
Mobile Netw Appl
DOI 10.1007/s11036-016-0702-z

Bioinspired Security Analysis of Wireless Protocols

Marinella Petrocchi1 ·Angelo Spognardi2 · Paolo Santi1,3

© Springer Science+Business Media New York 2016

Abstract Fraglets represent an execution model for com-
munication protocols that resembles the chemical reactions
in living organisms. The strong connection between their
way of transforming and reacting and formal rewriting
systems makes a fraglet program amenable to automatic
verification. Grounded on past work, this paper investigates
feasibility of adopting fraglets as model for specifying secu-
rity protocols and analysing their properties. In particular,
we give concrete sample analyses over a secure RFID pro-
tocol, showing evolution of the protocol run as chemical
dynamics and simulating an adversary trying to circumvent
the intended steps. The results of our analysis confirm the
effectiveness of the cryptofraglets framework for the model
and analysis of security properties and eventually show its
potential to identify and uncover protocol flaws.
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1 Introduction

Fraglets are computation fragments flowing through a com-
puter network. They implement a chemical reaction model
where computations are carried out by having fraglets react
with each other. They were originally introduced to automa-
tise the protocol development process, from design, to
implementation, and deployment. In the past, main fields
of applications have been protocol resilience and genetic
programming experiments, see, e.g. [26, 27, 30, 31]. With
an eye to modelling security protocols and verifying secu-
rity properties, the original pool of fraglets’ instructions
have been incrementally extended in the past years to deal
with symmetric cryptography [24], access control mecha-
nisms [15], and dedicated primitives for trust management
[16]. This led to the definition of cryptofraglets, i.e., fra-
glets enriched with capabilities of encrypting, decrypting,
signing, and verifying signatures over a series of sym-
bols. Successively, work in [17] showed a more concrete
advancement towards adopting fraglets for security mod-
elling and verification, by proposing an executable specifi-
cation of cryptofraglets in Maude [4, 18], the popular engine
based on rewriting logic [20].

In [25], we enriched the cryptofraglets set of instruc-
tions with specific functionalities for hashing and mes-
sage authentication coding: these functionalities are par-
ticularly significant, constituting the basic building blocks
in many protocols. The same work also proposed a com-
pletely renewed executable specification of cryptofraglets in
Maude.

Here, the effectiveness of the enhanced framework is
demonstrated by presenting a Maude specification of a pri-
vacy preserving RFID identification protocol, RIPP-FS [5,
6], under the fraglets communication paradigm. The pro-
tocol provides a series of features, including: secrecy of
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the shared key used to authenticate the tag to the reader;
tag privacy, intended as un-linkability of two, or more,
answers coming from the same tag, against a passive
adversary that eavesdrops two (or more) protocol sessions;
de-synchronization resistance, which protects the protocol
against Denial-of-Service attacks; and forward secrecy, i.e.,
impossibility for an active adversary that has captured a
tag to know which previously eavesdropped answers have
been produced by that tag. The specification of RIPP-FS
in Maude allows for the automated analysis of such fea-
tures. With respect to [25], we show extended examples of
such analyses, serving as a proof of concept to demonstrate
feasibility of modelling and analysing security protocols
specified via fraglets.

The paper is organized as follows. Section 2 recalls the
(crypto)fraglets model. Section 4 shows a fraglets-based
instantiation of one session of the RIPP-FS protocol, high-
lighting some Maude capabilities to perform automatic
analyses on the protocol execution. In Section 5, we briefly
revise related work in the area of fraglets and rewrite
systems. Finally, Section 6 concludes the paper.

2 Fraglets

A fraglet is denoted as [s1 s2 . . . tail], where si (1 ≤ i ≤
n) is a symbol and tail is a (possibly empty) sequence of
symbols. Nodes of a communication network may process
fraglets as follows. Each node maintains a fraglet store to
which incoming fraglets are added. Fraglets may be pro-
cessed only within a store. The send (mcast) instruction
transfers a fraglet from a source store to a destination store
(to a set of destination stores).

Fraglets are processed through a simple prefix program-
ming language. Transformation instructions involve a single
fraglet, while reaction instructions involve two fraglets. The
interested reader can find a comprehensive tutorial in [12],
while Tables 1 and 2 show the core instructions that serve in
the following.

Two fraglets react by instruction match, and their tails
are concatenated. With the catalytic matchp, the reaction
rule persists. Table 2 reports two particular transformation
instructions used for enabling communication. In particu-
lar, send performs a communication between two fraglets
stores. It transfers a fraglet from store SA to store SB.
Notation

SA[s1 s2 . . . tail]

Table 1 Subset of fraglets core instructions

match [match t tail1], [t tail2] → [tail1 tail2]

matchp [matchp t tail1], [t tail2] → [matchp t tail1], [tail1 tail2]

Table 2 Fraglets communication instructions

send SA [send B tail] → SB [tail]

mcast SA [mcast (B,Slist) tail] → SA [mcast Slist tail], SB [tail]

denotes that the fraglet is located at SA. The name of the
destination store is given by the second symbol in the origi-
nal fraglet [send SB tail]. Where not strictly necessary, we
omit this to make the name of the store explicit.

The mcast instruction models a multicast communica-
tion, namely a communication from a store to a group
of other stores, listed in symbol Slist, which represents
a list of stores. In case Slist is composed of all possible
receivers, mcast acts a broadcast. This instruction is recur-
sively defined, as a fraglet that transforms itself in a simpler
one, while generating a new fraglet in one of the destination
stores.

The cryptographic version of fraglets, namely the
cryptofraglets, was firstly introduced in [15, 24], In [25],
new instructions for hashing and message authentication
coding, and their verification, were introduced. Table 3
shows the entire set of cryptographic instructions.

The encryption instruction enc takes as input the
[enc newtagk1tail] fraglet, consisting of the reserved
instruction tag enc, an auxiliary tag t, the encryption key
k, and a generic sequence of symbols tail, representing the
meaningful payload to be encrypted. It returns [t tail], with
the auxiliary tag and the cyphertext tailk . The decryption
instruction dec acts in the complementary way.

Instruction hash applies an hash function to the generic
sequence of symbols tail. Instruction hashi performs hash
iteration, i.e., the application of the hash function h i times
on tail: hi(tail) = h(h(. . . h(tail) . . .). Therefore, it is a
transformation rule operating on the fraglet [hashi t i tail].
Hash iteration is useful to model the Lamport’s scheme,
namely one-time passwords based on sequences of val-
ues iteratively obtained computing a hash function on a
shared secret [19]. The Lamport’s scheme is widely used
for authentication purposes and to guarantee the property
of “forward secrecy” (see Section 4 for an example of
application). The hashi fraglet for hash iteration is able to

Table 3 Crypto-instructions for encryption, decryption, hashing, and
message authentication coding

enc [enc t k tail] → [t tailk]

dec [dec t k tailk] → [t tail]

hash [hash t tail] → [t h(tail)]

hashi [hashi t i tail] → [hashi t i-1 h(tail)]

hmac [hmac t k tail] → [t h(k ‖ tail)]

hv [hv t tail1 tail2] [t tail1] → [tail2]

hnv [hnv t tail1 tail2] [t tail3] → [tail2]
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transform itself and evolve to a single hash fraglet, eventu-
ally resulting in a fraglet with a tag and a tail sequence as
input to a hash function h, when i becomes 0.

The fraglet [hmac t ktail] evolves to compute the hashed-
MAC (Message Authentication Code), commonly realized
with the combination of a shared key k and a message (the
tail sequence). The fraglet transforms itself to a hashed fra-
glet, with the concatenation of the tail sequence plus the
key as input to the hash function h. Operator ‖ denotes
concatenation of symbols.

In this paper, we make the so called perfect cryptog-
raphy assumption and we consider encryption as a black
box: an encrypted (sequence of) symbol(s) cannot be cor-
rectly learnt unless with the right decryption key. Similarly,
we consider hash functions to be collision-resistant and
non-invertible. This approach is standard in (most of) the
analysis of cryptographic communication protocols, see,
e.g., [3, 11, 13, 14].

Table 4 defines simple rules for hash verification. Instruc-
tion hv let a computation proceed with tail2 if two symbols
sequences tail1 in two different fraglets with matching tags
are equal. In a complementary way, instruction hnv let a
computation proceed if two symbols sequences tail1 and
tail3 in two different fraglets with matching tags are dis-
equal. The role of these two control instructions will be
clarified in Section 4.

2.1 A simple communication protocol

Below, we show the initial pool of fraglets, originally at
stores SA and SB, needed to execute a simple program that
encrypts a fraglet at store A, transfers the cyphertext at store
B, and decrypts the cyphertext at store B.

Pool of 4 fraglets originally at SA :
A[match key match msg enc t] A[key k]
A[match t send B kmsg] A[msg m]
Pool of 2 fraglets originally at SB :
B [match key match kmsg dec t] B [key k]

One possible execution of the program is as follows.

A[key k] A[match key match msg enc t] →match A[match msg enc t k]
A[match msg enc t k] A[msg m] →match A[enc t k m]
A[enc t k m] →enc A[t mk]
A[match t send B kmsg] A[t mk] →match A[send B kmsg mk]
A[send B kmsg mk] →send B [kmsg mk]
B [key k] B [match key match kmsg dec t] →match B [match kmsg dec t k]
B [match kmsg dec t k] B [kmsg mk] →match B [dec t k mk]
B [dec t k mk] →dec B [t m]

Table 4 Hash verification instructions

hv [hv t tail1 tail2] [t tail1] → [tail2]

hnv [hnv t tail1 tail2] [t tail3] → [tail2]

Tags key, msg, and kmsg are auxiliary. In the above exam-
ple, we assume that SA and SB are the only stores at stake,
and that, originally, there are no other fraglets than the ones
in the initial pool at A and B.

2.2 Executable fraglets in maude

The set of fraglets programming instructions in Tables 1,
2, 3, 4 consists of rewrite rules [18, 20], with a simple
rewriting semantics in which the left-hand side pattern (to
the left of →) is replaced by corresponding instances of
the right-hand side one. They represent local transition
rules in a possibly distributed, concurrent system. Thus,
we assume the presence of a rewrite system (defined by a
single step transition operator →, with →∗ as its transi-
tive and reflexive closure) operating on fraglets by means
of the rewrite rules corresponding to the fraglets program-
ming instructions. If we let f, f ′ range over fraglets, by
applying operations from the rewrite system to a fraglets’
set F, a new fraglets’ set D(F) = { f | F →∗ f } is
obtained.

The affinity between fraglets programming instructions
and rewrite rules makes the former amenable for execu-
tion in Maude. Maude is “a programming language that
models (distributed) systems and the actions within those
systems” [18]. The system is specified by defining algebraic
data types axiomatizing system’s states, and rewrite rules
axiomatizing system’s local transitions.

We have defined an algebra for cryptofraglets, i.e., the
sorts (types for values), and the equationally specifiable
operators acting on those sorts (and constants). Also, we
have defined the rewrite laws for describing the transitions
that occur within and between the set of operators. The
set of rewrite laws represents the set of (crypto)fraglets
instructions given in the tables of Section 2.

The complete Maude specification of cryptofraglets,
together with appropriate equations for all the declared
operators, is available at http://mib.projects.iit.cnr.it/
mone16/cryptofraglets.html. The specification consists of
the three modules FRAGLETS, FRAGLETS-RULES, and
CRYPTO-FRAGLETS-RULES.

The functional module FRAGLETS provides declara-
tions of sorts, e.g., fraglets, symbols, stores, and keys, and
operators on those sorts, e.g., concatenation of fraglets and
concatenations of fraglet stores. It also defines subsort rela-
tionships. For instance, symbols, stores, and keys are seen
as specialized fraglets, meaning that all variables of sorts
symbols, stores, and keys are fraglets too. The module also
provides reserved ground terms representing the names of
the instructions (match, matchp, send, . . . ).

Module FRAGLETS-RULES defines the rewrite rules
encoding the instructions given in Tables 1 and 2, plus core
instructions non reported here for the sake of brevity.
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Finally, module CRYPTO-FRAGLETS-RULES defines
the rewrite rules for encryption, decryption, hashing and
message authentication code. Decryption and hash verifica-
tion are defined as conditional rules (crl [DEC], crl [HNV]):
decryption is possible only if the key used for encryption is
equal to the key that one intends to use to decrypt. A hash
value is verified only if it equals to some other hash that a
fraglet store is able to compute.

To actually do something with those modules, Maude
uses appropriate strategies for rule application. A Maude
default strategy is implemented by the rewrite command,
that explores one possible sequence of rewrites, starting by
a set of rules and an initial state [18]. For example, plugging
in “rew [enc t k tail] .” into the Maude environment, we
obtain as a result “[t crypt(tail, k)]”. The search command
is also very convenient. A priori, it gives all the possible
sequence of rewrites between an initial and a final state sup-
plied by the user. Practically, since for certain systems the
search could not terminate, the command is decorated with
an optional bound on the number of desired solutions and
on the maximum depth of the search.

In next sections, we show the fraglets specification of
a RFID protocol guaranteeing a set of security properties.
We will describe properties analysis example in Section 4,
through the use of basic strategies. All the analysis exam-
ples shown in the paper illustrate how the implementation of
fraglets in Maude allows us to exploit the Maude’s analysis
toolset. In this respect, it is worth noting that in the above
analyses we have made use of only basic Maude capabili-
ties. There are several other Maude tools whose use remains
to be investigated (e.g., its SAT solver, its reachability
analyser and its LTL model checker).

3 Threat model

This section introduces a new threat model for fraglets. We
identify nodes A B C, . . . of a communication network as
fraglets stores, viz. SA, SB, SC, . . . . Thus, principals of a
communication protocol are fraglets stores, within which
fraglets (protocol code + protocol messages) are being pro-
cessed. In particular, communications are via the send

(“one to one” communication) and mcast (“one to many”
communication) instructions.

We consider a protocol specification involving two, or
more, honest roles. In case of two roles, we can call
them viz. the initiator SS and the responder SR. More-
over, when modeling and verifying security properties of
communication protocols, it is quite common to include
an additional intruder whose aim is to subvert the pro-
tocol’s correct behaviour. A protocol specification is then
considered secure w.r.t. a security property if it satisfies this
property despite the presence of the intruder. We model the

intruder as an untrusted store SX , which can eavesdrop (and
possibly modify) the fraglets exchanged between SS and SS

(or, more generally, among a set of honest stores).
We do not a priori fix any specific behaviour for the

adversary. SX can process fraglets by means of all the
instructions presented in Section 2. SX can also honestly
engage in a security protocol. To this aim, the pool of fra-
glets at SX can contain also symmetric keys kSX and kRX,
shared with, e.g., SS and SR, respectively. Concerning cryp-
tographic keys, we assume that, at deployment, each store SI

contains the pool of keys �I needed for the store to perform
encryptions and decryptions. We also assume that shared
secret keys are initially contained only by the legitimate
stores that share those keys.

Figure 1 shows how a multicast communication is acti-
vated among a subset of stores. Each store, within a universe
of available stores, process fraglets representing both code
and messages to run communication protocols sessions.
Instruction mcast at store SA can be programmed to list the
subset of stores that will actually receive messages from SA.
In particular, solid arrows represent actual communication
(i.e., SB and SX receive messages from SA), while dashed
arrows represent potential communication (i.e., in principle,
communication with SA and SC is possible, but not activated
in the figure example). Note that, when specifying security
protocols, the adversary store SX is always included in the
list of stores of every mcast instruction, to model, at least,
eavesdropping.

Apart from some fraglets resident at the stores (denoted,
resp., as [restA], [someB], [someC], and [someX]), in the

Fig. 1 An example communication scenario for fraglets and fraglets
stores
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figure we highlight fraglet [mcast B;X tail], which enacts
communication towards SB and SX .

Adversary’s knowledge The adversary’s knowledge [9,
23] is the set of all the messages an adversary knows from
the beginning (its initial knowledge) united with the mes-
sages it can derive from the ones intercepted during a run of
the protocol. In terms of fraglets, the adversary knowledge
is the set of all fraglets hosted at SX , at a given state of the
computation.

Let FSX be the set of fraglets contained by SX .

Definition 1 The intruder’s knowledge �
FSX
SX

is defined as:

�
FSX
SX

= {taili |fi =SX [ti taili] ∈ D(FSX )}

for some generic auxiliary or instruction tag ti , i =
0, . . . , m.

Security properties Secrecy Secrecy is one of the most
common security properties. Intuitively, a message is secret
when it is only known by the parties that should share that
secret. Thus, in a fraglet context, a symbol (or sequence
of symbols) is a secret between SS and SR when it is not
possible for SX to know that symbol (sequence).

We let F0
SS

and F0
SR

to be the initial, and fixed (according
to the protocol in which the honest roles are engaged), set of
fraglets stored at, resp., SS and SR, at the beginning of the
computation.

Analogously, F0
SX

is the set of fraglets initially contained
by SX . A priori, we do not make any assumption on this
set, apart from the fact that it does not contain private infor-
mation of the honest roles, such as, e.g., shared secret key
between SS and SR.

Definition 2 The secrecy property Sec(tail)SX
of a

sequence of symbols tail is preserved if ∀F 0
SX

and ∀(F
′
SS

∪
F

′
SS

∪ F
′
SR

) ∈ D(F 0
SS

∪ F 0
SX

∪ F 0
SR

) then tail /∈ �
F

′
SX

SX
.

This means that, for every possible set of fraglets initially
contained by the adversary’s store, and for every possible
union of fraglets’ sets contained at SS, SX , and SR that are
derivable from the initial sets by applying every possible
rule of the rewrite system, SX will never know the secret
sequence.

4 Fraglet specification of a RFID protocol

In this section, we provide a specification of a RFID pro-
tocol through cryptofraglets, together with the modelling
of some of its provided security properties. We firstly

introduce the RIPP-FS [5] protocol, that guarantees RFID
tag privacy, mutual authentication and forward secrecy
and, then, we provide the protocol fraglets formulation. It
belongs to the family of protocols based on the concept of
key synchronization between RFID tags and server, like [1,
22, 28, 29]. A subsequent version of the protocol eRIPP-
FS [6] was proposed to limit a timing attack to which some
hardware implementation could be potentially exposed.

Before introducing the protocol, we briefly recall some
security notions. With tag privacy we indicate the prop-
erty for which a passive attacker cannot distinguish two
answers of a same tag, provided that she cannot distinguish
between a hmac value and a pseudo random generated num-
ber. Mutual authentication is the property through which
two entities prove each other their own identity. Forward
secrecy ensures that the knowledge of a piece of informa-
tion does not disclose any information about the past. In
the particular case of RIPP-FS, the knowledge of the key of
a captured tag does not disclose any information about the
previous answers of that tag.

Finally, we informally mention the concept of de-
synchronization resistance: several RFID authentication
protocols rely on the agreed renewal of a piece of infor-
mation shared between a tag and the server. When the tag
has to be identified, it renews the secret in order to pro-
vide the answer expected by the server. However, several
implementations of this mechanism ([1, 22, 28]) are vul-
nerable to Denial of Service (DoS) attacks, which force the
tag to reach an irrecoverable state, where its shared piece of
information is no more aligned with the one on the server.
In particular, every tag has a maximum number of times
it can answer correctly, and after reaching this value the
tag will not reply to the reader’s queries. Since the tags
update their shared information with a value provided by
any reader, an adversary could simply provide to the tags
enough readings to make the tag time-stamp exceed its value
and make the tag no more identifiable. A RFID protocol that
is immune to this type of attack is said to be resistant against
de-synchronization attacks.

4.1 The RIPP-FS protocol

RIPP-FS, introduced in [5, 6], is a privacy preserving iden-
tification protocol for RFID tags: it is able to perform the
scanning of multiple tags with only one reading, avoiding
the tracking of the tags among subsequent readings. The
main idea of the RIPP-FS protocol is that a tag replies to
a reader with a different answer each time it is queried: if
it recognizes a legitimate query, then it answers correctly,
else it replies with a random string of the same length of the
correct one. The answer can be recognized only knowing a
secret piece of information, shared between the tag and the
server.
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Figure 2 concisely describes the computations and the
message exchanges of the protocol. The main building block
of RIPP-FS is the use of a Lamport’s scheme to provide the
authentication of the reader: each tag stores a value Ai that
uses to verify the authenticity of readers’ query at time i,
since Ai is the result of the iteration of a hash function h

over a secret value A0, namely Ai = hi(A0), where hk(·)
means the function h iterated k times, h(h(. . . (·)) . . .). In
particular, to authenticate a reading, once receiving a new
value Aj and a time j (with j > i), the tag must verify that
hδ(Aj ) = Ai , where δ = j − i. The collision resistance and
the pre-image resistance properties of hash functions guar-
antee that only the entity that knows A0 could also know the
value Aj , since hash functions are one-way and evaluate the
pre-image is practically unfeasible.

The same properties are exploited to guarantee the for-
ward secrecy, since the same hash function is used to modify
the shared key of a tag, in order to generate a different
answer for each reading. In particular, before answering to
an authenticated reader, the tag iterates several times the
function h over its key, in order to update the key to the cur-
rent time j . This ensures that if the adversary captures the
tag and extracts the key kj , she would be unable to evaluate
the previous keys ki , since kj = hδ(ki), for δ = j − i > 0.

To obtain key secrecy, the updated key is not straightfor-
wardly sent to the reader, but instead it is used by the tag to
generate a reply that is a hmac value, namely h(kupdated‖j).
This ensures that the shared key is never transmitted dur-
ing the execution of the protocol. Eavesdropping all the
communications or sending malicious messages provides no
information about the shared key. Finally, if the authentica-
tion value Aj does not pass the check hδ(Aj ) ≡ Ai , then
the tag will reply with a pseudo random number of the same
length of a hmac value. In this way, any reader that does not
know the expected hmac h(kupdated‖j) is unable to deter-
mine if the reply is a pseudo random number or a legitimate
reply.

Finally, the tag updates its key and correctly replies
only when it receives a reading including a genuine

Fig. 2 The RIPP-FS protocol

authentication value Aj , then it can not be fooled to go out-
of-sync. An attacker can only eavesdrop and replay genuine
authentication values, but the tag will only update when the
received value refers to a value greater than the last genuine
value it has previously answered to: since the authentication
value Aj has been eavesdropped, any new authentication
value sent by the genuine reader will be something like
Aj ′ with j ′ ≥ j . This means that a tag that has answered
to an eavesdropped Aj and that receives a genuine Aj ′ ,
it will recognize an authentication value related to a read-
ing (j ′) that is ahead in time to the one it has already
answered (j ), avoiding the risk of a de-synchronization
attack.

4.2 RIPP-FS fraglet specification

In this section, we introduce a fraglets specification of the
RIPP-FS protocol executable in Maude. The reader can be
specified as follows:

The reader’s store contains an initial set of fraglets (pro-
tocol messages + protocol code) to perform its steps of the
protocol: it can broadcast the authentication value and the
time, it can evaluate the expected answer of the tag and ver-
ify the actual answer of the tag. It is worth noting the use of
the fraglet instruction hashi that 1) produces the authval iter-
ating max-delta times the hash function over the auth0 value
and 2) builds the new shared key iterating h over the initial
k0tag1 key. In particular, this evaluation originates from the
combination with the delta fraglet message that corresponds
to the reading number. Finally, we use the two hash verifi-
cation instructions hv and hnv: only one of them will react
with the expmac tag, that is hv if the check is passed, hnv
otherwise.
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The tag can be specified as follows:

The initial fraglets in the tag’s store start reacting with
the reception of a fraglet with the authl tag. This ignites
the reaction of the authentication value check and, then, the
broadcast of the answer. It is worth noting that, if the hash
verification does not succeed, then the pseudo-random value
is sent, since the fraglet with authlast will react with the
hnv fraglet. Otherwise, the fraglet reaction will produce the
update of the key with the hashi cryptofraglet, the evalu-
ation of the legitimate answer with the hmac cryptofraglet
and the broadcast of the hmac value, with the mcast anyone
fraglet.

4.3 Modelling security properties with fraglets

In this section, we show some security analysis over the
fraglets specification of RIPP-FS. We highlight that the
examples we depict in the following do not guarantee the
fulfillment of the properties under all the possible configu-
rations of the fraglets at stake. For instance, an exhaustive
analysis of the protocol would necessitate to explore all the
possible initial configurations of the fraglets stores repre-
senting the tag, the reader, and the adversary, as well as
interactions among the potential universe of other fraglets
stores. However, this kind of analysis is out of scope in this
paper, whose main purpose is to show how the bio-inspired
fraglet paradigm can model protocols as well as security
properties.

4.3.1 Key secrecy against passive eavesdropping

To model the key secrecy against a passive eavesdropper,
we introduce a malicious reader that eavesdrops on all the
communications between a genuine reader and a legitimate
tag. It silently exploits the inherently insecure wireless chan-
nel to collect the messages exchanged by the honest parties.
Her aim is to collect the secret shared key of the tag or

any other useful piece of information that would enable its
disclosure.

To verify that the key is never disclosed, we leverage
the Maude search command that explores all the possible
derivatives of a given initial configuration. In particular, to
model our adversary, we ask for any final state where the
adversary knows the key, as follows:

With the above Maude excerpt we are looking for any
possible evolution of the model in which the malreader’s
store contains a fraglet with the key of the tag: t1 and
t2 can be any fraglet (even nil or a tag), while more
denotes any other possible tag within the store; rest denotes
the remaining fraglets of the model that correspond to
the stores of tag1 and the genuine reader. The omitted
parts denoted with ... are the protocol specification as in
Section 4.2. The outcome of the above specification is the
following:

showing that all the possible branches of the model never
reached a state in which the key secrecy was violated by the
malicious reader.

We remark that the excerpt only describes one possible
system configuration: other settings can be explored con-
sidering different evolutions of the tag key to be disclosed
(for example k0tag1, h(k0tag1) and so on) or different
sets of initial fraglets in the malicious reader’s store (for
example to make the eavesdropped data reacting with other
fraglets).

4.3.2 Tag privacy against passive eavesdropping

Similarly to the key secrecy, we check tag privacy with the
Maude search command. In particular, we model the prior
knowledge of the malicious reader including in its store
some hmacs collected during previous exchanges between
the genuine reader and two different RFID tags (tag1 and
tag2). Moreover, we provide the malreader with a secret
key (k), possibly extracted from a third tag. Finally, the
malicious reader’s store has a set of fraglets that can react
with any eavesdropped hmac. We ask Maude to find any
evolution of the system in which the cryptofraglet that
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successfully verifies the hmac reacts within the store of the
malicious reader. Thus, we model the tag privacy as follows:

With the search command specified as above, Maude will
explore all possible evolutions where there the malreader
store includes a fraglet with tag ’OK, meaning that the hv
tag reacted with the exphmac tag. The outcome is:

meaning that the malicious reader is unable to relate the
eavesdropped ’hmac-tag with any of the possible tags.

Note that other possible configurations can consider more
fraglets in the malicious reader’s store, in order to model
a different prior knowledge or more hacking strategies, for
example one that tries to disclose the information within the
hmac fraglet and to relate them with any of the possible tags.

4.3.3 De-synchronization resistance

Protection against de-synchronization is tested considering
if the malicious reader is able to make the tag unreadable
to the reader. In order to test this property, we consider a
scenario in which the malicious reader tries to send the tmax
time, that corresponds to the last possible answer of the
tag. Since the starting authentication value is unknown to
the malicious reader, she can only reuse unrelated authenti-
cation values, eventually collected during previous genuine
readings. The aim of the malicious reader is to induce
the tag to update its key according to the specific sent
time.

In order to check this property, we again exploit the
Maude search command to verify if exists a possible evolu-
tion from the initial configuration in which the tag updates
its key according to the tmax value. Then, we start from an
initial configuration in which the tag has updated its key to
the time t2 and the malicious reader sends tmax joined all
the previous sent authentication values. We ask Maude to
search a possible evolution of the configuration in which

the tag has a fraglet that corresponds to the updated private
key.

The outcome of the experiment is:

and shows as without the right authentication value there
is no possibility for the malicious reader to induce a tag
update, like the tmax value h(h(. . .(k). . .) that corresponds to
the 10th iteration of the hash function on the shared key k.

4.3.4 Forward secrecy against a tag capture

In order to test the forward secrecy property, we simply
model the store of the malicious reader. We initialise a
configuration where the attacker has eavesdropped some
previous successfully acknowledged protocol readings of
some tags (tag1 and tag2) and, some time later — eventu-
ally after some other readings, she violates the two tags and
extracts all the cryptographic material inside them. We ask
Maude if the adversary is able to relate any of the collected
messages with any of the tags she compromised.
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The fraglets in the store of the malicious reader can com-
bine in many ways, realizing a kind of brute force attack
against the collected hmac. This is the outcome of the
Maude execution:

Again, there was no evolution of the system in which
the fraglets in the store were able to produce a ’OK fraglet.
This outcome is because of the one-way property of the hash
function, since we are assuming that there exists no practical
mechanism to have a pre-image of a hashed value.

We remind the reader that the complete Maude specifi-
cation of cryptofraglets, as well as the Maude files of the
example analyses shown in the paper, are available at mib.
projects.iit.cnr.it/mone16/cryptofraglets.html

5 Related work

The BIONETS EU project [2], BIOlogically inspired NET-
work and Services, seeked inspiration from biological sys-
tems to provide a fully integrated network and service
environment ,able to scale to large amounts of highly het-
erogeneous devices, and that is able to adapt and evolve
in an autonomic way. The fraglets model has been exten-
sively adopted in BIONETS and some security and trust
extensions to the original model have become necessary
to make it a running framework. That was the main rea-
son why cryptofraglets were born, first from a theoretical
point of view, then realising a prototypal implementation
of cryptofraglets in Maude to run some toy example analy-
ses [17]. Successively, the implementation was extended in

[25], to deal with a larger set of cryptographic primitives,
widely adopted in standard security protocols.

In the literature, there exist remarkable examples of the
use of rewriting systems for modelling security protocols
and analysing their properties, including, e.g., [8, 10, 21].
Work in [21] shows how the Dolev-Yao model [7] of secu-
rity protocol analysis may be-formalized using a notation
based on multi-set rewriting with existential quantification
and exemplifies the formalisation of subtle security prop-
erties. Under the same context, in [8] the authors analyze
the complexity of the secrecy problem under various restric-
tions, showing that, even with a restricted size of messages,
the secrecy problem is undecidable for the case of an unre-
stricted number of protocol roles and an unbounded number
of freshly generated messages (so called nonces). The open
complexity problem is indeed the main issue that one needs
to explore for better defining limits and advantages in adopt-
ing cryptofraglets for security analysis. Indeed, as pointed
out in the above sections, the example analyses that we have
shown consider a limited number of actors and no gener-
ation of fresh messages. Finally, for page limits, we refer
the interested reader to the tutorial in [10], describing the
Maude-NRL Protocol Analyzer, a Maude-based tool for the
analysis of cryptographic protocols. The tutorial also points
to related work in the area of security protocols models and
analysis, with an eye to rewriting systems.

6 Conclusions

In this paper, we moved from an extended model for
cryptofraglets, with primitives for multicasting, hashing,
and message authentication coding. Based on this commu-
nication model and on a threat model where fraglets stores
can engage in communication protocols together with pas-
sive and active intruders, we presented the modelling and
analysis of a set of security properties of a wireless proto-
col. Even exploiting only a minimal set of the verification
tool capabilities and paving the way for further investigation
(like, e.g., the presence of more actors in a protocol run), the
results show the effectiveness of the cryptofraglets frame-
work for the model and analysis of security communication
protocols.
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