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Abstract In online social networks, reputations of users (nodes) are emerged and
propagated through interactions among the users. These interactions include intrinsic
and extrinsic consensus (voting) among neighboring users influenced by the network
topology. We introduce an algorithm that considers the degree information of nodes
(users) to model how reputations spread within the network. In our algorithm, each
nodeupdates reputations about its neighbors by considering the history of interactions
and the frequency of the interactions in recent history. The algorithm also captures the
phenomena of accuracy of reputations deteriorating over time if interactions have not
occurred recently. We present the following two contributions through experiments:
(1) We show that an agent’s reputation value is influenced by the position of the
node in the network and the neighboring topology; and (2) We also show that our
algorithm can computemore accurate reputations than existing algorithms especially
when the topological information matters. The experiments are conducted in random
social networks and Autonomous Systems Network of the Internet. In addition, we
show the efficacies of each component in our algorithm and present their effects on
the algorithm.
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1 Introduction

Accurate reputation information about nodes in social networks improves services
provided by the networks. For example, reputations can be calculated and updated
for web sites and servers to identify malicious nodes and connections. The ability
to observe and analyze propagations of reputations within a large social network
structures is also important.

There are centralized and decentralized approaches in reputation computations.
Centralized reputation management systems are often used in commercial applica-
tions, such as eBay and Amazon, where a centralized authority is relatively explicit,
but such approaches fail in environments that lack a central authority. In online
networks such as the Internet, social networks, and other multi-agent systems envi-
ronments, a distributed reputation computation algorithm is naturally more suitable.

Several distributed reputation algorithms including AFRAS [1], REGRET [2] and
HISTOS [3] exist. However, these algorithms do not consider frequencies and veloc-
ity of interactions; frequency of interactions is an important measure of reputation
of the users involved. Velocity of interactions measures the second order informa-
tion of frequency, i.e., the rate of changes in frequency. Existing algorithms also
lack the consideration of topological information of the networks and the subjectiv-
ity of reputations (i.e., two different nodes may perceive the reputation of a node
differently).

This article presents a new reputation management model that addresses the
above issues.Our algorithm considers frequencies and velocity of interactions online.
Because our algorithm is developed by modeling the behavior of social networks,
we show the algorithm can be used as an analytical tool for studying social network
behaviors as well as a query tool for retrieving reputation values for specific nodes at
a given time. Through experiments, we show that how reputations emerge and prop-
agate in random social networks and how the model captures the idea of dynamic
reputation propagations from one part of the network to another.We also show exper-
iments on real Autonomous Systems Networks (ASN) of the Internet for identifying
malicious ASN nodes through our model. We compare our results with an existing
reputation values computed by another well accepted ASN reputation management
system. The results show that our algorithm computes similar reputation values as
the values provided by the existing algorithm. However, we show that our algorithm
is better suited to find many malicious ASN nodes while the compared method is
good for finding the worst malicious node only. Finally, we extend the previous work
presented in [4] to test the effectiveness of each components in computing reputation
values.

The paper is organized as follows. Section2 presents motivations and contribu-
tions of the work. Section3 presents some of the well known reputation computation
algorithms. In Sect. 4 we propose our reputation computation algorithm in detail.
Then in Sect. 5, we explain experiment settings as well as the results. Following
this, in Sect. 6, we discuss the contributions of the algorithm. Finally, in Sect. 7, we
conclude and propose future works.
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2 Motivations and Contributions

Reputation is an estimate or prediction of an agent’s real behavior. Reputation values
should dynamically reflect past behaviors of an agent and also tolerate bad behaviors
which may have been caused by mistakes. The proposed algorithm has the following
uniquely novel features:

• Because reputation is subjective, as it is one’s estimate of another, we assume that
reputation values of other agents are a private opinion of an agent. Each agent uses
a recursive voting algorithm to incorporate opinions of other nodes for a more
objective view of a target agent.

• Many social network analysis show that the degree of a node is an important
indication of the node’s influence as well as the topological information of the
networks [5–7]. In the voting process, degrees of neighboring nodes are used to
compute the weight of the votes. In this article, we assume that each node knows
the degrees of its neighbors and the total number of nodes in the network. In many
cases, including HISTOS [3], the topology of the network is assumed to be known
to enable aggregations of reputation.

• In many times, how frequently interactions occurs within a limited period can be
an important evidence about reputations of the nodes. The algorithm incorporates
frequencies of interactions as well as velocity. Existing distributed algorithms
usually only consider the total number of interactions.

• If two agents have not interacted for a long time, even if the total number of
interactions is large, the reputation values for each other many not be up to date.
Our algorithm applies a time decaying function to balance the previous reputation
value and the evaluation of the most recent interaction.

3 Related Work

In this Section, we introduce some of the most well known reputation management
algorithms, AFRAS [1], REGRET [2] and HISTOS [3]. According to the classifica-
tions discussed in [8], AFRAS, REGRET and HISTOS are distributed algorithms and
combine direct interactions as well as the witness information to determine reputa-
tion. HISTOS considers only a given number of recent interactions and recursively
aggregates reputation values following paths to the target agent. It also weights
opinions from others with their reputation values. AFRAS uses fuzzy sets to repre-
sent reputation with truth levels. It combines the previous reputation and the cur-
rent satisfaction level to compute a new reputation. It introduces a dynamic mem-
ory factor as a weight, updated with the similarity between the previous reputation
and the current satisfaction level. REGRET uses the three dimensionality of reputa-
tion, namely individual, social and ontological dimensions. The individual dimen-
sion computes reputations based on direct experiences while social dimension col-
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lects witness information. In addition, the ontological dimension adds possibility of
combining different aspects of reputation.

The common idea behind the algorithms discussed above is that updating reputa-
tion involves weighted aggregation of the previous reputation and current feedbacks.
The previous reputation is weighted with a factor of time or memory, and current
feedbacks are computed through evaluation methods. The difference lies on how the
algorithms interpret current interactions with respect to the given information about
the target agent. In addition to that, we incorporate network degree information to
measure the weight of the node’s own opinion about the target node. For example,
an agent gives more weight to its own evaluation than opinions from others if it has
a relatively small number of neighbors in a network while it assigns more weight on
others’ opinions if it has more connections.

The reputation function in HISTOS algorithm focuses on estimating reputation
values when an agent asks for reputation of another at distant, meaning it recursively
aggregates ratings given by neighbors following the shortest paths. If the agent is
directly connected to the target agent, it doesn’t need to combine ratings from other
nodes. On the other hand, our algorithm is more focused on updating reputations
after interactions. After having a direct interaction with a target agent, agents still
combines their direct experience with indirect experiences (through voting). This
enables agents to keep personalized reputations of other agents that are not biased
by unfortunate wrong impressions.

Other reputation systems include but not limited to FIRE [9] which identifies
dishonest and mistaken agents, TRAVOS [10] which attempts to determine the cred-
ibility of witnesses when combining opinions and PeerTRUST [11] which addresses
the bootstrapping problem in peer-to-peer systems.

4 ReMSA: Reputation Management for Social Agents

In this Section, we present the proposed algorithm—ReMSA: Reputation Manage-
ment for Social Agents [4]. A reputation value is computed when an interaction
between two agents occurs. In an interaction, an agent can be an observer, observee,
or both. After an interaction, the observer evaluates the interaction to compute the
reputation of the observee. If both are observers, they will compute reputations of
each other. The more interactions occur between two agents, the more accurate the
reputations are computed for the agents. As interactions occur within the network
over time, reputations of agents in one part of the network will propagate to another
part of the network, much similar to what is happening in real-world social networks.
At any given time, any agent can query about reputation of an arbitrary agent. Note
that the returned value to the agent may be different from the result of the query initi-
ated by another agent. When there’s enough interactions among overall agents in the
network, reputations will propagate to the entire network, and more homogeneous
views of reputations of agent will emerge.
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Fig. 1 The sequence of
processes agents take to
update reputation values

Figure1 shows the flowchart of reputation computation for an observer nodewhen
an event occurs. Following subsections explain each process in Fig. 1.

4.1 Events

We define an event as an interaction between two agents with time information.
There are two types of events in terms of who owns the event. When an interaction
happens between two agents, if both agents can observe each other’s behavior, then
both own the event. If only one of the agents can observe the other’s behavior, only
the observer is the owner of the event. All the following computations are based on
the observer agent’s point of view.

• The set of agents and events are defined as follows.

A = {a1, a2, ..., an}

Ei = {e1, e2, ..., em}

e j = (t j , a j )

where, ai is an observer agent, Ei is a set of events that ai as an observer, and e j

is an event which consists of its time, t j , and the observee agent, a j .
• Given a network, we define α and β where nodes are agents and edges are rela-
tionships.

αi = di

maxm∈A{dm}
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βil = dl
∑

k∈Ni
dk

where, Ni is a set of i’s neighboring agents, and da is the degree of agent a.
αi is a ratio of i’s degree and the maximum degree in the network. αi is used
to weight i’s opinion (i.e., the observer’s) since αi represents i’s position in the
network. It implies that we can infer an agent’s confidence from its relative degree
information. Given i and it’s neighbor l, βil is a ratio of l’s degree and the sum of
i’s neighbors’ degrees. βil represents l’s relative credibility from i’s perspective.
i will use βil to collect opinions from its neighbors. The neighbors of each l will
recursively compute βl∗ in turn until one of the three terminating conditions is met
as explained in Sect. 4.2.3. In the voting algorithm shown in (1), i evaluates voting
weights for each of it’s neighbor l.

4.2 Compute Feedback

Feedback process consists of two subprocesses, Evaluation and Voting. Feedback is
a part of reputation updating function in Sect. 4.6.

4.2.1 Compute Evaluation

After each interaction, agents that were involved in the interaction evaluate the inter-
action according to their own evaluation methods. Therefore, Evaluation of interac-
tions is subjective and can be implemented depending on applications. Evaluation
of an event e is represented as a function, Eval(e).

4.2.2 Compute Voting

While the evaluation function is computed by each agent, agents collect opinions
from other agents before updating the reputation of the target agent through a voting
process to combine diverse opinions. If ai had an interaction with al , ai can take a
vote about al to its neighbors to obtain more objective views. The neighbors of ai

can either return a vote to ai with their own evaluations (if they don’t have neighbors
other than ai or al ) or they can spread the vote to their neighbors. V e

ai al
is the weighted

sum of voting results and we define it as follows.

V e
il =

∑

k∈Ni

βik × Fe
kl (1)

βik represents i’s delegation trust towards k and is multiplied by Fe
kl which is

a weighted sum of i’s evaluation of l on the event e and collected feedbacks from
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k’s neighbors about l. Feedback process is represented with the function Fe
il which

recursively calls the voting function, V e
il .

Fe
il = αi × Evali (e) + (1 − αi ) × V e

il (2)

αi implies self-confidence of i and it is multiplied by Evali (e), the self evaluation
on event e.

As shown in formula (1) and (2), Feedback and Voting processes are defined
recursively.

4.2.3 Stoping Criteria

To avoid infinite loops or circular voting processes, we need to specify a few restric-
tions. First, when an agent takes a vote to its neighbors, it excludes itself. Since the
agent’s opinion about the target agent is already included in the evaluation function,
it only needs to hear from its neighbors. Second, for the voters to avoid casting dupli-
cate votes, each agent keeps history of votes which it has already participated. This
is beneficial to the voters so that they don’t waste their own resources on duplicate
votes. Third, the base condition of the recursive voting is: (1) when an agent has
only one neighbor which originated the voting process, (2) when an agent has two
neighbors one being the originator and the other being the target agent and (3) when
an agent has already participated in the current vote. In the first two cases, (1) and
(2), the voter agent returns its reputation value of the target agent.

4.3 Compute Velocity and Acceleration

We also consider the frequency of events to compute reputation since an event with
a dormant period should be treated differently from frequent ones. We define the
velocity for each event to compute the acceleration of events. Then the acceleration
of an event influences Feedback value of the event through the Impact function.

Velocity of an event is defined as follows.

V el(e) = 1

te − te′
(4)

where e′ is the most recent previous event.
It is obvious that there needs to be at least two events to compute a velocity,

otherwise the velocity is zero. Also, since we consider time with increasing positive
integers, te − t ′e > 0 and V el(e) ∈ [0, 1].
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Now, we can compute the acceleration of event e to identify if its velocity is
increasing or decreasing through Acc(e).

Acc(e) = V el(e) − V el(e′) (5)

4.4 Compute Impact

We introduce Impact function to calculate the influence of Acc(e), defined in (5), on
the feedback, Fe.

I (Acc(e), Fe) = |Acc(e)| × Fe3
−Acc(e)
|Acc(e)| + (1 − |Acc(e)|) × Fe (6)

The magnitude of Acc(e) determines the curve of the function which decides how
much to increase or decrease from Fe. When Acc(e) > 0, I increases the original
feedback value, I (Acc(e), Fe) > Fe, andwhen Acc(e) < 0, I decreases the original
feedback value, I (Acc(e), Fe) < Fe. If Acc(e) = 0 then I (Acc(e), Fe) = Fe

which means that when there is no change in the velocity, no impact is made to the
feedback value, Fe.

4.5 Time Decaying Function

Time decaying function is an essential part of the reputation computation since it
captures the temporal nature of information; old reputation value may not be as
accurate as a new one. Intuitively, an interaction shortly after the previous one can
make more use of the built-up reputation (current reputation) while an interaction
after a long inactive period should rely more on the current feedback values since
the built-up reputation is not up to date. As discussed in [12], time decaying function
should to be designed carefully, based on the context (e.g. a periodic function) so
that it can adjust time sensitivity weights when computing reputations.

We use an exponential decay function to capture the idea. Our time decaying
function relies on the elapsed time since the last interaction.

D(x) = e−x

where x is te − te′ .



A Node-Centric Reputation Computation Algorithm on Online Social Networks 9

4.6 Update Reputation

Finally, we are now ready to explain the reputation update function that utilizes
the functions discussed so far. A new reputation value is computed when a new
event occurs. The new reputation is a weighted sum of the current reputation and
the feedbacks. The current reputation is weighted by the time decaying function and
Impact function is applied to the feedbacks. Finally, we formally define the reputation
update function as follows.

Reputation update function:

Rte
il = d × R

te′
il + (1 − d) × I (Acc(e), Fe

il)

where d = D(te − te′).

4.7 Ask Function

In our algorithm, each agent keeps a list of reputation values of the neighbors. How-
ever, in some occasions, an agent might wonder about another agent’s reputation
other than the neighbors. Therefore, we implement Ask function to query a target
agent’s reputation who is not a neighbor. Ask function is the same as Feedback func-
tion except the agent does not have its own evaluation of the target agent.Ask function,
then, goes through the same processes as in Voting function as in (1).

Askil =
{

Rkl l ∈ Nk
∑

k∈Ni
βik × Askkl otherwise

5 Experiments

In this section, we present two sets of experiments. First, we compute reputations of
Autonomous Systems (AS) in the Internet using our algorithm. And we compare our
resultswithAS-CRED [13],which is awell-known reputation service forASnetwork.
We use subsets of the real AS networks obtained from RouteViews [14]. Second, we
study the emergence and propagation of reputations within random social networks
generated by Graph-Generator [15]. Graph-Generator is a small Java program to
create random graphs in which the number of nodes, edges and the maximum degree
are specified.
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5.1 Experiment 1: Computing Reputations of Autonomous
Systems

We apply ReMSA algorithm to compute reputation values of Autonomous Systems.
An Autonomous System is a collection of connected Internet Protocol (IP) routing
prefixes under the control of one or more network operators. Since behaviors of each
AS represent human interests, we considerASnetwork as social network.We analyze
Border Gateway Protocol (BGP) updates data, which is the standard communication
protocol for interconnecting ASes, to evaluate validity of activities among ASes in
the network and compute reputation values based on the evaluations. The reputations
of ASes could be incorporated for the routes deciding algorithm for each AS since
reputations of ASes directly represent the behaviors of ASes.

5.1.1 Network Sampling Algorithm

As shown in Table1, the number of nodes in the original AS network is very large
because it represents all ASes in the Internet. However, only less than 10% of ASes
appear in each day’s BGP update data we use. Therefore, for the tractability of
the experiments, we extract two representative, scaled down, sub-networks from
the original AS network. If we sample sub-networks from the original AS network
using existing algorithms, most of the ASes in sampled sub-networks don’t appear
in the BGP data. Instead of using the algorithms discussed in [16], we designed
a context-based network extraction algorithm in order to sample meaningful sub-
networks which contain most of the autonomous systems appearing in BGP update
data. Therefore, we extract ASes that appeared in the BGP data so that we can
compute reputations of the ASes. For each randomly chosen ASPATH in BGP update
data on January 1, 2010,we addASeswhich appear in theASPATH to the sub-network
and repeat the process until the desired number of nodes for the sub-network is
reached (in this case, 5,000).

In order to measure whether the sub-networks represent the original AS network
reasonably, we evaluate the sub-networks by the metrics defined in [16].

Table1 shows the number of nodes and edges of the original network and two sam-
pled sub-networks. The number of nodes of sub-networks (5,000) is approximately
15% of the real network (33,508) which is enough to match the properties shown in
Table2 [16]. Table2 shows five different distributions of two sample networks mea-
sured using Kolmogorov-Smirnov D-statistics. D-statistic measures the agreement

Table 1 Nodes and edges information of networks

Original Sub-network1 Sub-network2

# Nodes 33,508 5,000 5,000

# Edges 75,001 19,953 22,379
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Table 2 Sampling criteria for sub-networks

In-deg Hops Sng-val Sng-vec Clust AVG

Sub-
network1

0.2743 0.3500 0.1883 0.1180 0.2346 0.2399

Sub-
network2

0.0703 0.3500 0.1234 0.0357 0.1944 0.1547

between the true and the sample network property [16]. In the last column, we show
the average of the results. Lower average values means more agreement between
original network and the sub-network. Some good average values discussed in [16]
were 0.202 and 0.205. Therefore, both of the sub-networks qualify for scaled-down
sub-networks well representing the original.

5.1.2 Evaluation of BGP

We use BGP (Border Gateway Protocol) update data from RouteViews [14] dated
from January, 2010. Also, we use the same analysis of AS-behavior discussed in [13]
and [17] to compute feedbacks of BGP activities in order to compare our reputation
computation results with AS-CRED. In order to use our algorithm, we need to define
events and associated observer and observee in the problem domain of AS reputation
computation. In BGP update data, for each update message sent from say, AS0 to
AS1, AS1 analyzes the message as an observer and evaluates AS0’s behavior. Such
a message is an event as we defined in Sect. 4.1. And an event can be a non-empty
subset of the set {AS-Prefix behavior, AS-Path behavior, AS-Link behavior}, which
represents the observee’s behaviors. Each behavior can be evaluated to be positive
or negative and then the result of the evaluation is accumulated for that message. In
other words, each message will have an associated score representing the behavior
of the observee. We describe how each behavior is evaluated below.

• AS-Prefix behavior: For the observeeASand its prefix p, we compute two temporal
metrics, persistence and prevalence. These two metrics can represent positive or
negative behavior of the observee AS.Wewill not discuss the details of the metrics
because they are beyond the scope of this paper. The value of the persistence and
prevalence are compared against a set of thresholdsmentioned in [17] and feedback
is provided. For good behaviors, evaluation of 1 is provided and otherwise −1.

• AS-Path behavior: We use AS relationship data from [18] to evaluate the valley
free property of AS paths. None of the ASes in the AS path should form a valley.
The observee AS provides an AS-Path. If a valley is found in the provided AS-Path
and the first AS forming the valley is the observee, it gets evaluated by its observer
with −1.

• AS-Link behavior: For each link in the AS-Path provided by the observee, we com-
pute persistence and prevalence values, then these are compared with the threshold
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discussed in [17]. If the classification of the behavior is good, an evaluation of 1
is provided, otherwise the link is unstable, therefore, the evaluation is −1.

5.1.3 Results

We compute reputations for each AS appeared in BGP update data for each day
between January 1, 2010 and January 31, 2010.We average the reputations computed
by ReMSA with two different sub-networks. We exclude ASes with good behaviors
(positive reputation values) to compare the result with AS-CRED which accumulates
reputation values when bad behavior occurs (zero is considered the best reputation
in AS-CRED).

In Fig. 2, we show the distribution of reputation values of ASes computed by AS-
CRED for January 1, 2010. In Fig. 3, we show the distribution of reputation values of
ASes compute by ReMSA for the same day. The ranges of reputation values shown
in the figures are different as they represent the raw reputation values computed by
AS-CRED and ReMSA. Since AS-CRED computes centralized reputation values, we
averaged reputation values computed for each AS by ReMSA. The purpose of each
algorithm is implied by the distribution of reputation values shown in the figures.
AS-CRED computes reputation values of ASes to detect globally malicious ASes
while ReMSA computes distributed reputation values for each AS to measure the
trustworthiness of relationships between neighbors. Therefore, ReMSA allows each
AS to have its private perception of its neighbors based on the history of interactions
and the witness information rather than to rely on global computed values.

Figure4 shows average reputation values of ASes computed by AS-CRED and
ReMSA over one month. The non-zero reputation values of ASes are added and
averaged from our sub-networks. Similarly, the reputation values of respective nodes
from AS-CRED were averaged. We normalized values computed from AS-CRED

Fig. 2 Reputations
computed by AS-CRED
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Fig. 3 Reputations
computed by ReMSA
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Fig. 4 Reputations
computed by AS-CRED and
ReMSA
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since zero is the best reputation value and the higher values represent the worse
reputation in their algorithm.

The two lines from AS-CRED differs in that the one below doesn’t include AS209,
which has an extremely bad reputation with the raw value 2755.52. We investigated
the differences shown in Fig. 4 and found out that whenever there are big gaps, e.g.,
on the 14th day, there was an AS with extremely bad reputation (i.e. AS209) in
AS-CRED. Therefore, when we normalized the reputation values, since the worst
reputation value in AS-CRED becomes −1, it makes other reputation values negli-
gibly small. Consequently, the normalized average for AS-CRED is smaller than our
algorithm’s average. For example, on the 14th day, AS209 received an extremely bad
reputation (the raw value 2755.52) when most of other ASes received less than 10.
Such a huge difference among reputation values makes other reputation values neg-
ligible which enables moderately malicious ASes to get hidden under an extremely
malicious AS.
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Fig. 5 Reputation values
computed by AS-CRED and
ReMSA for AS209
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Now let’s observe AS209 more closely. Figure5 shows the reputation value of
AS209 computed by AS-CRED and our algorithm. In the figure, we normalized
reputation values from AS-CRED with the largest value AS209 had, which was on
January 14th, 2010. AS209had bad behaviors before the 14th, but because of the huge
variances among the reputation values over time in AS-CRED, the reputation values
of AS209 on other days except the 14th became almost zero after normalization.
AS-CRED may be useful to identify the most malicious AS, but it may lose other
important information such as how reputation value changes over time.

5.2 Experiment 2: Propagation of Reputation on Random
Networks

In addition to the performance evaluations on a real social network (ASN) presented
in Sect. 5.1, we test the propagation of reputation values in random networks. We
study a sparse and adense network in order to show how topology of the networks
(degrees of nodes) influence propagation of information (reputation values). Table3
shows the statistics of the two random networks.

For each network, we pick an observee node, a0, and observe how reputation
computed by its neighbors change over time. We also pick two observers distant
from a0, say A and B, in order to show a0’s reputation values obtained by each
observer. Note that each observer will obtain a subjective reputation value about a0.
We generated random events that are associated with time information, an observee
node and the evaluation of event. Each node has behavioral probability (positive or
negative) and the observer evaluates behaviors of observee nodes.

The straight line in Fig. 6 shows the true behavior of a0 based on its behavioral
probability, pa0 . We define pa0 as the probability that a0’s behavior is evaluated to 1.
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Table 3 Statistics of two random networks

Sparse network Dense network

# Nodes 5,000 5,000

# Edges 10,000 50,000

Average degree 4 20

Density 0.001 0.004

Diameter 11 4

Average path length 6.624 3.129
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Fig. 6 Propagation of reputation in a sparse network

In this case, the probability was 0.1 and therefore the true reputation (true reputation
= 2 ∗ pa0 − 1) is −0.8 since the reputation value is between −1 (when pa0 = 0) and
1(when pa0 = 1). The neighbors have interactions with a0 and update reputations
based on the probabilistic random behaviors of a0. The average reputation values of
a0 computed by the neighbors lie right above the true reputation value in Fig. 6. The
two other lines on top represent the reputations values seen by A and B. For each
time the neighbors’ reputation values of a0 are computed, A and B query reputation
of a0 using Ask function presented in Sect. 4.7. As we can see in Fig. 6, it is not hard
to believe that direct interactions with a0 help compute more accurate reputation
values of a0 compared to the reputation values received only by collecting opinions
from other nodes. Also we can see that the changes in reputation values becomemore
stable as nodes learn a0’s true behaviors and share subjective reputation values of a0
through voting processes. Since A is 4-hop-away from a0 and B is 6-hop-away form
a0, we can see that A has closer values to the true value than B.

We repeat the process on the dense network and the results are shown in Fig. 7.We
set the behavioral probability of the observee, say a1, the same. A and B both were
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Fig. 7 Propagation of reputation in a dense network

Fig. 8 Reputations
computed with constant and
increasing velocity
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3-hop-away from a1. The average reputation values computed by a1’s neighbors
converge closer to the true value. On the dense network, reputation values seen by
the two observers fluctuate because, as shown in Table3, the network is so dense and
the reputation of the target agent is influenced by many different agents through Ask
Function.

In Fig. 8,we showhowvelocity of events influence reputation values.As discussed
in Sect. 4.4, the I mpact function adjusts the computed feedback values based on the
acceleration of the event. On a random network, we pick a node with behavioral
probability 0.8 and observe reputation values from a neighbor changing over time
when the velocity of interactions is constant and when the velocity of interactions
increases. As we can see in Fig. 8, the reputation computed without acceleration
becomes stable as it reaches close to the node’s true reputation, 0.6, while the reputa-



A Node-Centric Reputation Computation Algorithm on Online Social Networks 17

tion computed with nonzero accelerations fluctuates more. Since the Impact function
emphasizes the influence of accelerations of events, the reputation values become
more sensitive to the current feedbacks when the rate of events is more frequent.

5.3 Effects of Voting, Time Decaying Function and Impact
Function

In this Section, we show the effect of each mechanism in the reputation update for-
mula, introduced in Sect. 4.6. We create a scale-free network using Albert-Barabási
algorithm with 5,000 nodes and 50,000 edges. This network was used in the follow-
ing experiments. We discuss the results of experiments using a sample agent picked
randomly which represents the typical behavior of agents in general. The reputation
values are computed from the neighbors of the sample agent.

5.3.1 Effects of Voting

Voting process is introduced in Sect. 4.2.2. Through the voting, one can aggregate
others’ opinion so that the computed reputation values are objective. The balance
between direct experiences (self opinion) and indirect experiences (others’ opinions)
is automatically controlled by the degree of each agent as discussed in Sect. 4.2.2.

Figure9 shows the reputation computedwith andwithout the voting processwhich
means that the feedback function is replaced by Evaluation (self opinion) only. The
straight line is the true reputation of an agent. The reputation values computed with

Fig. 9 Effects of Voting
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Table 4 Average distance from the true reputation

Node 1453 4999 3387 4102

Degree 10 11 33 57

With voting 0.247 0.187 0.156 0.142

Without voting 0.311 0.291 0.234 0.175

voting, which considers others’ opinions, are closer to the true reputation value com-
pared to the reputation values computed without voting. Table4 shows the average
distance from the true reputation value over the iterations for four sample nodes.
The average distance from the true reputation is lower when the reputation values
are computed with voting. We also observe that as the degrees of node increases,
the average distance from the true reputation decreases since having more neighbors
lead to getting more opinions.

5.3.2 Effects of Time Decaying Function

The time decaying function, discussed in Sect. 4.5, utilizes the frequencies of inter-
actions to balance the current reputation and the feedbacks. In some applications,
the steady-state reputation is more valuable , while in other cases, reputation values
need to be adaptive so that they reflect the up-to-date information. In ReMSA, this is
automatically controlled by the time decaying function.

Figure10 shows four different reputation values. The straight line shows the true
reputation value of the agent under observation. The line shows reputation values
computed using standardReMSA.We also show steady-state reputation values aswell
as adaptive reputation values, plotted with square points and star points respectively.

Fig. 10 Effects of time
decaying function
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As discussed before, new reputation is computed as aweighted sumof current reputa-
tion and new feedback. Steady-state reputation hasmoreweight on current reputation
while adaptive reputation has more weight on new feedback. For the comparison,
we weight current reputation with 0.9 and new feedback with 0.1 for steady-state
reputation and vice versa for adaptive reputation. Intuitively, if the current reputation
is weighted more than the new feedback, the reputation value is stable meaning it
does not fluctuate much. On the other hand, if the new feedback is weighted more
than the current reputation, the reputation value is more adaptive since the updated
reputation value reflects more of the current behavior of an agent than the history of
the past behaviors. As shown in the Fig. 10, adaptive reputation values are distributed
near 1, 0, or −1, which are the raw feedback values. Steady-state reputation values
are distributed near reputation values computed by standard ReMSA; this is because
the interactions are randomly generated and the frequencies of interactions don’t
vary too much.

5.3.3 Effects of Impact Function

The purpose of Impact function is to reflect accelerations of repeated interactions
to the feedback. In real social networks, repeated interactions in a short period of
time may imply greater closeness of two entities involved. Therefore, we emphasize
sudden increases of interactions rate using Impact function. In Fig. 11a, reputation
values of interaction with increasing accelerations are shown and in (b), reputation
values of interactions with decreasing accelerations are shown. Since the time infor-
mation of the interactions are randomly generated integers, the acceleration values
are small. For example, if three interactions with time 10, 20, 25 occurs, the veloc-
ity of the second and third interactions are 0.1 and 0.2 and the acceleration of the
third interaction is 0.1. Therefore, even the acceleration of the third interaction is
positive and emphasized by Impact function, the difference is not big. With positive
accelerations, positive feedback values are rewarded and negative feedback values
are punished according to the acceleration. In Fig. 11a, reputation values below the
red line show that reputation values computed with Impact function are lower than
the ones computed without Impact function. Since the acceleration is positive, neg-
ative feedbacks were punished (decreased) by Impact function. On the other hand,
in Fig. 11b, reputation values of interactions with negative accelerations are shown.
Reputation values below the red line shows that reputation values computed with
Impact function are higher than the ones computed without Impact function since
negative feedbackswith decreasing accelerations are rewarded (increased) according
to the acceleration values.
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Fig. 11 Effects of Impact function.

6 Discussions

A natural way of measuring an agent’s reputation is to accumulate interaction history
in some form of weighted sum. We started with this idea and incorporated frequency
and velocity of interactions as well as the topological information of the network.
Generally, reputation computation takes an approach that combines the previous
reputation and new experience.

Our algorithm assumes that each agent is aware of its neighbors and its position
in the network and makes use of the information. Therefore if the topology of net-
work changes, an agent perceives its new sociological information and its reputation
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updating function changes accordingly. This is explained by human behavior; peo-
ple tend to act with more responsibly when there are more observers (i.e., a higher
degree). Instead of using neighbor’s reputation value as a weight (as in HISTOS), we
take advantage of neighbor’s relative degree as a weight which is more objective.
Also, in our algorithm, when an agent takes a vote of its neighbors, the neighbors
can recursively take votes of their neighbors.

Through the experiments, we show that our algorithm can compute quality rep-
utation values by comparing the results with an existing reputation computation
algorithm (AS-CRED). The algorithm can also successfully model propagation of
reputations within the network. We show that in a dense network, reputations travel
much quicker and diffuse wider given the same number of interactions. In addition,
we show how frequencies of interactions can influence the reputation values. Since
a higher rate of interactions implies greater significance, we believe that the velocity
of interactions is an important parameter in our algorithm.

Since ReMSA is designed for distributed environments, the algorithm is employed
within each agent. Therefore the time complexity of ReMSA for each agent is depen-
dent on the number of events and the number of neighbors each agent has. Then the
time complexity of the algorithm is O(di ∗ |Ei |) for each agent i .

7 Conclusions and Future Work

In this paper, we developed a new reputation computation algorithm, ReMSA, in
which reputation values are considered subjective and reputation computation uti-
lizes the topological information of the given network as well as velocity of interac-
tions among agents. ReMSA also employes a distributed voting process to overcome
biases that an agent might have towards others. To our best knowledge, no reputation
computation algorithm considers velocity of events. Instead, most of the algorithms
use the total number of interactions occurred. We believe that by taking velocity into
consideration, it is possible to detect some abnormal activities since they tend to
happen in a short period of time.

We use some of the degree distribution of the given network to take advantage of
the topological information of the network.Many studies that involve social networks
assume the second degrees (degrees of the neighbors) are known either because the
degree distribution of agents contains high information. We are currently relaxing
this assumption and trying to estimate the second degree distribution using bayesian
probabilistic methods. We assume that each agent start the estimation with the same
degree of its own [6]. The degree distribution of a given social network is assumed
to follow a power-law distribution and we let each agent apply power-law to the
estimated second degree distribution. By estimating the second degrees we do not
rely on the information from outside since each agent can estimate all the information
needed which will also prevent possible deceptions from outside sources.

Our algorithm is an online algorithm that can be deployed to observe ASes in
real-time and can compute reputations of ASes as in AS-CRED [13]. According
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to [19], centralized methods have limitations in BGP security and no solution has
yet provided complete security. Unlike AS-CRED [13], ReMSA incorporates social
dimensions and velocity of events that are important features of the AS network.

Also, as ReMSA was originally developed for social networks, we plan to apply
it to more general social networks where reasoning about private friendship is an
important value.
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