
 Sharma, et al., International Journal of Advanced Engineering Research and Studies E-ISSN2249–8974

Int. J. Adv. Engg. Res. Studies/IV/II/Jan.-March,2015/128-132

Proceedings of BITCON-2015 Innovations For National Development

National Conference on : Information Technology Empowering Digital India

Research Paper
A SURVEY REPORT ON LOAD BALANCING

ALGORITHM IN GRID COMPUTING ENVIRONMENT
Anuradha Sharma1, Seema Verma2

Address for Correspondence

1Asst. Prof. (IT Deptt.), Bhilai Institute of Technology, Durg(CG),
2PG Fellow (Comp. Network), SMT Kashibai Navale College of Engg,Pune (MH),

ABSTRACT
Grid computing is extension of distributed computing that incorporates coordinating and sharing of computational power,
data storage and network resources across dynamic and geographically dispersed organizations. One motivation of Grid
computing is to unite the power of widely distributed resources, and provide non-trivial services to users. To achieve this
goal, an efficient Load Balancing system is an essential part of the Grid. The main goal of Load Balancing algorithm is to
distribute the jobs among processors to maximize throughput, minimize total turnaround of jobs, to match the application
need with the available computing resources, maintain stability, and resource utilization. Motivation of the survey is to
encourage the researcher in the field of grid computing, so that they can easily understand the concept of Load Balancing
and can contribute in developing more efficient Load Balancing algorithm.

KEY WORDS: Grid Computing, Distributed Computing, Load Balancing.
1. INTRODUCTION
Rapid growth in use of computer has increased the
number of applications which uses the shared
hardware and software resources (e.g. memory,
processor, files etc.) and ultimately increased the
amount of submitted jobs across internet. Problem
can be solved if we distribute the applications across
different computer, in such a manner that it reduces
the job response time and the overhead on a single
computer. Proper distribution of applications across
different available resources is termed as Load
Balancing.
Load balancing algorithms can be classified into two
categories, static and dynamic. In static scheduling,
the assignment of the tasks to the nodes is done
before the execution of the program. Information
regarding task execution time and processing
resources is assumed to be known at compile time. A
task is always executed on the node to which it is
assigned. Dynamic load balancing algorithm is based
on the re-distribution of processes among the
processors during execution time. Dynamic load
balancing algorithm assumes no a priori knowledge
about job behavior or the global state of the system
(Dynamic load balancing algorithm don’t have prior
knowledge about job behavior or the global state of
the system), i.e., load balancing decisions is solely
based on the current status of the system. The
development of an effective dynamic load balancing
algorithm involves many important issues: load
estimation, load level comparison, system stability,
amount of information exchanged among nodes, job
resource requirements estimation, job’s selection for
transfer, and more.
Advantage of dynamic load balancing is that the run-
time behavior of the system does not need to be
known in advance. The major drawback of dynamic
load balancing schemes is the run-time overhead due
to the load information transfer among processors
and time consumed for selection of processes and
processor for job transfers, and the communication
delay due to task relocation itself.
Section 2 presents a survey of several existing Load
Balancing algorithms in grid environment. Section 3
provides an analysis and a parameter wise

comparison among all the surveyed papers. Section 4
presents conclusion of this paper and lastly the
references.
2. EXISTING LOAD BALANCING
ALGORITHM IN GRID ENVIRONMENT
Many papers have been published to address the
problem of load balancing in different environments
such as Grid computing, peer-to-peer, distributed etc.
Some of the proposed Grid computing load balancing
policies is modifications or extensions to the
traditional distributed systems load balancing
policies. Some of them are summarized here:
Tal Maoz et.al. [11], presented distributed model of
dynamic load balancing algorithm with reduced
migration time and down-times. This algorithm’s
focuses on the topology and the physical parameters
of the links. This proposed model is compared with
MOSIX process migration and Jobrun’s VM
migration. Michael Schmitz et.al. [12], presented
decentralize approach of LB, which Focuses on
minimization of communication delays and
communication costs, Avoidance of unproductive
migration, and avoidance of oscillations.
In paper Distributed Route Control Schemes [13]
authors proposed Centralized LB model that Handles
traffic fluctuations. Main feature of this Centralized
routing techniques is to distribute the incoming traffic
of a multi-homed stub network among its various
egress links. Md. Abdur Razzaqu et. al. [14],
formulated a distributed LB technique which try to
reduce the amount of message transfer between two
nodes so as to decrease scheduling decision time to
improve the system performance. The major
contribution of this paper includes workload
migration technique and dynamic and stable
technique to schedule the jobs that requires only 2(K-
1) messages to decide whether to execute a process
locally or remotely.
In paper [15], authors proposed a distributed Biased
Random Sampling (BRS) technique, in which
network structure can be changed dynamically to
efficiently distribute the load. This technique will not
require any monitoring mechanism since it is
encoded in the network structure. Load-balancing is
achieved without the need to monitor the nodes for

 Sharma, et al., International Journal of Advanced Engineering Research and Studies E-ISSN2249–8974

Int. J. Adv. Engg. Res. Studies/IV/II/Jan.-March,2015/128-132

their resources availability. Authors K. Saruladha and
G. Santhi in paper [16], presents distributed agent
based approach that improves the response time of
the user submitted jobs, overall execution time
required for the completion of the submitted jobs is
found to decrease and also explore and find the under
loaded nodes is done more quickly.
In paper [17], author’s present decentralized LB
algorithm, the goal of this algorithm is to allocate the
available channels to the agents in a balanced way
such that the overall system achieves the best
possible performance. Many other channel allocation
algorithms require a priori information on whether
the channel allocation is done with overlapping or
non-overlapping channels, in this approach there is
no such issue, as the method is not based on explicit
interference models. But this algorithm is strictly
locally executed algorithm.
2.1. Dynamic Load Balancing with Multiple
Supporting Nodes (MSN)
This paper describes a centralized model for dynamic
load balancing with Multiple Supporting Nodes.
Objective of this algorithm is to reduce the
communication delay and traffic up to some extent,
and this is obtain because load is transfer within
cluster itself (from primary node to supporting node)
[6]. Further detail of this algorithm is given below:
Three approaches are mentioned in this algorithm,
primary, centralized, and modified approach. In
primary approach, initially processes are stored in
queue or process can be allotted as they arrive. If
these are placed in queue, processes are allotted one
by one to primary nodes. Processes are migrated from
heavily loaded node to light weighted node. First a
light weighted node is checked in the same cluster, if
suitable node not found then after nearby cluster is
searched and after getting a required node transfer
takes place if a protocol is satisfied for load transfer.
Whereas in centralized approach one centralized
node is provided in each cluster. Whenever a primary
node is over loaded, first it search the other light
weighted primary nodes, if such primary node is
available, load transfer take place between these two
node and load is balanced, otherwise if such light
weight node is not available, one centralized node is
available to accommodate the overload of a primary
node. In Centralized approach there is single node, so
process the load at high speed by using switching but
still a limitation is there. An approach is there i.e.
modified approach to remove the limitation is to split
the centralized node into small nodes called
supporting nodes (SNs). Suppose a process Pi is
currently executed by SNi and a Primary node Ni is
overloaded so that it finds a supporting node SNi
suitable for transferring its overload [5].
2.2. Recent Neighbor Load Balancing Algorithm
(RNLBA)
The problem of load balancing in grid architecture is
addressed by assigning loads in a grid without
neglecting the communication overhead in collecting
the load information. An efficient dynamic load
balancing algorithm named as ‘Recent Neighbor’
(RN) has been presented to tackle the above

challenges. RN performs intra-cluster and inter
cluster (grid) load balancing [4].
In the work [4], the authors logically divided the grid
architecture into three levels: Grid-Level, Cluster-
Level and the Leaf-Nodes. The clusters in the grid
are fully interconnected. Each cluster may contain
multiple computing nodes called as leaf nodes. The
computing nodes in the cluster are heterogeneous in
nature. The processing power of the grid cluster is
measured by the average CPU speed across all
computing nodes within the grid cluster. The tasks
are assumed to be computationally intensive,
mutually independent and can be executed at any
cluster. No deterministic or priori information about
the task is available.
It performs two level load balancing algorithms, in
Cluster-Level load balancing, depending on the
current workload of its associated cluster, estimated
from its own neighbors, each Cluster-Level manager
(CM) decides whether to start or not a load balancing
operation. If it decides to start a load balancing
operation, then it tries to load balance the workload
among its under-loaded neighbors.
In Grid-Level load balancing, the load balancing is
performed only if CM fails to load balance their
workload among their associated neighbors. In this
case, tasks of overloaded clusters are transferred to
under loaded ones regarding the communication cost
and according to the selection criteria. The chosen
under loaded clusters are those which need minimal
communication cost for transferring tasks from
overloaded clusters.
2.3. A Load Balancing Policy for Heterogeneous
Computational Grids (LBPHCG)
The proposed policy tends to improve grid resources
utilization and hence maximizes throughput [8]. This
paper focuses on the steady-state mode, where the
number of jobs submitted to the grid is sufficiently
large and the arrival rate of jobs does not exceed the
grid overall processing capacity. The class of
problems addressed by the proposed load balancing
policy is the computation-intensive and totally
independent jobs with no communication between
them. This paper describes a two-level load balancing
policy for the multi-cluster grid environment i.e.
Local Grid Manager and Site Manager Load
Balancing.
Local Grid Manager (LGM) Load Balancing
Level
The total processing capacity of a LGM is Local grid
manager Processing Capacity (LPC) which is the sum
of all the Site Processing Capacity (SPC) for all the
sites managed by that LGM. Based on the total
processing capacity of every site SPC, the LGM
scheduler distributes the workload among his sites
group members (SMs). The ith site workload (Si WL)
which is the number of jobs to be allocated to ith site
manager is obtained as follows:

Si WL= N (SPCi / LPC)
Where, N is number of jobs arrived at a LGM, SPCi
is number of jobs that can be executed by the ith
site/sec, and LPC is number of jobs that can be
executed under the responsibility of the LGM/sec.
Site Manager Load Balancing Level

 Sharma, et al., International Journal of Advanced Engineering Research and Studies E-ISSN2249–8974

Int. J. Adv. Engg. Res. Studies/IV/II/Jan.-March,2015/128-132

The total site processing capacity SPC is obtained by
summing all the Processing Element Capacities
(PECs) of all the processing elements in that site. The
ith PE workload (PEi WL) which is the number of
jobs to be allocated to ith PE is obtained as follows:

PEi WL= M (PECi / LPC)
Where M is the number of jobs arrived at a SM,
(PECij): Number of jobs that can be executed by the
jth PE at full load in the ith site per second.
2.4. Grid Load Balancing using Intelligent Agents
(IA)
This paper focuses on Grid load balancing with
intelligent agents and multi-agent approaches. These
approaches are used to schedule local Grid resources
and do global Grid load balancing [10].
A Grid resource can be a multiprocessor or a cluster
of workstations. An agent is at the Grid level a
presentation for a Grid resource offering services and
a high performance computing power. Agents are the
high-level abstraction of a Grid resource. Each agent
consists of 3 main layers, from bottom to top:
communication, coordination and local management
layer. The latter performs functions of an agent for
local Grid load balancing. The coordination layer
treats requests and organizes the local knowledge.
The communication layer enables to interact with
other agents. The agents use the PACE performance
prediction engine [10]. PACE is a tool set for
performance prediction in Parallel and Distributed
Systems. The algorithms are developed in two
different scopes:

 Local Grid Load Balancing

 Global Grid Load Balancing
In the first, a local Grid resource is considered to be a
cluster of workstations or a multiprocessor. The
authors show 2 different algorithms for local Grid
load balancing; first algorithm is first-come-first-
served, in their second algorithm authors uses a
genetic algorithm where the goal is to minimize the
latest completion time when all tasks are considered
together. The second deals with the Grid load
balancing. The problem that is addressed in this
algorithm is how the discovery of available Grid
resources that provides the optimum execution
performance for a globally submitted task.
2.5. Decentralized Genetic Algorithm (DGA)
In this, authors directed their research towards
speeding up the convergence of genetic algorithms by
using multiple agents and different populations to
schedule sets of tasks. The use of multiple initial
search points in the problem space favors a high
probability to converge towards a global optimum.
Combined with the lookup services, this approach
offers a solution to high scalability and reliability
demands [2]. DGA is summarized below:
Authors uses SAGA Model, in this model, users
submit Scheduling requests. A near-optimal schedule
is computed by the Scheduler based on the
Scheduling requests and the Monitoring data
provided by the Grid Monitoring Service
(MonALISA) [3]. The schedule is then sent as a
Request for task execution to the Execution Service.
The user receives feedback related to the solution
determined by the scheduler, as well as to the status

of the executed jobs in the form of the Schedule and
task information. Furthermore, the system can easily
integrate new hosts in the scheduling process, or
overcome failure situations by means of the
Discovery Service.
2.6. Prediction Based Technique (PBT)
In this paper authors present Load Balancing
technique that can deal with applications with
heterogeneous cluster that reduce the average
response time [6]. They are considering three type of
load I/O, CPU, MEMORY. In this paper authors
considered a cluster computing platform of
heterogeneous system in which, a load manger or
master node is responsible for load balancing and
monitoring available resources of the node. Load
manger is composed of three modules: (1) predictor;
(2) selector; (3) scheduler; Predictor is used to predict
the file I/O, CPU and memory requirements of a task,
for this author uses a statistical pattern-recognition
method.
The prediction is a weighted mean calculation of
resource requirements using the program’s current
state-transition model and the actual resource usage
in its most recent execution. Then predicted value is
fed to the selector that is used to select the best node
among all nodes where the task will execute.
Scheduler is responsible to dispatch the task to the
node selected by the selector. Then task will send to
that node and task will execute there. Load manager
update the load status table. Preemptive migrations of
tasks are not supported by this algorithm.
3. ANALYSIS OF VARIOUS LOAD
BALANCING ALGORITHM
Algorithm described in section II A, is reduces the
communication cost, because load is transferred
locally. However drawback of this algorithm is at
very initial phases utilization of supporting nodes is
decreases. In recent neighbors (described in section II
B), is provides shorter response time, enhances the
resource utilization and balances the load in an
effective manner. In future, more complex models
such as nesting of clusters need to be investigated.
Algorithm LBPHCG described in section II C, is
attempted to minimize the overall job mean response
time and maximize the system utilization and
throughput. Communication is needed only if a
processing element joins or leaves its site. Intelligent
Agent based approach (described in section II D) has
an advantages of the evolutionary algorithm is that it
is adaptive to changes in the system. It absorbs
changes such as addition or deletion of tasks or
changes in the number of hosts. However, this
algorithm cannot be employed for a large scale, since
complexity increases exponentially with the number
of hosts.
Prediction Based technique (PBT described in section
II F) aim to achieve the effective usage of global disk
resources in cluster. This can minimizes the average
slow down of all parallel jobs running on a cluster
and reduce the average response time of the jobs. All
these algorithms are summarized in TABLE 1 given
below. Column 1 of this table representing the
abbreviation of algorithms described in section 2 e.g.
RNLBA for recent neighbors etc.

 Sharma, et al., International Journal of Advanced Engineering Research and Studies E-ISSN2249–8974

Int. J. Adv. Engg. Res. Studies/IV/II/Jan.-March,2015/128-132

Table 1 Comparative Analysis of Existing Load Balancing Algorithms in Grid Environment

S.N. Model Compared Model Strength Contribution/ Research
focus/ Features

Drawback

MSN Centralized Primary and
centralized
approach.

Minimum traffic due to
attached central node at
each cluster.

Load is transfer within the
cluster itself (from Primary
node to Supporting node) so
communication delay and
traffic is reduced up to some
extent.

Initially process
utilization at each
supporting node (SN)
is less.

RNLBA

Distributed Tested by taking of
3 clusters each
containing 2 nodes.

The parameters
measured are average
response time, system
load and
communication delay.

It provides shorter response
time, enhances the resource
utilization.

Need to make this
algorithm for
complex model
nested of cluster.

IA Decentralized (
grid computing
environment :
two-level load
balancing
policy)

1) Compared with
the Random
distribution LB &
Uniform distribution
LB policy.

It considers load index
as a decision factor for
scheduling of jobs in a
cluster and among
clusters.

Communication is needed
only if a processing element
joins or leaves its site.

This method:
1) Not suited for
dependent jobs.
2) Does not consider
data intensive jobs.

LBPHCG Distributed
(grid
environment)

Tested by taking 12
nodes in hierarchy.
Performance total
application
execution time,
resource utilization
are measured.

1) Uses a combination
of both intelligent
agents and multi-agent
approaches.
2)The algorithm is
based on an
evolutionary process
therefore able to absorb
system changes

Dynamically minimize task
makespan and host idle time,
while meeting the deadline
requirements for each task.

Can do further
extension of the agent
framework with new
features, e.g.
automatic QoS
negotiation, self-
organizing
coordination etc.

DGA Decentralized:(
Heterogeneous
environment)

1) The
experimental results
show that the
number of
generations
necessary for the
algorithm to
converge is
significantly
reduced.

1) It focused on classes
of independent tasks,
which avoids
communication costs
due to dependencies.
2) It presents SAGA
(”Scheduling
Application using
Genetic Algorithms”).

1) Accomplishment of this
research is the migration
towards a decentralized
scheduler by means of
lookup services.
2) It also speeding up the
convergence of genetic
algorithms by using multiple
agents and different
populations to schedule sets
of tasks.

Cannot handle data
intensive program.

PBT Centralized Better resource
utilization and reduce
the average job
response time.

1) The objective this
algorithm is to balance the
load of three types i.e. I/O-
intensive, CPU-intensive and
memory intensive load.

1) Not suitable for
inter-dependent task.
2) It assumed that
the network
communication cost
is negligible.

3. CONCLUSION
In this survey paper we analyzed different solutions
and compared them to each other by considering their
drawback. The researchers can use these facts to
develop better algorithms. In the above study it is
found that some algorithms does not specified
memory requirement of the jobs while submitting the
jobs to the selected resources and some of algorithm
does not considered communication cost, which we
cannot neglect. Memory requirement of a job is vital
in completing the execution of jobs at the selected
resources within a time bound in realizing a real grid
system.
REFERENCES

1. Ali M. Alakeel, “A Guide to Dynamic Load Balancing in
Distributed Computer Systems”, IJCSNS International
Journal of Computer Science and Network Security,
VOL.10 No.6, June, 2010.

2. George V. Iordache, Marcela S. Boboila, Florin Pop, Corina
Stratan, and Valentin Cristea , “A Decentralized Strategy
for Genetic Scheduling in Heterogeneous Environments”,
Springer-Verlag Berlin Heidelberg, 2010.

3. I.C.Legrand, H.B.Newman (2003), “Monalisa: An Agent
Based, Dynamic Service System to Monitor,Control and
Optimize Grid Based Applications”, European Center for
Nuclear Research – CERN.

4. Jasma Balasangameshwara, Nedunchezhian Raju, “A
Decentralized Recent Neighbour Load Balancing Algorithm
for Computational Grid”,The International Journal of ACM
Jordan (ISSN 2078-7952), Vol. 1, No. 3, September, 2010.

5. M. Kamarunisha, S.Ranichandra, T.K.P.Rajagopal ,
“Recitation of Load Balancing Algorithms In Grid

Computing Environment Using Policies And Strategies -
An Approach” International Journal of Scientific &
Engineering Research, 2011.

6. Parveen Jain, Daya Gupta, “An Algorithm for Dynamic
Load Balancing in Distributed Systems with Multiple
Supporting Nodes by Exploiting the Interrupt Service”,
ACEEE, ACADEMY PUBLISHER, Delhi College of
Engineering, New Delhi, 2009.

7. Pushpendra Kumar Chandra, Bibhudatta Sahoo, “
Prediction Based Dynamic Load Balancing Techniques in
Heterogeneous Clusters”, National Institute of Technology
Rourkela, Orissa, 2008.

8. Sandeep Singh Waraich, “Classification of Dynamic Load
Balancing Strategies in a Network of Workstations”, Fifth
International Conference on Information Technology: New
Generations, 2008.

9. Stephen A. Jarvis, Daniel P. Spooner, Junwei Caoa,
Graham R. Nudd, “Grid load balancing using intelligent
agents”, Elsevier B.V., 2004.

10. Stephen A. Jarvis, Daniel P. Spooner, Helene N. Lim Choi
Keung, Graham R. Nudd, “Performance Prediction and its
use in Parallel and Distributed Computing Systems” in
Proceedings of the International Parallel and Distributed
Processing Symposium, 2003.

11. Tal Maoz, Amnon Barak, Lior Amar, “Combining Virtual
Machine Migration with Process Migration for HPC on
Multi-Clusters and Grids” in IEEE International Conference
on Cluster Computing, The Hebrew University of
Jerusalem, Israel, 2008 .

12. Hans-Ulrich Heiss, Michael Schmitz, “Decentralized
Dynamic Load Balancing: The Particles Approach”,
Department of Informatics, University of Karlsruhe,
Germany, 1999.

13. Ashok Singh Saira, Gautam Barua, “Distributed Route
Control Schemes to Load Balance Incoming Traffic in
Multihomed Stub Networks”, IEEE ,Dept. of Computer

 Sharma, et al., International Journal of Advanced Engineering Research and Studies E-ISSN2249–8974

Int. J. Adv. Engg. Res. Studies/IV/II/Jan.-March,2015/128-132

Science and Engineering Indian Institute of Technology
Patna & Guwahati, 2010.

14. Md. Abdur Razzaqu, Choong Seon Hong, “Dynamic Load
Balancing in Distributed System: An Efficient Approach”,
Korea, 1991.

15. M. Randles , Abu-Rahmeh , P. Johnson, A. Taleb-Bendiab,
“Biased random walks on resource network graphs for load
balancing”, Springer,dec. 2009.

16. K. Saruladha, G. Santhi, “Behavior of Agent Based
Dynamic Load Balancing Algorithm for Heterogeneous
P2P Systems”, CSE Dept., Pondicherry Engineering
College, Pondicherry, International Conference on
Computational Intelligence and Multimedia Applications,
2007.

17. Marina Petrova, Natalia Olano and Petri Mahonen, “Balls
and Bins Distributed Load Balancing Algorithm for
Channel Allocation” in IEEE, RWTH Aachen University
Aachen, Germany, 2010.

18. V. Mani, D. Ghose, and L. Anand, “ELISA: An Estimated
Load Information Scheduling Algorithm for Distributed
Computing Systems” in Int’l J. Computers and Math. with
Applications, vol. 37, no. 8, pp. 57-85, Apr. 1999.

Note: This Paper/Article is scrutinised and reviewed by Scientific
Committee, BITCON-2015, BIT, Durg, CG, India

