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Reconfigurable computing systems have been used widely in various areas due to their attractive features
in low-power and high-precision. However, how to increase utilization and throughput while reducing
configuration and execution time overheads on large-scale data has become a great challenge for recon-
figurable computing systems. In this paper, we employ a directed acyclic graph (DAG) to represent the
tasks in an application. With considerations of task dependencies and resource constraints that are not
sufficiently studied in literature, we propose two clustering scheduling strategies to reduce the number
of configurations and the execution time of applications, while enhancing the utilization of field program-
mable gate array (FPGA) devices: One is a heuristic scheduling strategy and the other is a dynamic pro-
gramming scheduling strategy. Experimental results indicate that our dynamic programming
scheduling strategy can significantly reduce the number of configurations and improve the FPGA utiliza-
tion, compared to the heuristic scheduling strategy.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Conventional embedded systems mainly include application-
specified-integrated-circuit (ASIC) [1,2] and general-purpose-
processor (GPP) [3–5]. ASICs are usually superior in computing
speed and precision. However, low flexibility of them is a major
throttle for their further development and extensive use. In
addition, the high integration of the current circuit easily leads to
a number of potential errors in circuit design, which dramatically
aggravate the design cost and impact on time-to-market. GPP sys-
tems, although, are competitive in flexibility, development period,
and reprogrammable ability, they are not sufficient to satisfy the
growing demands for computing-intensive applications due to
their low computing speed and precision [6,7].

Reconfigurable computing devices, integrated advantages of
both ASIC and GPP systems, are widely employed to accelerate var-
ious applications with high precision, fast speed, and low power
consumption requirements. These applications range from data
encryption [8], target recognition [9], Golomb Ruler Derivation
[10], to transitive closure of dynamic graphs [11], etc. However,
the further development of reconfigurable devices is still
overwhelmed by threefold major challenges. First, the big data
they process is several orders of magnitude larger than the pro-
cessing amounts of the traditional computing systems. And they
need to guarantee the high precision and resource utilization at
the same time. Second, the configuration time of existing (field pro-
grammable gate array) FPGA devices accounts for a significant por-
tion of time overhead for applications, which is a limiting factor to
the performance of reconfigurable systems. Third, to satisfy the
real-time requirements of applications, it requires efficient algo-
rithms to shorten the execution time of overall tasks. Hence, it be-
comes more and more important to design reasonable and highly
efficient algorithms to reduce configuration and execution time
overheads while increasing utilization and throughput of reconfig-
urable chips.

This paper mainly focuses on hardware tasks scheduling, which
is a process after the completion of hardware/software partition-
ing. Hardware task scheduling bears many similarities to general
software task scheduling which involves static scheduling and dy-
namic scheduling, depending on when the task to reconfigurable
device mapping is performed. Static scheduling is carried out be-
fore execution of tasks, and the mapping remains fixed during
application execution. This kind of scheduling is easy to imple-
ment, but it cannot capture the dynamic behavior of applications.
In contrast, dynamic scheduling performs the tasks to reconfigura-
ble device mapping during the execution of applications, but it
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usually incurs high overhead. A variety of static scheduling strate-
gies, including modified list scheduling [12,13], are used in litera-
ture. In order to capture the real-time behavior of application, a
number of dynamic scheduling approaches are emerged recently,
such as priority-based scheduling [14], horizon and stuffing sched-
uling [15–17].

However, prior works, such as [15,17–22], mainly focus on the
utilization of chips, the rate of acceptance for hardware tasks, and
the overhead of scheduling during hardware tasks scheduling.
Some vital factors in real reconfigurable computing environments,
such as the precedence relations and communication overhead be-
tween tasks, and reconfiguration cost of a FPGA, are not well con-
sidered. Since tasks are seldom executed independently, we
believe that their precedence constraints should be scrutinized
during scheduling.

Generally, the tasks in an application, such as image processing,
are closely dependent. We use a directed acyclic graph (DAG) [23] to
represent the dependencies between tasks of an application in a
reconfigurable system. To cut the overall execution time of the
tasks in a DAG and the reconfiguration cost of a FPGA, while rea-
sonably improving the utilization of reconfigurable resources, we
propose two clustering scheduling strategies (CSS): a heuristic meth-
od and a dynamic programming method. During the scheduling,
we consider the resource utilization constraints of reconfigurable
platforms and precedence relationships between tasks. The key
idea of these strategies are to fully exploit the parallelism of recon-
figurable devices, without negatively impacting the schedulability
of tasks.

The scheduling bears some similarities to knapsack problem
[24,25] that aims to maximize the value of overall items in a pack-
age, under the limitation of the package’s capacity. The method
employed to solve knapsack problem will be also adaptable to
our hardware task scheduling. To demonstrate the effectiveness
of the presented algorithms, we perform extensive simulations
on random data. Experimental results show that our algorithms
are efficient in dwindling the number of configurations, reducing
the overall execution time, and improving the resource utilization.
In addition, the dynamic programming algorithm outperforms the
heuristic strategy, since it achieves an average reduction up to
13.87% and 11.40% in the number of configurations and the FPGA
utilization.

The main contributions of our work compared to previous re-
search are:

� We design a new heuristic scheduling algorithm to schedule
tasks with dependencies. Given a DAG, our heuristic scheduling
strategy can efficiently reduce the number of configurations and
execution of the application.
� We propose a dynamic programming scheduling algorithm to

optimally solve the hardware tasks scheduling problem.

The remainder of this paper is organized as follows: the model
adopted in this paper is given in the next section. An example to
illustrate our ideas is presented in Section 4. The details of our
algorithms are introduced in Section 5. Experimental results and
conclusions are provided in Sections 6 and 7.

2. Related work

Many researchers have investigated the task scheduling prob-
lem in reconfigurable embedded systems. Previously, most works
focus on reconfigurable operating systems [26,17,18], hardware/
software partitioning [19,20], and energy control [27,28]. However,
to the best of our knowledge, the clustering scheduling strategies
with consideration of precedence dependencies between tasks,
are not sufficiently studied.
In [29], the authors first introduced best-fit, first-fit and bottom
left bin-packing approaches for both on-line and off-line hardware
scheduling. The time complexity of their algorithms to search an
empty rectangle is Oðnlognþ KÞ, where K is the number of tasks.
Targeted improving the efficiency for placement, relocation and
defragmentation of tasks, an algorithm for on-line tasks to find
an empty area on reconfigurable devices was proposed in [30]. In
their work, a linked list is utilized to store and manage maximum
empty areas. With the consideration of I/O communications, the
first-fit and best-fit placement strategies are improved in [31].
However, the tasks in their work are independent and can be
scheduled without considering the relationships to other tasks.

A method to manage and maintain occupied space and free
space on FPGA is proposed in [21]. The maintenance overhead is
OðnlognÞ. For high communication costs of multitasking reconfigu-
rable system, two clustering approaches are proposed in [32]. One
approach clusters tasks with close run-time, and the other one fo-
cuses on reducing the ratio of inter-task communication to re-
source utilization. They employ first-fit strategy to search a
suitable areas for tasks. In order to maximize the performance of
reconfigurable systems, a methodology for designing these sys-
tems was proposed by Merino et al. [33]. They took the area of
FPGA as a constraint, and proposed a methodology for coarse-
grained partitioning. While these work can improve resource utili-
zation of FPGA platforms, they did not consider the reconfiguration
overhead.

Much research has been done in HW/SW co-design [34,35,23].
By construction of a stochastic model, authors in [23] proposed
two task scheduling algorithms for embedded systems with heter-
ogeneous functional units. In [36], a RDMS algorithm to reduce the
movements for data blocks is proposed, with consideration of the
task dependencies and inter-task data communication. However,
to the best of our knowledge, most of the previous literature view
the tasks to be independent and targeted the improvement of chip
utilization. The dependencies between tasks and the configura-
tions of reconfigurable platforms have not been sufficiently
studied.

Considering the utilization constraint and tasks dependencies,
our work focuses on the reduction of the execution time and con-
figuration time as well as the increase of resource utilization of a
FPGA. The main advantages of our clustering scheduling technolo-
gies are: (1) By executing tasks in a cluster, the total number of
reconfigurations will be decreased, which will eventually lead to
the improvement of the performance of reconfigurable systems.
(2) By improving the resource utilization, we can ameliorate the
overall resource utilization efficiency for FPGAs.
3. System model

3.1. Task model

We model a task in a reconfigurable computing system as a
2-tuple T. For any task Ti = hui; eii, ui is the resource utilization for
the execution of task Ti; ei is the execution time of task Ti. Hence,
all tasks in the system can be specified as a set C ¼ hT1; T2; . . . ; TNi,
where N is the number of tasks.
3.2. Scheduling model

We use a directed acyclic graph (DAG) to represent the relation-
ships among tasks in an application. A DAG G ¼ hC; Ei, where C
represents a set of task nodes. E # C� C is a set of edges that
represents the precedence dependencies between tasks in the set
C. For any edge eðu! vÞ, it indicates that task v cannot be exe-
cuted until the completion of task u. We define an notation � to



Fig. 1. An instance for DAG.

Table 1
The procedures of applying the heuristic algorithm on the DAG in Fig. 1 to partition it
into clusters.

Step CS SðiÞ Selected tasks

1 {T1; T2; T3; T4; T5} f2:5;3:0;1:33;1:25;0:71g {T1; T2; T3}
2 {T4; T5} {1:25;0:71} {T4}
3 {T5; T7} {0:71;5:0} {T5; T7}
4 {T6; T8} {4:0;1:5} {T6; T8}
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represent the precedence constraints of these two nodes as u � v .
Fig. 1 illustrates an instance of a DAG. In a node, the values at the
above and below of it represent the resource utilization and the
execution time of a task.

Considering the characteristics of the reconfigurable platform,
such as the heterogeneity and high parallelism, without loss of
generality, we make the following assumptions: (1) Compared to
the overhead of configuration time, parallel execution delay can
be overlooked. (2) The execution of hardware task is non-
preemptive.

We aim to configure all tasks in a DAG and schedule them on
FPGA. The minimal cost for the execution of a DAG is defined as
MinC(G). Due to the high parallelism of FPGA, executing as many
tasks as possible concurrently on it under the area constraint will
be beneficial to the reduction of overall task execution and system
reconfiguration time. The task scheduling is to divide the DAG into
M clusters G ¼ hG1;G2; . . . ;GMi, where Gi ¼ hT1; T2; . . . ; TKi is a con-
figuration includes K tasks.

The problem is similar to knapsack problem, which aims to put
a set of items into a given package to maximize the total value of
these items, while satisfying the limited package capacity. Many
algorithms are proposed to solve this problem, such as heuristic
algorithm, dynamic programming algorithm and integer linear
programming, etc. Correspondingly, the task scheduling problem
can be viewed as a knapsack problem, the resource utilization
and execution time of a task can be regarded as the weight and va-
lue of an item, respectively. The reason to maximize the execution
time of a group of tasks is because all the tasks in the same cluster
can be executed simultaneously. Therefore, if we execute as many
as possible tasks on FPGA, it will efficiently reduce the overall exe-
cution time of an application. Our attention is to repeatedly select a
group of tasks whose in-degrees are 0 from a DAG, until all the
tasks are scheduled. The problem can be formulated as Eq. (1).

maximize : E ¼
XN

i¼1

xiei:

satisfy : U ¼
XN

i¼1

xiui 6 A;

8t1 � t2; t1 is executed before t2:

8>>>>>>><
>>>>>>>:

ð1Þ

where ei and ui are the execution time and resource utilization of
task Ti; E is the total execution time of a set of tasks, xi indicates
if a task is selected. If so, xi ¼ 1, otherwise 0; A is the maximum uti-
lization area of a FPGA device. Therefore, the minimum execution
cost of a DAG MinC(G) can be calculated as hG1;G2; . . . ;GMi ¼PM

i¼1Ei, where Ei is the maximum execution time for ith cluster,
and K indicates the number of cluster that can be divided from
the DAG.

However, the computation time of a certain cluster is also sen-
sitive to some other factors, such as the memory access time and
configuration of FPGA, etc. Therefore, the total execution time of
a certain cluster is computed as Eq. (2).
EGi
¼ Tconf þ Tlowest þ Tmem

Tconf ¼ q� UGi
; q 2 ð0;1Þ

Tlowest ¼ Maxj2Gi
ðejÞ

8><
>: ð2Þ

where Tconf is the configuration time of a FPGA, Tlowest is the task
with the highest execution time in the cluster Gi, and Tmem is the
memory access time. UGi

is the total utilization of the cluster Gi.
Compared to the configuration overhead of FPGA, the memory ac-
cess overhead is insignificant, we assume this port of time is invari-
ant. Therefore, the overall execution time of the DAG can be further
expressed as MinCðGÞ ¼

PM
i¼1EGi

.

4. Motivational example

In this section, we will give an example to illustrate the hard-
ware task scheduling in a DAG through classifying them into differ-
ent clusters. We assume a set of tasks in an application is
represented by the DAG shown in Fig. 1.

In order to schedule a group of tasks into a FPGA, we first check
the dependencies between tasks. The most intuitive way is to se-
lect those tasks whose in-degrees are 0, because the precedence
constraints can be satisfied by this way. In a cluster, these tasks
thus can be executed in parallel. To simplify the example, the fol-
lowing assumptions are made: (1) The maximum chip area of FPGA
is 10. (2) The resource utilization and execution time of a task are
less than 10. (3) In the same cluster, the communication cost and
pipeline delay between tasks are negligible. (4) The configuration
overhead and memory access cost are constant. We assume they
are 10 and 1, respectively.

We first apply the heuristic algorithm, which is similar to the
one used in [37], to divide the DAG into groups. The only difference
is that we employed a selection function to break the tier when
two tasks are qualified to be scheduled. We define the selection
function SðiÞ ¼ ðei þ ciÞ=ui, which is used to heuristically make opti-
mal choice at each step by the heuristic strategy, where ei; ci, and
ui represent the execution time, number of children, and resource
utilization of task Ti. In each stage, we select the nodes from those
which do not have parent. Repeat the procedure, until the number
of tasks in DAG is 0, then we get all the clusters.

In this example, {T1; T2; T3; T4; T5} are candidates for the first
selection. The values of the selection function for each task
are fSð1Þ; Sð2Þ; Sð3Þ; Sð4Þ; Sð5Þg ¼ f2:5;3:0;1:33;1:25;0:71g. Then,
{T1; T2; T3} are elected as the first cluster. The total resource
requirement of it is u1 þ u2 þ u3 ¼ 7. If we continue putting T4 in
the cluster, the resource utilization will be 11, which exceeds the
limited capacity of reconfigurable device, so {T1; T2; T3} is the opti-
mal combination for the heuristic selection at the first iteration.
Then, we remove them from the DAG, and resume the selecting
operations. In the next iteration, {T4; T5} will be served as the can-
didates. Table 1 shows the concrete steps.

From above results obtained by applying the heuristic algo-
rithm on the DAG, we can calculate the overall execution time:
ð5þ 10þ 1Þ þ ð4þ 10þ 1Þ þ ð5þ 10þ 1Þ þ ð4þ 10þ 1Þ ¼ 62, and
the average resource utilization: RU ¼ ð7þ 4þ 8þ 3Þ=
ð4� 10Þ ¼ 55:0%.



Table 2
The first iteration of applying the dynamic programming scheduling strategy on the
DAG in Fig. 1.

ui ei j

0 1 2 3 4 5 6 7 8 9 10

2 3 0 0 3 3 3 3 3 3 3 3 3
2 5 0 0 5 5 8 8 8 8 8 8 8
3 3 0 0 5 5 8 8 8 11 11 11 11
4 4 0 0 5 5 8 8 9 11 12 12 12
7 3 0 0 5 5 8 8 9 11 12 12 12

Table 3
The second iteration of applying dynamic programming scheduling strategy on the
DAG in Fig. 1.

ui ei j

0 1 2 3 4 5 6 7 8 9 10

3 3 0 0 3 3 3 3 3 3 3 3 3
7 3 0 0 3 3 3 3 3 3 3 3 6

Fig. 2. After the first iteration.

Fig. 3. Heuristic scheduling.
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We apply the dynamic programming scheduling algorithm on
the DAG. The concrete procedures to select the clusters of nodes
are illustrated in Tables 2 and 3. We tend to select the node with
highest value of selection function defined above when we sche-
dule the nodes with the same execution time.

During the first scheduling, task hT1; T2; T4i are selected from
the nodes that have no parents hT1; T2; T3; T4; T5i. The DAG is chan-
ged into Fig. 2 after this scheduling. Then, repeat the process, and
choose nodes hT3; T5i from the updated DAG, as shown in Table 3.
After these two steps, all precedence dependencies in the DAG are
removed, and the remaining tasks are schedulable in the same
cluster.

Therefore, the DAG is divided into three clusters through the
whole scheduling, which are {T1; T2; T4}, {T3; T5}, and {T6; T7; T8}.
The overall execution time of the DAG can be computed as:
EDAG ¼ ð5þ 10þ 1Þ þ ð3þ 10þ 1Þ þ ð5þ 10þ 1Þ ¼ 46, and the
overall ratio of resource utilization is RU ¼ ðUcluster1 þ Ucluster2

þ Ucluster3Þ=ð3� 10Þ ¼ 70:3%.
It can be analyzed from these two strategies that the dynamic

programming method is more efficient in the reduction of execu-
tion time and the improvement of utilization of chip areas. More
precisely, compared to the heuristic algorithm, the execution time
of the dynamic programming strategy is decreased by 26%, while
the resource utilization is increased by 15.3%. In addition, the dy-
namic programming strategy is more advantageous in the configu-
ration time of a FPGA, since it only needs three configurations
while the heuristic approach needs four configurations.
5. Algorithm

In this section, we describe the details of our heuristic algorithm
and dynamic programming algorithm.

5.1. Heuristic scheduling algorithm

Heuristic algorithm is a method to heuristically make a locally
optimal choice at all stages, with the hope that this choice will
eventually lead to the global optimum. We apply the heuristic
algorithm on a DAG repeatedly to get a locally optimal execution
time for each cluster. We define the selection function as Eq. (3).

SðiÞ ¼ ðei þ bciÞ=ui; ð3Þ

where ei; ci, and ui correspond to the execution time, number of
children, and resource utilization of task i. b is a coefficient to nor-
malize the number of child to the utilization of task. Let b ¼ A=10,
where A is the maximal available chip utilization.

The basic idea of the strategy is as follows. First, we calculate
SðiÞ for tasks without parent (lines 3–4). The reason for choosing
these tasks is to make sure the precedence constraints are met.
Second, we sort them in descending order of SðiÞ (line 5), and sche-
dule them sequentially. Finally, delete these tasks from the current
DAG (line 13). The pseudo-code is described as Algorithm 3.

5.2. Dynamic programming algorithm

Dynamic programming is an approach for addressing some
complicate problems via breaking them down into simpler sub-
problems [38]. Our objective is to maximize total execution time
of a cluster, while subject to the constraint that overall utilization
of the cluster

PM
i¼1UGi

6 A. The mathematical form for the recur-
sion procedure is shown in Eq. (4).

optði; jÞ ¼
optði� 1; jÞ if ui > j

maxðoptði� 1; jÞ; opt0Þ otherwise

�
ð4Þ

where optði; jÞ represents an optimal combination when task i is se-
lected, and the current maximum value is j; opt0 is defined as Eq.
(5). We assume the resource utilization of all tasks are integers,
and for 8i 2 f1;2 . . . ;Ng; ui < 100.

opt0 ¼
optði� 1; j� uiÞ þ ei if task i can be scheduled
0 otherwise

�
ð5Þ



Fig. 5. Get a cluster.
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The necessary and sufficient condition for a task can be sched-
uled is that it can pass the admission test given in Algorithm 6. The
algorithm mainly performs two examinations for the input task.
The first one is to check out the resource utilization constraints,
the other one is to inspect the precedence dependencies for the gi-
ven tasks.

From the algorithms, it can be analyzed that the procedure for
clustering scheduling adheres to the following execution se-
quences: activating tasks in Algorithm 4, searching all the tasks
without parent nodes, performing admission test for a given task
in Algorithm 6, and putting the one which is approved by admis-
sion test into a certain list sublist by executing Algorithm 5. Finally,
we calculate the execution time of this cluster in Algorithm 4. We
repeat this procedure until the entire tasks in DAG are scheduled.

5.3. Complexity analysis

We analyze the time complexity of the proposed algorithms as
follows:

(a) The heuristic algorithm: The heuristic approach includes fol-
lowing processes: (1) Finding the nodes without parent
node. (2) Sorting these nodes. (3) Greedily selecting a group
of tasks from these n nodes. The time complexity for these
three parts are OðnÞ; OðnlognÞ, and OðnlognÞ, respectively.
Hence, the time complexity of using the heuristic strategy
to finding a cluster of tasks is OðnlognÞ. The overall time
complexity of the heuristic scheduling, in the worst case,
can be calculated as: nlognþ ðn� 1Þlogðn� 1Þ þ � � � þ 2log2
¼
R n

1 xlogðxÞdx ¼ 1
2 ½x2logx�n1 � 1

2

R n
1 x2dlogx ¼ 1

2 n2ðlogðnÞ � 1
2ln2Þ.

Therefore, the worst case time complexity of the heuristic
clustering scheduling algorithm is Oðn2lognÞ.

(b) The dynamic programming algorithm: Applying a dynamic
programming algorithm on the knapsack problem to get an
optimal solution requires the time complexity of OðnAÞ,
where A is the maximum area of reconfigurable device.
Therefore, in worst case that we can just get a single task
at each iteration, the time complexity is
n� Aþ ðn� 1Þ � Aþ . . .þ 2� Aþ A ¼ n�ðnþ1Þ

2 A. Hence, the
overall time complexity is Oðn2AÞ.

6. Experiments

We have done extensive experiments to verify the effectiveness
of the proposed algorithms which are implemented in C++. The
simulations are performed on a Dell INSPIRON 4010 laptop with
Fig. 4. Dynamic programming scheduling.

Fig. 6. Admission test for a given task.
2 AMD Athlon P360 (2.3 GHz) CPU and 2 GB memory. We imple-
mented the algorithms as standalone modules of our customized
simulator on Ubuntu 11.04. All the DAGs and input values are ran-
domly generated and the run time of each simulation is collected
by the Linux time function. We performed a host of experiments
with 500 sets of randomly generated hardware tasks. The following
assumptions are made for the input data. (1) The maximum re-
source utilization of reconfigurable device is 100 (A 6 100). (2)
The execution time of each task is no more than 100 (ei 6 100).
(3) The configuration time of reconfigurable devices are constant.
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Fig. 7. The relation between the number of clusters and the number of tasks, when
the maximum resource utilization ui 6 40.
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Fig. 10. The relation between the execution time of a DAG and the number of tasks,
when the maximum resource utilization ui 6 40.
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Fig. 8. The relation between the number of clusters and the number of tasks, when
the maximum resource utilization ui 6 60.
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Fig. 9. The relation between the number of clusters and the number of tasks, when
the maximum resource utilization ui 6 80.
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Fig. 11. The relation between the execution time of a DAG and the number of tasks,
when the maximum resource utilization ui 6 60.
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Fig. 12. The relation between the execution time of a DAG and the number of tasks,
when the maximum resource utilization ui 6 80.
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(4) All tasks can be executed simultaneously in the same configu-
ration. (4) Each node has no more than five children. (5) We as-
sume the size of the simulation chip is 80� 120, which is the
same as the XCV2000E devices.

As shown in Figs. 7–9, we compare the number of the clusters
obtained by dynamic programming algorithm and that of by
heuristic algorithm, with the increase of tasks. The experiment in-
cludes three groups of comparisons, with the maximal resource
utilization of a task changing from 40, 60, to 80. The group of fig-
ures illustrate that the dynamic programming scheduling strategy
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Fig. 13. The comparison of the computation time of the algorithms with the
increase of tasks, when the maximum resource utilization ui 6 40.
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Fig. 15. The comparison of the computation time of the algorithms with the
increase of tasks, when the maximum resource utilization ui 6 80.
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Fig. 14. The comparison of the computation time of the algorithms with the
increase of tasks, when the maximum resource utilization ui 6 60.
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leads to fewer clusters for an application. This result is mainly
attributed to the accurate search of dynamic programming algo-
rithm, which guarantees an optimal combination of tasks at each
step.

With the increase of the maximum resource utilization of tasks,
dynamic programming clustering scheduling approach is even
more superior than the heuristic algorithm. This is because when
the resource utilization of all tasks are relatively low, as shown
in Fig. 7, the fragments incurred by scheduling is not very obvious.
Therefore, the reduction in the number of clusters is insignificant.
However, with the increase of resource utilizations of tasks, the
improvement will be substantial. As shown in Fig. 9, compared
to the heuristic scheduling approach, when the maximum resource
utilization of a task is 80, the number of clusters generated by dy-
namic programming scheduling algorithm is reduced by 13.87% on
average. The shrinking number of clusters will efficiently decrease
the reconfiguration overhead of FPGA.

Figs. 10–12 show the overall execution time of a DAG by using
the dynamic programming approach and the heuristic scheduling
Table 4
The resource utilization of the dynamic programming algorithm and the heuristic algorith

Algorithm The number of tasks

50 100 200 300 400

Dynamic programming 0.7677 0.8429 0.8342 0.8471 0.87
Heuristic 0.7375 0.72 0.7609 0.7765 0.74
strategy. As illustrated in these three figures, applying dynamic
programming to partition a DAG can save more execution time.
This is primarily because the dynamic programming scheduling
strategy optimally selects task nodes from a DAG, while the heuris-
tic scheduling approach mainly performs according to the selection
function at each single step.

Figs. 13–15 indicate the whole computation time of a DAG for
heuristic algorithm and dynamic programming scheduling algo-
rithm. It can be seen that the heuristic algorithm has trivial advan-
tage with respect to the algorithm computation time. However,
compared to the configuration time and tasks execution time, the
computation time only accounts for a very small portion. For
example, normally, it just needs around 4 s to run our algorithms,
even when the number of tasks reaches 1000 and the maximum
resource utilization is 80. This is the worst case in our experiments.
The computation time will be much shorter with the decreasing
number or the maximal resource utilization of tasks. Therefore,
although the dynamic programming scheduling algorithm con-
sumes a little more running time than that of the heuristic sched-
uling algorithm, it is much more competitive in the reduction of
configurations and the improvement of resource utilization.

To verify the chip utilization of these two algorithms, we define
the ratio of average resource utilization as Ru ¼ 1

M

PM
i¼1

PNi
j¼1ui=A,

where M and Ni represent the total number of clusters and the
number of tasks in the cluster i. Table 4 shows the average resource
utilizations with the growing number of tasks, when the resource
utilization for each task i satisfies ui 6 60. As shown in Table 4,
the utilization of the dynamic programming scheduling strategy
is increased by 11.4% on average, compared to that of the heuristic
method.
7. Conclusion

In this paper, we proposed a heuristic scheduling strategy and a
dynamic programming algorithm to divide a DAG into several clus-
ters on reconfigurable computing systems. During the clustering
scheduling, we considered resource utilization and precedence
dependencies between tasks. The dynamic programming is able
m for clustering scheduling, when ui 6 60.

500 600 700 800 900 1000

79 0.8457 0.8066 0.8732 0.8315 0.8446 0.8546
36 0.7473 0.7374 0.7787 0.7559 0.759 0.7654
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to provide more accurate and efficient solution to schedule the
tasks in a DAG, by reducing the number of configurations and
improving the resource utilization. Experimental results verified
the effectiveness of our algorithm. We will further apply our ap-
proach to improve the performance while considering the thermal
and power-performance issues of reconfigurable computing
devices.
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