 0.12 4901 1022 14400.00 0.36 14400.00
Y 8469.87 0.03 6584 495 14400.00 0.09 4680 1062 14400.00 0.33 14400.00

100-5-1a X 102388.00 0.18 37 1101 14400.00 0.18 30 945 14400.00 1.19 14400.00
Y 102381.00 0.17 34 912 14400.00 0.17 50 852 14400.00 1.18 14400.00

100-5-1b X 94884.00 0.12 50 511 14400.00 0.12 28 569 14400.00 1.11 14400.00
Y 94878.80 0.12 60 487 14400.00 0.11 50 639 14400.00 1.10 14400.00

100-5-2a X 105655.00 0.11 87 898 14400.00 0.11 77 881 14400.00 7.10 14400.00
Y 105655.00 0.11 89 552 14400.00 0.11 90 559 14400.00 7.48 14400.00

100-5-2b X 97213.80 0.08 61 625 14400.00 1.10 40 593 14400.00 9.62 14400.00
Y 97206.00 0.07 60 741 14400.00 1.10 34 642 14400.00 8.06 14400.00

100-5-3a X 56552.10 0.17 24 889 14400.00 0.17 5 857 14400.00 1.55 14400.00
Y 56581.90 0.22 35 980 14400.00 0.22 5 1033 14400.00 1.60 14400.00

100-5-3b X 50224.60 0.11 116 484 14400.00 0.11 30 708 14400.00 1.75 14400.00
Y 50220.80 0.09 104 597 14400.00 0.09 40 679 14400.00 1.80 14400.00

100-10-1a X 109785.00 1.07 51 713 14400.00 1.62 60 742 14400.00 3.02 14400.00
Y 109787.00 1.07 37 785 14400.00 1.62 50 806 14400.00 2.98 14400.00

100-10-1b X 102430.00 0.08 71 417 14400.00 0.08 65 409 14400.00 2.44 14400.00
Y 102426.00 0.07 96 372 14400.00 0.07 50 406 14400.00 2.43 14400.00

100-10-2a X 155190.00 32.08 64 725 14400.00 32.08 67 714 14400.00 32.95 14400.00
Y 107521.00 1.97 60 728 14400.00 1.96 54 672 14400.00 3.01 14400.00

100-10-2b X 99140.10 1.08 63 363 14400.00 1.08 41 331 14400.00 5.31 14400.00
Y 99138.40 1.08 63 392 14400.00 1.08 60 370 14400.00 5.31 14400.00

100-10-3a X 100702.00 1.11 40 874 14400.00 1.11 58 716 14400.00 8.72 14400.00
Y 99913.60 0.33 49 819 14400.00 0.33 33 913 14400.00 4.33 14400.00

100-10-3b X 93450.50 0.07 30 267 14400.00 0.07 47 393 14400.00 4.23 14400.00
Y 93475.00 0.10 58 340 14400.00 0.09 23 385 14400.00 16.64 14400.00

Average 0.98 1079 574 11162.93 1.11 1116 732 11801.08 3.78 13092.11



Table 6
Computational results for the instances derived from Prodhon’s test set by Angelelli and Mansini’s separation approach (PAM).

Instances DSS UB B&C B&C1 CPLEX

Gap Nodes Cuts SolTime Gap Nodes Cuts SolTime Gap SolTime

20-5-1a W 26457.70 0.00 1890 294 232.48 0.02 8234 5537 14400.00 0.94 14400.00
Z 26461.30 0.00 1059 180 75.24 0.02 16931 3502 14400.00 1.41 14400.00

20-5-1b W 18718.80 0.00 0 17 3.22 0.00 0 17 1.32 5.02 14400.00
Z 18703.00 0.00 0 18 0.94 0.00 0 18 1.36 4.87 14400.00

20-5-2a W 27988.70 0.00 701 162 37.79 0.00 6758 711 1020.52 1.90 14400.00
Z 27980.60 0.00 1283 177 73.81 0.00 8684 486 1050.79 1.69 14400.00

20-5-2b W 17125.50 0.00 106 35 7.09 0.00 293 61 13.87 5.21 14400.00
Z 17120.50 0.00 222 30 4.40 0.00 222 30 5.25 5.53 14400.00

50-5-1a W 33786.20 12.28 300 992 14400.00 3.18 268 1435 14400.00 5.32 14400.00
Z 32804.50 0.30 528 1626 14400.00 10.50 110 1122 14400.00 2.94 14400.00

50-5-1b W 26541.40 0.21 631 922 14400.00 0.21 410 1053 14400.00 3.06 14400.00
Z 26530.80 0.18 500 877 14400.00 0.19 353 970 14400.00 3.27 14400.00

50-5-2a W 42860.40 2.54 252 1344 14400.00 2.54 660 1769 14400.00 3.52 14400.00
Z 41825.80 0.16 1080 1425 14400.00 0.17 1070 1744 14400.00 1.57 14400.00

50-5-2b W 35661.90 0.13 1601 818 14400.00 0.14 973 935 14400.00 1.83 14400.00
Z 35648.40 0.11 2743 1091 14400.00 0.12 509 575 14400.00 2.05 14400.00

50-5-3a W 23533.10 4.65 232 1285 14400.00 4.65 960 1296 14400.00 5.34 14400.00
Z 23501.50 0.26 1070 2260 14400.00 2.10 813 960 14400.00 4.48 14400.00

50-5-3b W 17182.00 0.21 1541 1392 14400.00 2.26 1228 1180 14400.00 5.76 14400.00
Z 17174.10 0.13 2050 1173 14400.00 0.13 736 1093 14400.00 5.24 14400.00

100-5-1a W 160277.00 1.36 70 1453 14400.00 1.37 50 1360 14400.00 1.76 14400.00
Z 159200.00 0.73 20 1418 14400.00 0.73 42 1373 14400.00 26.37 14400.00

100-5-1b W 145697.00 0.78 80 918 14400.00 0.78 83 788 14400.00 0.85 14400.00
Z 145650.00 0.76 30 687 14400.00 0.76 40 656 14400.00 0.91 14400.00

100-5-2a W 168371.00 28.20 30 1258 14400.00 28.20 18 1317 14400.00 28.29 14400.00
Z 172418.00 30.38 3 1151 14400.00 29.90 13 1145 14400.00 32.04 14400.00

100-5-2b W 153827.00 29.57 62 867 14400.00 29.57 80 831 14400.00 32.00 14400.00
Z 153776.00 29.55 10 905 14400.00 29.55 13 936 14400.00 29.77 14400.00

100-5-3a W 114517.00 3.65 42 901 14400.00 3.65 57 902 14400.00 3.81 14400.00
Z 112467.00 1.89 24 1260 14400.00 1.90 65 841 14400.00 2.01 14400.00

100-5-3b W 100006.00 2.13 90 601 14400.00 2.13 100 563 14400.00 2.50 14400.00
Z 98972.50 1.11 60 566 14400.00 1.11 65 627 14400.00 1.45 14400.00

100-10-1a W 224445.00 1.41 60 773 14400.00 5.87 71 884 14400.00 14.49 14400.00
Z 222434.00 0.53 50 749 14400.00 5.03 46 799 14400.00 17.04 14400.00

100-10-1b W 209084.00 0.10 120 625 14400.00 0.10 110 566 14400.00 17.28 14400.00
Z 208958.00 0.04 81 521 14400.00 0.04 127 466 14400.00 15.22 14400.00

100-10-2a W 218395.00 22.30 30 929 14400.00 22.95 54 829 14400.00 24.70 14400.00
Z 218243.00 22.42 40 911 14400.00 22.42 54 928 14400.00 23.81 14400.00

100-10-2b W 159507.00 1.81 60 381 14400.00 1.74 99 443 14400.00 5.24 14400.00
Z 202371.85 22.78 60 381 14400.00 22.78 110 494 14400.00 23.97 14400.00

100-10-3a W 210355.00 20.88 7 1148 14400.00 20.87 7 1160 14400.00 21.26 14400.00
Z 166404.22 2.44 7 1148 14400.00 1.89 10 1243 14400.00 2.80 14400.00

100-10-3b W 196017.00 21.58 14 481 14400.00 21.82 10 493 14400.00 22.02 14400.00
Z 152088.46 1.37 14 481 14400.00 0.76 50 717 14400.00 1.04 14400.00

Average 6.12 429 833 11791.71 6.41 1150 1020 12483.94 9.58 14400.00
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When Tables 3–6 are examined, it is seen that among the 148 instances considered, 55 instances are solved to optimality by the B&C and
13 of these instances are solved at the root node of enumeration tree. Meantime, 93 instances are still unsolved after 4 hours of compu-
tation. For these instances, the final percentage gap between the lower bound and the UB is 7.45% on average. It is also important to note
that while 14 unsolved instances have a final gap under 0.1%, the number of unsolved instances having a final gap under 1% equals to 42.
Moreover, all the best bounds reported in column UB have been found by B&C.

With respect to the results for the instances derived from Barreto’s test set (see Tables 3 and 4), we can observe that all instances up to
36 customers and 5 depots are solved to optimality within around 5 minutes, with the exception of the instance Gaskell67-32�5_1 derived
by separation strategy W, which needs 1.5 hours to reach optimal solution. It is also worth noting that the B&C obtains the optimal solution
for an instance with 88 customers and 8 depots derived by separation strategy Y within 4 hours. Meanwhile, 23 out of 60 instances are not
solved to optimality and the percentage gaps for these instances change between 2.40% and 23.56%. Note that 12 instances of them have
percentage gaps lower than 10%.

From Tables 5 and 6, where results for the instances derived from Prodhon’s test set are reported, it is seen that the instances with 20
customers and 5 depots are solved to optimality within 4 minutes. Also two instances with 50 customers and 5 depots (denoted by 50-5-
2b), which are obtained by applying Salhi and Nagy’s separation approach (i.e. X and Y strategies), are solved to optimality within 20 min-
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utes. For the unsolved instances (70 out of 88 instances), the percentage gaps are between 0.04% and 32.04%. Meantime, only 11 out of 70
instances have percentage gaps greater than 5%.

It is also worth noting that the instances derived from Barreto’s and Prodhon’s test sets by using Angelelli and Mansini’s demand sep-
aration approach (denoted as BAM and PAM, respectively) are more difficult to solve than those derived from same test sets by Salhi and
Nagy’s demand separation approach (denoted as BSN and PSN, respectively). While average gaps are 2.20% and 0.98% for the BSN and PSN
(see Tables 3 and 5), respectively, this value increases to 6.23% and 6.12% for the BAM and PAM (see Tables 4 and 6), respectively. The num-
ber of cuts and explored nodes for BAM and PAM are also greater than those of BSN and PSN, respectively. For example, while the average
number of cuts for the BAM is 377, it is equal to 254 for the BSN. This is expected result when we consider that the pickup and delivery
demands generated by Angelelli and Mansini’s demand separation approach (i.e. Z and W strategies) are always bigger than those obtained
by Salhi and Nagy’s demand separation approach (i.e. X and Y strategies) as explained in Subsection 5.1. To conclude, difficulty of solving of
an instance increases when pickup and delivery demands of customers for an instance are close to the vehicle capacity.

To assess the effect of the SA algorithm on the performance of the B&C, we compare our algorithm B&C with the B&C1 which is obtained
by removing SA algorithm used to improve upper bounds during the search process. From Tables 3–6, followings are observed: removing
SA algorithm leads to a worse average gap (4.14% versus 3.88%), to a large average CPU time (9113 s versus 8676 s), to a large average num-
ber of nodes explores (1139 versus 690) and to reduction on the number of instances solved to optimality (49 instead of 55) over 148
instances.

Finally, we compare results of B&C with those obtained by CPLEX. As seen in Tables 3–6, B&C outperforms CPLEX in terms of bound
quality and computational effort. CPLEX solves only 23 out of 148 instances to optimality and this is achieved with larger CPU times
(12086 s in average). 34 out of 125 unsolved instances have percentage gaps greater than 10%. Meanwhile, CPLEX does not find feasible
integer solutions within a time limit for four instances generated from Daskin95-88�8. Furthermore, none of instances derived from Prod-
hon’s test set by Angelelli and Mansini’s separation approach (PAM) is solved to optimality by CPLEX within a time limit.

6. Conclusion

In this paper, we have considered a general case of the location-routing problem called location-routing problem with simultaneously
pickup and delivery, LRPSPD, and proposed for the first time a branch-and-cut algorithm for the exact solution of the LRPSPD. We have
adapted several valid inequalities, which were developed for the vehicle routing and facility location problems in the literature, in the
implementation of the proposed branch-and-cut algorithm. We have also developed separation algorithms for these inequalities and a heu-
ristic algorithm based on simulated annealing (SA) to improve solutions found during the search process of the algorithm. Finally, we have
presented computational results conducted on 148 new test instances derived from the location-routing problem instances. A comparison
with CPLEX shows that the proposed branch-and-cut algorithm is a viable approach to solve small and medium size LRPSPD instances. Fur-
thermore, the computational results reveal that simulated annealing helps the branch and cut algorithm in finding high quality solutions
by reducing computation time and exploring fewer nodes of tree.

In terms of future research directions, the proposed branch-and-cut algorithm can be modified to take into account more realistic as-
pects of the LRPSPD such as dynamic environment and stochastic demands. The proposed branch and cut algorithm implements straight-
forward branching scheme (i.e. branching most fractional variable), and four polynomial- and three exponential-size valid inequalities.
New valid inequalities can be developed for the problem. Meantime, it would be worthwhile to investigate the effects of new valid inequal-
ities and different branching schemes, such as closest to integer, farthest from integer, or constraint branching, etc., on the performance of
the algorithm.
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