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a b s t r a c t

Diabetes mellitus may cause alterations in the retinal microvasculature leading to diabetic retinopathy.
Unchecked, advanced diabetic retinopathy may lead to blindness. It can be tedious and time consuming
to decipher subtle morphological changes in optic disk, microaneurysms, hemorrhage, blood vessels,
macula, and exudates through manual inspection of fundus images. A computer aided diagnosis system
can significantly reduce the burden on the ophthalmologists and may alleviate the inter and intra
observer variability. This review discusses the available methods of various retinal feature extractions
and automated analysis.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Diabetes mellitus (DM) is characterized by impaired metabolism
of glucose caused by insulin deficiency or its resistance, leading to
hyperglycemia which may finally result in vascular and neuropathic
complications. DM is of two types: Type-1, caused by the destruction
of autoimmune pancreatic β-cell and lack of insulin [1,2] and Type-2
diabetes caused by insulin resistance and relative lack of insulin.
Insulin levels need to be monitored closely and failure of good
glycaemic control may lead to organ damage, including Diabetic
Retinopathy (DR). All diabetics may eventually develop DR [1].

The foremost risk factors of diabetes are increasing age, sedentary
lifestyle and obesity [3]. The prevalence of diabetes population
worldwide is expected to increase from 2.8% to 4.4% in the time
span of 2000–2030 [3]. Nowadays, diabetes is identified among the
people with age group of 30 years or even before. The incidence of
DR is 50% after 10 years and 90% after 30 years of acquired diabetes.
Usually DR does not develop within 5 years of the inception of
diabetes or before puberty. About 5% of those with Type-2 diabetes
have DR [4]. Uncontrolled diabetes and its complication leads to DR,
which may result in loss of vision and blindness [4]. Patients with
Proliferative Diabetic Retinopathy (PDR) are at increased risk of heart
attack, stroke, diabetic nephropathy, amputation and death [4,5]. It
was estimated that there were 171 million people in the world with
diabetes in the year 2000 and this is projected to increase to 366
million by 2030 [6–8]. Early stages of DR may be clinically asympto-
matic and the disease may be recognized in the advanced stage
when treatment may become difficult [9]. Fig. 1 shows typical fundus
images of normal, and different stages of DR.

1.1. Clinical features of DR

DR may cause several abnormalities in the retina, and are
briefly explained below.

1. Microaneurysms (MA)—are the earliest visible sign of retinal
damage. The abnormal permeability and/or non-perfusion of
retinal blood vessels causes the formation of MA [10]. It is a red
spot less than 125 μm in size and has sharp margins [11].

2. Hard exudates—are the lipoproteins and other proteins leaking
through abnormal retinal vessels [1]. It appears as small white
or yellowish-white deposits with sharp margins [11]. They are
often arranged in clumps or circinate rings [4] and located in
the outer layer of the retina [11].

3. Soft exudates or Cotton Wool Spots (CWS)—occur due to occlu-
sion of arteriole [12]. The reduced blood flow to the retina
causes ischemia of the Retinal Nerve Fibre Layer (RNFL) which
affects the axoplasmic flow and causes accumulation of axo-
plasmic debris in the retinal ganglion cell axons. The debris
accumulation appear as fluffy white lesions in the RNFL called
as CWS [12,13].

4. Hemorrhages (HEM)—occur due to leakage of weak capillaries
[1]. It is defined as a red spot with irregular margin and/or
uneven density. Usually it is greater than 125 μm in size [11].

5. Neovascularization (NV)—is the abnormal growth of new blood
vessels on the inner surface of the retina. These blood vessels
are weak and frequently bleed into vitreous cavity, obscuring
the vision [14,15].

6. Macular edema (ME)—is the swelling of the retina. It is caused
due to permeability of abnormal retinal capillaries causing the
leakage of fluid and solutes around the macula [10,16]. It affects
the central vision [17,4].

1.2. Stages of diabetic retinopathy

Depending on the presence of clinical features, DR is classified
into five types namely mild Non-Proliferative Diabetic Retinopa-
thy (NPDR), moderate NPDR, severe NPDR, PDR and Macular
Edema (ME) [11,18,1,19] which are briefly described in Table 1.

1.3. Diabetic retinopathy risk progression, complications
and treatment

DR with MA has 6.2% possibility to develop into PDR within a
year [20]. Increase in the number of MA is an important early
feature of DR progression. The signs of pre-PDR includes venous
loops, small vessel abnormality within retina and many blot HEM.

Fig. 1. Typical fundus images: (a) Normal; (b) Mild NPDR; (c) Moderate NPDR; (d) Severe NPDR; (e) Prolific DR; (f) Macular edema.
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With progression of ischemia, there is an increase in the possibility
of PDR development within a year. This one year risk development
rises from 11.3% to 54.8% from lower stage to advanced stage [20].

New blood vessels generally grow from venous and arterial
circulation. Such patients have 25.6% to 36.9% [20] possibility of
vision loss, if not treated properly. Moreover, PDR eyes not treated
for more than 2 years have the possibility of 7.0% of visual loss and
if it is not treated for more than 4 years have the possibility of
20.9% of visual loss. Vision loss decreases to 3.2% within 2 years of
treatment and 7.4% within 4 years of treatment [20].

Patients with mild DR do not require any particular treatment
other than optimal control of diabetes and the associated risk
factors like hypertension, anaemia, renal failure. They need to be
monitored closely, else it may progress to higher stages of DR.
Recently, it was shown that pre-PDR can regress to background
retinopathy with optimal diabetes control [4].

In the advanced stage of DR treatment is limited [21]. In severe
neovascularization, several sessions of pan-retinal photocoagulation
may be required to prevent visual loss from vitreous HEM and
tractional retinal detachment. Inadequate laser treatment is one of
the major causes of persistent neovascularization [21]. Regression of
neovascularisation leaves ghost vessels or fibrous tissue. In most of
the treated eyes, stable vision can be maintained once the retino-
pathy become quiescent, but the patients must be re-examined every
6–12 months [4]. Vitrectomy can prevent vision loss in patients with
advanced stages of DR. Both laser photocoagulation and vitrectomy
carry a risk of additional vision loss and also not effective in revising
visual acuity loss [21]. Intraretinal steroid injections have shown
temporary improvements in visual acuity in Diabetic Macular
Edema (DME) patients. However, it may raise the intraocular pres-
sure and develop cataracts [22]. Alternative treatment for DME is
anti-Vascular Endothelial Growth Factors (anti-VEGF). There are
many types of anti-VEGF are available. It inhibits the VEGF angiogenic
activity by binding it to the VEGF protein and thus prevents its
receptor activation [22,23]. Recent studies shows that anti-VEGF
treatment can help to reduce DME and Age-related Macular Degen-
eration (AMD) [24].

1.4. Diabetic retinopathy screening systems

Manual diagnosis demands lot of effort to screen the images.
Automated methods may reduce the time, cost and effort significantly
[25]. The steady growth in diabetic cases has increased the growth of
automated screening tools in recent years [25]. Moreover, Image
processing, analysis, computer vision techniques and high end com-
puting facilities are increasing in prominence in all fields of medical

science, and are especially relevant to modern ophthalmology to
perform automated screening [26]. Philip et al. [19] proposed a
systematic DR screening method. They studied the efficacy of the
manual and automated “disease/no disease” grading system against
the reference standard. Their automated system detected DR and
maculopathy with an accuracy of 99.1% and 97.9% respectively.
Abramoff et al. [27] developed a web-based screening tool for DR in
a primary care population using Java programming language in
Netherlands. The screening protocol contains a brief web-based
questionnaire, visual acuity measurement, and four retinal images.
These images were graded using browser and image processing tools
and the results of the screening can be either not suspect and not
urgent for normal class. In case of DR the result can be suspect and
urgent. Their protocol obtained an interrater agreement (k) of 0.93.
Abràmoff et al. [28] have proposed an evaluation method for auto-
mated DR detection using retinal fundus images in 10,000 diabetics.
Their method obtained an Area Under Curve (AUC) of 0.84. The Early
Treatment Diabetic Retinopathy study Protocol (ETDRS) was devel-
oped in United States to provide an efficient screening and validation
procedures to analyze fundus images [9]. In Thailand, Suthanmmanas
et al. [29] have developed an automatic DR tele-screening system in
collaboration with National Electronic and Computer Technology
Center [30]. This project used the internet technology to develop a
reliable online screening system aimed to facilitate ophthalmologists
of their country. Usher et al. [31] have developed DR screening tool
with 1273 patients using the guidelines given by National Institute for
Clinical Excellence, UK. Their method was able to detect DR with a
sensitivity of 95.10% and specificity of 46.3%. Niemeijer et al. [32] have
developed DR screening system using information fusion methods
with 60,000 retinal images. Their software performed satisfactorily
with an area under Receiver Operating Characteristic (ROC) of 0.881.
Quellec et al. [33] have developed an automated instantaneous DR
screening system using 2739 patients. This system was particularly
used for detection of MA, drusen, and age-related macular degenera-
tion and their software obtained an area under ROC of 0.927. Fleming
et al. [34] have developed a Computer-Aided Diagnosis (CAD) system
to detect blot HEM using 10,846 images obtained from Scottish DR
screening centres: Glasgow, Tayside and Grampian. Their software was
able to provide a sensitivity of 98.60% and a specificity of 95.50%.
Fleming et al. [35] have developed a CAD system to detect MA using
1441 images obtained from Grampian diabetes retinal screening
program. Images containing MA were detected with a sensitivity of
85.4% and specificity of 83.1%. Perumalsamy et al. [36] have developed
Aravind Diabetic Retinopathy Screening 3.0 (ADRES3.0) CAD system
using 210 images and achieved an accuracy of 81.3% by comparing the
performance with ophthalmologists grading.

Table 1
Stages of DR [11,18,1,19].

Types of DR Sub-types Presence of clinical features

NPDR Mild (see Fig. 1b) MA, HEM, hard exudates and ME
Moderate (see Fig. 1c) � Widespread of HEM and \ or MA and \ or CWS

� Venous Beading (VB) or Intra-Retinal Microvascular Abnormalities (IRMA)
Severe (see Fig. 1d) MA, HEM, CWS, VB presents at least two quadrants of the retina. This can be defined using 4–2–1 rule.

� HEM in four quadrants
� VB in two quadrants
Severe IRMA in one quadrant

PDR (see Fig. 1e) Early PDR Pre-retinal HEM
High risk PDR � Vitreous HEM

� Neovascularisation on the disk
� Neovascularisation anywhere on the disk

Advanced PDR � Retinal detachment
� Neovascularisation of the iris

ME (see Fig. 1f) Non-clinically significant ME Presence of edema, retinal thickening or hard exudates, but not at or within 500 μm of the fovea
Clinically significant ME Presence of edema, retinal thickening or hard exudates on or within 500 μm of the fovea

M.R.K. Mookiah et al. / Computers in Biology and Medicine 43 (2013) 2136–21552138

 
 

 



Several authors have reviewed different imaging methods,
algorithms and their applications [37,38,26,39] for DR screening.
Winder et al. [37] have reviewed various segmentation algorithms
of Optic Disk (OD), retinal vasculature, macula, and detection of
DR. Teng et al. [38] discussed retinal image preprocessing, seg-
mentation of anatomical structures and abnormal lesions using
fundus images, image registration, DR analysis and diagnosis
algorithms. Abramoff et al. [39] reviewed different imaging mod-
alities, detection of retinal vessels, abnormal lesions, performance
of fundus image analysis methods, Optic Nerve Head (ONH)
analysis, and Optical Coherence Tomography (OCT) image analysis.
Patton et al. [26] reviewed retinal image preprocessing, registra-
tion, segmentation of land mark points and abnormal lesions,
detection of pathology, measurement of retinal topography and its
applications in telemedicine. However, in this review, we have
discussed the recent methods to locate and segment the retinal
image features namely OD, fovea, macula, blood vessels, hard and
soft exudates, MA, and HEM comprehensively. Also, we have
discussed DME detection, and automated detection of DR stages
using retinal and OCT images respectively. We have also reviewed
current treatment methods available for DME and DR. This paper
has the following five sections: Section 2 briefly explains the
retinal fundus imaging. The computational algorithms for detec-
tion and segmentation of basic anatomical structures and retinal
lesions are explained in Section 3. Several image processing
methods to detect and segment the OD, retinal vasculature, fovea,
macula, hard and soft exudates, MA, HEM and detection of ME are
also described in this section. Section 4 presents a detailed survey
of the computer aided diagnosis of DR using above mentioned
features and the review is finally summarized in Section 5.

2. Retinal imaging

Fundus imaging is a process where 3D structure of retina is
projected onto the 2D plane. The image intensity represents the
amount of reflected quantity of light [39]. The fundus camera
consists of low power microscope and a camera is attached on
the top of microscope. The optical design is similar to indirect
ophthalmoscope, which provides vertical and magnified observa-
tion of inner surface of the eye. The camera views the retinal area
at an angle of 301 to 501, with 2.5 times magnification. It can be
magnified up to 5 times using auxiliary lenses, using wide angle
lens which can be viewed at from an angle of 151 to 1401 [40]. The
examining light is passed through a sequence of lenses followed
by doughnut shaped aperture. Next the light is focused through a
central aperture to create an annulus prior to objective lens of the
camera and retina via cornea. The reflected light rays are focused
through doughnut aperture of the illumination system. The image
forming light rays travel in the direction of the low powered
telescopic eyepiece [41,40]. The pupil is used to pass the illumi-
nating and imaging light rays to the retina. The mirror present in
the examining telescope redirects the light into film or charge
coupled device to capture the image [41,40,39].

Color filters, fluorescein and indocyanine green dyes are used to
perform the fundus imaging. The following modalities/techniques
are used for retinal fundus photography for DR screening [39].

1. Fundus photography (red-free)—the image is captured using the
amount of light reflected at a specific waveband [39].

2. Color fundus photography—the image is captured using the amount
of reflected Red Green Blue (RGB) spectrum and the light sensi-
tivity of the sensor [39].

3. Fluorescein and indocyanine angiography—the image formulated
is based on the amount of emitted photons from fluorescein or
indocyanine dyes, that are injected into the blood stream [39].

The correct adjustments of eyepiece and fundus camera focus-
ing mechanism helps to get sharp fundus image. The eye and
fundus camera must be focused on the reticle and film plane
respectively, to produce a good quality image [41].

3. Detection and extraction of basic structures and
clinical features

The screening system need to detect the anatomical structures
such as fovea, OD and abnormal lesions such as MA, HEM, exudate,
CWS, venous beading, fragile blood vessels and ME. Several
authors have reported various segmentation methods to segment
the anatomical regions and abnormal lesions. They are discussed
briefly in the following sections.

3.1. Localization and segmentation of optic disk

Optic disk is used to diagnose serious eye disease such as
glaucoma [42]. The shape of the OD may appear as circle or ellipse
in the fundus image. The OD is also used as a reference point to
locate the other anatomical structures such as fovea. It is located
roughly 2.5 times of OD diameters from the temporal edge of the
OD [43]. It can be used as a preceding information to determine
the exact place of the macula, which is the central vision of the
eye [43–45]. Moreover, OD localization helps to compute central
retinal artery and vein equivalent [45,46]. The vessel tracking
algorithms employ OD centre as reference point, because the
retinal vessels are originated from the OD centre. The OD localiza-
tion is performed by identifying the centre of OD or by drawing
circle around the OD region. The OD segmentation is defined by
determining the OD boundary using segmentation algorithms.
Hence, detection and extraction of OD is significant [47,37].

3.1.1. Optic disk localization
The identification of OD is important to distinguish it from the

other abnormal lesions. The OD localization methods described in
the literatures are mainly identifying the approximated disk centre or
the disk surrounded by a circle or square shape. In both cases,
localization is difficult due to the presence of strong distractors such
as vessel occlusions, imprecise boundaries, abnormal lesions like
exudates and peripapillary atrophy [37,42]. The distractors normally
have same characteristics of OD namely intensity, color and contrast.
Previously, reported works in the literatures assume that the
peripapillary atrophy region have high gray level variation than
other region [48]. Usually OD is localized by grouping the bright
pixels as a cluster. The algorithms based on intensity variations are
simple, fast and reasonably robust for normal images with less
intensity variations. These algorithms may fail when the OD is
obscured by blood vessels and distracters like exudates, CWS and
bright artefacts [49].

The OD color and shape can be used to identify OD from the
distractors. Sinthanayothin et al. [50] have assumed 80�80 pixel as
the size of OD and intensity variations of the neighboring pixels were
used to localize the OD. The point with highest pixel variance was
treated as OD centre and reported a sensitivity and specificity of 99.1%.
Lowel et al. [45] have used correlation filter to locate the OD. Their
method is able to identify OD in the fundus images which are affected
with gross exudation, strong pallor and severe peripapillary atrophy.
Hoover et al. [51] developed an algorithm using fuzzy convergence to
identify OD after the application of illumination equalization. This
algorithm detects the ONH using brightness characteristics of the
ONH. Their proposed method achieved 89% correct detection. Walter
et al. [52] developed an algorithm to identify OD using pixel bright-
ness, discrete distance function and watershed transform in Hue,
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Saturation, Luminance (HSL) color space. Their algorithm successfully
localized the OD in all 30 images.

The Hough transform was used by many authors to detect OD
(Lowell et al. [45], Charastek et al. [53], Ghafar et al. [54], and
Treigys et al. [55]). The algorithm assumes many circles as edge
points on the retinal image. These points are obtained using Sobel,
Canny, Prewitt, Roberts and Log edge operators. Further, it decides
the potential circle intersection with the OD and finally, the OD
was located by effective voting of the edge points with highest
vote [37].

Principal Component Analysis (PCA) was used for extracting
different features present in the fundus images which includes OD
and vessels (Sanchez et al. [56], Li and Chutatape [57], Sintha-
nayothin et al. [50]). PCA transforms the possibly correlated
variable into uncorrelated variables called as principle compo-
nents. The first principal component represents the maximum
information present in the image. Li and Chutatape [57] extracted
basic features present in the fundus image using PCA. The OD was
correctly located with 99% accuracy.

Lalonde et al. [58] have proposed a pyramidal decomposition
method with Hausdorff distance based template matching. Possi-
ble areas which might contain the OD were first found using
pyramidal decomposition and Haar discrete wavelet transform
with green band of the RGB image. They have reported the
accurate identification of OD without OD boundary in all 40
images. The circular pattern was placed around the detected OD
region. Lowell et al. [45] have showed similar results with less
complex methods than pyramidal decomposition and template-
matching.

Foracchia et al. [59] have described an algorithm by modelling
geometrical directional pattern of the main vessels. Initially, the
vascular skeleton was extracted to measure the diameter, centre
point and direction of the vessel. The main blood vessels modelled
using parabolas were used to identify the centre of the disk
[37,59]. They reported an accuracy of 98% in localizing the OD
(79 out of 81 images) and located OD position using the prior
knowledge obtained from the anatomical structure.

Youssif et al. [60] have proposed an algorithm using vessel
direction. The disk was detected correctly with an accuracy of

98.77% using STructured Analysis of the Retina (STARE) dataset
and 100% using Digital Retinal Images for Vessel Extraction
(DRIVE) dataset by matching the vessel pattern at OD vicinity.

Fleming et al. [61] have proposed an automated OD localization
algorithm using temporal arcade detection and semi-ellipse fit-
ting. The vessel enhancement was performed in green channel
images. The intensity gradient of the vessel wall, vessel width
were used to locate the temporal arcade. Further, semi-elliptical
shape of the arcades was identified using Hough transform. The
local gradient information and direction of the vessels were
combined with circular Hough transform to localize the OD.

The parts of the fundus photographs such as OD, the macula,
and the vascular arch were automatically located by [62]. Their
algorithm detected the OD with an accuracy of 98.4% and 94% for
normal and DR images respectively [62].

3.1.2. Optic disk segmentation
Optic disk boundary extraction is commonly carried out by

subsequent localization of the OD. Identifying the boundary of the
OD is an important problem.

OD segmentation using active contours or snake have been
experimented by many authors (Lowell et al. [45], Mendels et al.
[63,64], Joshi et al. [42]). Primarily, Kass et al. [65] developed an
active contour model or snakes that expand or shrink based on
image and contour properties. The internal and external energy
function controls the behavior of the parametric active contours. The
active contour model is susceptible to the initialization and also
limiting the search space, which results in enhanced final contour.
Further, Xu and Prince [66] have proposed Gradient Vector Flow
(GVF) whose curves can be initiated by the contour points. It
converges or expands based on internal and external forces present
in the image. GVF is one of the external forces for traditional snake
that has ability to progress into boundary concavities by taking into
consideration the direction as well as magnitude of gradients [66].
The snake initialized around the OD and GVF can be used to fit the
contour with the rim of the disk [63,64].

A modified Active Shape Model (ASM) was developed [57] to
locate the OD boundary in fundus images. ASM involves building

Fig. 2. (a) Normal; (b) CWNO processing result; (c) Thresholding result; (d) OD mask; (e) Isolated OD.
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of Point Distribution Model (PDM) using sample data and recur-
rent searching to locate occurrence of disk like shapes in the
fundus image. Further, PCA was performed to represent the total
variance of the training shapes. This algorithm yielded an accuracy
of 94% [57].

Attanassov Intuitionistic Fuzzy Histon (A-IFSH) method [67,68]
was used to segment OD. The contour of OD was segmented using
two-step approach. During preprocessing stage Contrast Limited
Adaptive Histogram Equalization (CLAHE) was performed on the
original image (Fig. 2a) [69] and blood vessels were removed using
morphological closing followed by segmentation using 2D matched
filter [70]. The Column Wise Neighborhood Operation (CWNO) was
applied to remove background leaving only the border and OD
(Fig. 2b). Thresholding (T¼0.5) was carried out (Fig. 2c) to get the
OD edge. The circular mask with 150 pixel radius (Fig. 2d) was
generated using the OD edge information. This mask was subtracted
from image (Fig. 2a) to isolate the OD region (Fig. 2e).

Further, pixel hesitancy was modelled by A-IFSH method. To
segment the OD, roughness index (Fig. 3a–c) was computed by
correlating the histogram and A-IFSH. The region between two
valley points represents the OD region. Using this information OD
was segmented (Fig. 3d, e) and their algorithm detected the OD in
all 100 images correctly. Fig. 2a shows the original image; Fig. 3d
indicates segmented OD using A-IFSH algorithm and Fig. 3e
depicts the segmented OD subtracted from Fig. 2a. Their algorithm
yielded an accuracy of 93.4% and its performance was compared
with Otsu and GVF snake methods.

Lee et al. [71] have proposed an OD segmentation method in
two stages. Initially, the blood vessels were removed which
obscure the OD. Next, the edge points of the disk boundary were
detected to extract the disk. Their algorithm extracted the disk
with an accuracy of 92% [71].

Walter and Klein [52] have described the disk segmentation
using watershed transform. They have segmented the contour of
the OD with minor distortion due to obscured vessels and low
contrast in 27 out of 30 images. The OD localization and segmen-
tation methods are summarized in Table 2.

3.2. Segmentation of retinal vasculature

The accurate segmentation and measurement of blood vessels
is important to diagnose systemic and ophthalmologic conditions.
Length, diameter, path, changes in vessels during progression of
DR are significant diagnostic indices of the disease. The vessel
segmentation methods can be divided in to five groups: vessel
tracking, mathematical morphology, matched filtering, model-
based thresholding or deformable models, and supervised pixel
classification methods. They are briefly discussed below.

Vessel tracking methods: (Tolias et al. [72], Englmeier et al. [73],
Vlachos and Dermatas [74], and Nayebifar et al. [75]) tried to obtain
the vascular structure by identifying vessel centre lines. The blood
vessel searching was initiated by set of seed points. Vessels were
traced by local information of the pixels that are close to the one
currently under assessment. Vessel tracking methods rely on the seed
point selection, which decides the vessel segmentation accuracy.

Mathematical morphology: Zana and Klein [76] used mathema-
tical morphology to segment blood vessels. The known vasculature
shape features namely piecewise and connections were used to
select the structuring element for morphological filtering. Their
algorithm is a combination of mathematical morphology and
cross-curvature evaluation to segment blood vessels in retinal
images. The morphological filters simplify the image so that the
cross-curvature computation is easy and also the vessel segments
are linearly coherent. In this method selection of proper structur-
ing element is important to obtain better segmentation.

Matched filtering: The 2D-matched filter was used by several
authors to detect retinal vasculature (Chaudhuri et al. [70], Al-Rawi
and Karajeh [77], Osareh and Shadgar [78], Hoover et al. [79], Mookiah
et al. [80], Gangand et al. [81], Zhang et al. [82], and Zhang et al. [83]).
The gray level profile of the blood vessel was modelled using Gaussian
and two dimensional Gabor filters, which provides 12 templates to
extract vessels [70] from the fundus image. Li et al. [84] used a
piecewise Gaussian model for blood vessel segmentation and Maha-
lanobis distance classifier for final segmentation. Gangand et al. [81]
measured the vessel diameter using matched filter, which showed

Fig. 3. (a), (b) and (c) Roughness index plotted against intensity; (d) Extracted OD; (e) OD subtracted from (Fig. 2a).
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that the inclusion of the width measurement improved its perfor-
mance and resulted in better detection. Zhang et al. [83] used
truncated Gaussian function to modify the matched filter. The back-
ground subtraction was achieved by matched filter response and
thresholding. This method initially uses Gaussian filter and double
sided thresholding to improve image quality and extract different
features present in the image. It significantly reduced the false
detection. Al-Rawi et al. [77] have improved matched filter response
by tuning the filter parameters using Genetic Algorithm (GA). The

matched filtering was used to segment [80] normal, NPDR and PDR
images and its results are shown in Fig. 4d, e, f respectively.

Wu et al. [85] have proposed adaptive blood vessel detection
method for large and small blood vessels. Initially, the vessels were
enhanced using adaptive histogram equalization. Further, the
vessels were modelled using standard deviation of Gabor filter
response at different orientations. Finally, three major operations
such as forward detection, backward verification and bifurcation
detection were performed to segment out the vessels.

Fig. 4. (a) Normal; (b) Moderate NPDR; (c) Severe NPDR; (d) Segmented blood vessels from (a); (e) Segmented blood vessels from (b); (f) Segmented blood vessels from (c).

Table 2
Performance measures of OD localization and segmentation methods.

Authors Methods (dataset size) Salient feature Performance
measure

Optic disk localization
Sinthanayothin et al. [50] Highest average variation (112) The adjacent pixels variance used

for localization
Sensitivity-99.1%
Specificity-99.1%

Walter and Klein [52] Pixel brightness and discrete distance function (30) Area threshold Accuracy-100%
Lalonde et al. [58] Pyramidal decomposition with Hausdorff-based

template matching (40)
Dempster-Shafer theory Accuracy-100%

Hoover et al. [51] Fuzzy convergence (81) Identifies vessel without strong convergence Accuracy-89%
Foracchia et al. [59] Modelling the direction of main vessels (81) New model to identify vessel direction Accuracy-98%
Li and Chutatape [57] PCA (89) PCA to detect the OD Accuracy-99%
Fleming et al. [61] Image gradient and Hough transform (1056) Temporal arcade direction Accuracy-98.4%
Niemeijer et al. [62] 2D Single point-distribution-model (500) Cost function and minimization strategy Accuracy-98.4%
Treigys et al. [55] Canny edge detector and Hough transform (54) Non-static thresholding Accuracy-98%
Youssif et al. [60] 2D Gaussian matched filter and morphological operations (81) Directional model of vessels Accuracy-98.77%

Optic disk segmentation
Mendels [63] Morphological operations and active contours (9) Hierarchical adaptive mesh structure generation Accuracy-100%
Walter and Klein [52] Watershed transform (30) Area threshold Accuracy-90%
Li and Chutatape [57] Modified active shape model (89) Detects weak edges Accuracy-94%
Lowel et al. [45] Deformable model based segmentation algorithm (90) Use of energy function and Quasi-Newton

optimization strategy
Accuracy-83%

Charastek et al. [53] Active contour model and Hough transform (159) Can judge the image quality and distinguish
the image with large and small ONH

Accuracy-72.3%

Lee et al. [71] Morphological operations and spline interpolation (23) Can detect oval, ellipse and circle OD contours Accuracy-92%
Joshi et al. [42] C–V model (138) Model works without imposing any shape constraint F-score-0.97
Mookiah et al. [67,68] A-IFSH (100) Uses fuzzy image representation Accuracy-93.4%
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This method has following advantages and limitations: (i) specular
bright reflex of the vessels can be eliminated by this method; (ii) at
least 4–6 templates are needed to have a reasonably good enhance-
ment of vessel segments; (iii) selection of proper thresholding scheme
to distinguish enhanced linear segments of vessel and remaining part
of the image; (iv) detected blood vessels have good edge localization;
(v) applicable only to stationary processes.

Niemeijer et al. [86] have compared five different blood vessel
detection methods such as matched filter, Scale-space analysis and
region growing, mathematical morphology and curvature estima-
tion, verification based local thresholding and pixel classification
using DRIVE database. They reported that pixel classification
method performed better than other methods.

Model-based thresholding and deformable models: Multi-concavity
modelling method [87] was used to detect blood vessels. The line-
shape concavity measure was proposed to remove dark lesions and
locally normalized concavity measure was used to remove noise.
These concavity measures were combined together to detect vessels
in retinal images. Goatman et al. [88] have proposed a methodology
to detect abnormal vessels in the OD region. The empirically derived
threshold was applied for segmentation of the vessels, which
produced many disjoint vessels. To overcome this problem,
watershed transform was applied [52,89]. To avoid over segmenta-
tion, two dimensional Gaussian filter was applied on inverted image.
Martinez-Perez et al. [90] proposed a method using derivative
features of the image and two-stage region growing to extract
vessels from red-free and fluorescein photographs. The active con-
tour model or snake [91,92] was used to detect blood vessels. The
tram-line algorithm [91] extracted a pixel map consisting of sparse
lines roughly along vessel centres. This map was further processed to
produce a vascular segment map, each section identifying a precise
centreline of vessel segment and diameter along the length of the
vessel. Ribbon of Twins method [92] was initialized using morpho-
logical filters to identify the centre line of the vessels. Once the vessel
segments were identified, the network topology was determined
using an implicit neural cost function to resolve junction configura-
tions. The vessel detection accuracy of the model-based algorithms
mainly depends on the selection of the best model parameter.

Supervised pixel classification: The supervised ridge-based vessel
detection [93] assumes that the vessels are elongated structures.
Initially, the ridges were extracted and the ridge pixels were grouped
into patches. Features were computed from each pixel and sequential
forward selection was used to identify the best features. Feature
vectors (pixels) were classified using k-Nearest Neighbor algorithm
(k-NN) into vessel or non-vessel pixels. Soares et al. [94] developed a
vessel detection method using 2-D Gabor wavelet and Gaussian
Mixture Model (GMM). The Gabor wavelet can be tuned to specific
frequency to filter noise and enhance vessel in single step. The gray
values and filter response at different angles and scales were used as
features. Marin et al. [95] proposed an algorithm to detect vessels
using gray values and moment invariant features. The Neural Net-
work (NN) was used to detect vessel and non-vessel pixels using the
extracted features. Ricci and Pefetti [96] have used Support Vector
Machine (SVM) to classify vessel or non-vessel pixels. The features
were extracted using two orthogonal line detectors. Finally, Rossant
et al. [97] have proposed unsupervised vessel extraction algorithm
using filtering and path-opening. The noise and small walls which
may affect the vessel segmentation were suppressed by Gaussian
filter. Before applying path-opening filter, morphological operations
and adaptive filtering were used to enhance the vessels in the
inverted image. The path opening filter was applied to retain the
elongated bright structures whose length was larger than 40 pixels.
Finally, classification and fusion are applied to reconstruct the
segmented blood vessels. The pixel classification performance can
be maximized by tuning the classifier parameters. The summary of
the retinal vascular segmentation methods is presented in Table 3.

3.3. Localization of the macula and fovea

The macula may appear as oval-shaped yellow pigmented
region near centre of the retina around the fovea (Fig. 1a). It is
small and responsible for central and high resolution vision. The
visual cells located in the fovea are packed tightly, resulting in
optimal sharpness of vision [98]. The macula does not have blood
vessels to interfere the passage of light striking the foveal cone
mosaic [99]. The macula localization methods can be divided in to
two groups: hybrid approach-based and positional constraints-
based methods. The macula is a dark and circular region with low
contrast and distracted slightly by exudates or HEM. The fovea is
placed around 2–2.5 times of OD diameter to the temporal edge of
OD [50,57,62,100–102].

Hybrid approach-based: Sinthanayothin et al. [50] have proposed
an algorithm to locate fovea using intensity correlation. Initially,
fovea is subjected to intensity correlation and the peak was selected
from Hue Saturation Intensity (HSI) transformation. This peak point
location is a dark region and considered as fovea [50]. Their
algorithm failed when the fovea is not centred. A polar fundus
coordinate system was developed using foveal location [57]. The
fovea is localized accurately using its appearance (dark) and its
geometrical relation to other structures [57]. Niemeijer et al. [62]
have developed an algorithm to locate macula using single point
distribution model. Their model consists of global and local cues, to
locate the model points. These cues were derived from the relative
physical position and width of the vessel model and structure. This
method was able to localize macula in both eyes with OD and macula
centred images.

Positional constraints-based: The positional constraints [50,57,
62,100–102,61] were used to identify the macula and determines
the position, and variation in the OD size. The macula and fovea
detection was achieved using the physical position of other parts of
the image. The primary approach of this algorithm [103] determines
the horizontal retinal ridge passing through the optic nerve and fovea,
which separates the upper and lower retinal parts. Further, the foveal
region was estimated using fixed distance of 2.5 OD diameters from
the central optic nerve coordinate [50,57,62,100–102,61]. To determine
the retinal raphe, authors have applied a parabolic model. This method
is robust to wide variety of pathologies. The summary of the macula
and fovea detection methods is presented in Table 4.

3.4. Segmentation of hard and soft exudates

This section summarizes literatures of exudates segmentation.
Exudates are prime markers of DR, since it causes retinal edema
and subsequently loss of vision. Exudates segmentation methods
can be divided in to three groups: clustering-based, mathematical
morphology and thresholding/region growing-based, and pixel
classification-based methods. They are briefly explained below.

Clustering-based: Several authors [104–106] have used FCM cluster-
ing for exudates segmentation. This algorithm considers pixels with
diverse classes and varying degrees of membership for segmentation
[107,108]. Osareh et al. [104] have corrected color and contrast during
preprocessing. The preprocessed color images were segmented using
FCM and the clustered regions were classified to exudates and non-
exudates regions using NN. The GA was used to select best features
from FCM clustered regions [105]. Further, the optimum features were
fed to the NN to identify exudates and non-exudates regions. This
method tackles the varying retinal color, which may be due to skin
pigmentation or iris color. The exudates were detected from poor
quality images, which were taken from eyes without dilation using
FCM [106]. Initially, preprocessing was performed to improve the
contrast and four intensity based features extracted for clustering. The
same group reported exudates segmentation using naive Bayes
classifier [109]. Hsu et al. [25] have developed an automated exudate
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segmentation method using clustering and domain knowledge. Initi-
ally, median filtering was used to compute the intensity difference
map. Next, dynamic clustering was applied to group the lesion pixels.
The contrast information of the lesions such as hard exudates, CWS
and drusen were used to differentiate the lesion. Hard exudates have
higher intensity than other two lesions, this information was used to
segment out exudates. The limitation of these techniques is to identify
significant clusters which contribute to the segmentation of exudates.

Mathematical morphology and thresholding/region growing-
based: Mathematical morphology [110–112] and thresholding/
region growing techniques [113,80] were used by many authors
to segment exudates. Sopharak et al. [110] proposed an exudates
detection method for poor quality images obtained from eyes

without pupil dilation using optimally adjusted morphological
operators. Walter et al. [111] identified exudates using gray level
variations of green band images. After initial identification, their
boundaries were identified using morphological reconstruction
methods. Their algorithm did not discriminate exudates from
CWS. Sanchez et al. [112] have applied Walter et al. [111]
segmentation method. Initially, the green band image was pre-
processed and the histogram of the processed image was modelled
using GMM. Further, variable threshold was used to extract the
exudates using the knowledge obtained from GMM. Sintha-
nayothin et al. [113] applied a Recursive Region-Growing Techni-
que (RRGT) on a 10�10 window using selected threshold values
in gray scale images. Adaptive local contrast enhancement was

Table 4
Performance measures of macula detection methods.

Authors Methods (dataset size) Salient feature Performance measure

Localization of the macula and fovea
Sinthanayothin et al. [50] Intensity correlation (112) Correlation coefficient is independent of image contrast Sensitivity-80.40%,

specificity-99.10%
Li and Chutatape [57] Pixel intensity and geometrical relation (89) Better fovea detection due to fundus coordinate system Accuracy-100%
Fleming et al. [61] 2D Gaussian and region growing (1056) Main vessel arcade was used to find the fovea Accuracy-96.5%
Niemeijer et al. [62] 2D Single point-distribution-model (500) Better macula detection due to cost function and

minimization strategy
Accuracy-94.40%

Tobin et al. [103] Positional constraints and parabolic model (345) Performs well with erroneous optic nerve coordinate detection Accuracy-92.50%

Table 3
Performance measures of retinal vasculature segmentation methods.

Authors Methods (dataset size) Salient feature Performance measure

Segmentation of retinal vasculature
Tolias et al. [72] Fuzzy C-Means (FCM) (3) No initialization and vessel profile modeling problems Detection ratio-79.41%
Hoover et al. [79] Matched filter and piecewise thresholding (5) Uses local and region-based properties Sensitivity-80%, specificity-90%
Gangand et al. [81] Amplitude-modified second-order Gaussian

filter (48)
Vessel width measurement is used Accuracy-85.50%

Hunter et al. [91] Tram-line algorithm (20) Robust against edge distractors Accuracy-57.20%
Li et al. [84] Piecewise Gaussian model and

Mahalanobis distance classifier (505)
Central reflex characteristics Success rate for arteries-

82.46% veins-89.03%
Englmeier et al.

[73]
Blood vessel pixel brightness (213) Performs well with discontinuous edge and noisy

regions
Accuracy-78.40%(Artery)
Accuracy-66.50%(Veins)

Staal et al. [93] Ridge detection and k-NN classifier (40) Robust with primitive based method and leave-one-
out feature selection

Area under ROC-0.952

Soares et al. [94] Gabor wavelet transform and
Bayesian classifier (60)

Gabor wavelet segments vessel with different
diameters

Area under ROC-0.9614

Wu et al. [85] Gabor filter response (20) Small and large vessel can be detected True Positive Rate (TPR)-84.3% False Positive
Rate (FPR)-3.9%

Al-Rawi and
Karajeh [77]

Two-dimensional matched filter and genetic
algorithm (40)

Able to tune matched filter
parameters of other medical images

Accuracy-94.22%

Martinez-Perez
et al. [90]

Multi-scale feature extraction, Geometric
properties of blood vessels and
multipass region growing (114)

Detect vessels with different widths TPR-75.05%(STARE), FPR-4.38%(STARE),
TPR-72.46%(DRIVE), FPR-3.45%(DRIVE)

Ricci and Perfetti
[96]

Line operators and SVM (60) Robust to noise and other artefacts Accuracy using DRIVE-95.95%,
accuracy using STARE-96.46%

Al-Diri et al. [92] Ribbon of Twins active contour model (40) Accurately locate vessel edges and closely parallel fine
vessels

Sensitivity using DRIVE-72.82%,
sensitivity using STARE-75.21%

Osareh and
Shadgar [78]

Gabor filters and SVM (90) Suitable when the system needs to be adapted for
new datasets

Sensitivity-96.50%, specificity-97.10%

Lam et al. [87] Multi-concavity modelling (60) Can identify vessels with bright and dark retinal
lesions

Accuracy using DRIVE-94.72%,
accuracy using STARE-95.67%

Vlachos and
Dermatas [74]

Multi-scale line-tracking (40) Robust with salt/pepper noise and low signal to noise
ratio

Sensitivity-74.70%, specificity-95.50%,
accuracy-92.90%

Goatman et al. [88] Thresholding and watershed transform (109) Can detect new vessels at the OD Sensitivity-84.20%, specificity-85.90%
Marin et al. [95] Gray level and moment invariant

based features and NN (60)
Invariant to scale and work with different resolution
images

Accuracy using DRIVE-94.52%,
accuracy using STARE-95.26%

Rossant et al. [97] Top-hat transform and path-opening
morphological filter (40)

Unsupervised blood vessel segmentation Sensitivity-70.31%, specificity-
97.88%, accuracy-94.33%
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used to enhance the image quality. This method localizes other
anatomical regions such as OD, blood vessels and fovea.

Fleming et al. [114] have proposed a multi-scale morphology
method to locate exudates in retinal fundus images. Their method
uses median and Gaussian filtering of green channel image to correct
the shading and contrast variations. Further, multiple linear structur-
ing element opened with a single disk shaped structuring element was
used to detect the exudates. Then, watershed retinal region growing
was applied to isolate the exudates from vessels and other regions.
Finally, the detected regions were classified into exudates, drusen and
background using SVM classifier.

Welfer et al. [115] have proposed an automated exudate detection
method based on mathematical morphology. First the images were
subjected to contrast enhancement in Luv color space. Then a set of
morphological operations such as regional minima detection, mor-
phological reconstruction and H-maxima transform were performed
to detect exudates. Their method was evaluated using DIAbetic
RETinopathy DataBase Calibration level 1 (DIARETDB1) database.

Mookiah et al. [80] have proposed exudates segmentation using
color, shape and morphological processing. The algorithm assumes
exudates to have higher contrast than OD. The OD was segmented
and removed using A-IFSH algorithm [68]. First, circumferential
retinal region was removed by mathematical morphology and fixed
threshold of 0.35 was used to extract exudate (Fig. 5b). However, the
performance of the above mentioned methods mainly relies on
selection of proper structuring element and threshold value which
separates the exudates and background regions.

Pixel classification-based: Several authors [116–118] have used
machine learning methods to classify exudates and non-exudates
pixels. Gardner et al. [116] have used NN to segment exudates. The
exudates were identified using gray scale values of fundus images. The
mask of 20�20 region was used to isolate exudates. Sanchez et al.
[118] have identified exudates in color retinal images based on Fisher's
Linear Discriminant Analysis (FLDA). Before doing this, authors have
performed color normalization and contrast enhancement in modified
RGBmodel. Hard exudates were mainly recognized by its color. Hence,
the feature space was defined using color. The selection of color model
is a complex task and hence authors have used quantitative metric to
identify the best color space. It involves extensive computation during
training and classification. Moreover, the performance can be max-
imized by tuning the classifier parameters.

Niemeijer et al. [119] have proposed an automated detection
and differentiation of exudates, CWS and drusen using pixel
classification based on machine learning algorithm. Initially, pixels
were classified and lesion probability map was generated which
shows that the pixels belongs to bright lesions. Next, high prob-
ability pixels were grouped into probable lesion pixel clusters.
Finally, the likelihood of the pixel clusters were computed to

discriminate exudates, CWS and drusen. The summary of the hard
and soft exudates segmentation methods is presented in Table 5.

3.5. Segmentation of microaneurysms and hemorrhages

Earlier, automated retinal lesion detection was conducted using
fluorescein and red-free photographs [120]. Preliminary global
image processing methods were applied for automated detection.
Many researchers have investigated the extraction of MA and HEM
from the fundus images by thresholding after removing the parts
of the retina namely OD, fovea, macula, and blood vessel. Math-
ematical morphology was applied to the thresholded image to
discriminate MA and other features, like small vessel sections. The
MA segmentation methods can be divided in to four groups:
mathematical morphology-based, region growing-based, wave-
let-based, and hybrid approach-based methods. The HEM seg-
mentation is mainly based on mathematical morphology and pixel
classification. They are briefly explained below.

Mathematical morphology-based: Walter et al. [121] have pro-
posed four step algorithm for the detection of MA. In preproces-
sing stage polynomial contrast enhancement was applied on green
channel image. The top-hat transformation was applied on the
diameter closed image to locate MA. Global thresholding was
applied to segment MA, fifteen shape and color features were used
to distinguish real MA from other lesions using k-NN, Gaussian
and kernel density estimation based classifiers. This algorithm
was able to discriminate possible MA from vessel-like patterns.
Hatanaka et al. [122] have developed an automated HEM detection
method using brightness correction. Initially, the brightness was
adjusted in HSV space. Further, the fundus image was smoothed
using 3�3 mask. Further, the blood vessels and HEM were
segmented using thresholding.

Region growing-based: Fleming et al. [35] have described con-
trast normalization, watershed and region growing methods to
segment out MA in retinal photography. The images were con-
volved with 2D Gaussian after median filtering. The contrast was
normalized using its standard deviation. Region growing was
performed on the watershed gradient image to grow the candidate
regions. The k-NN classifier was used to detect MA using nine
extracted features from candidate regions. Adapting this method
to HEM segmentation requires the estimation of other lesion
boundaries. Sinthanayothin et al. [113] have used RRGT and
adaptive intensity thresholding combined with a moat operator
to detect MA. The moat operator enhances the edges obtained by
the contrast of the lesions.

Wavelet-based: Quellec et al. [123] have described a MA segmenta-
tion algorithm in retinal photographs using optimal wavelet transform.
The sub-bands of wavelet transformed images were locally matched

Fig. 5. (a) Severe NPDR; (b) Segmented exudates from (a).
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with the lesion template to detect MA. This algorithm detects MA
without extracting and classifying the candidates. Hansgen et al. [124]
have studied the use of wavelet in fundus image compression and its
effects on the automated MA segmentation. They have employed
(i) Discrete Wavelet Transform (DWT) (ii) Industry standard Joint
Photographic Experts Group (JPEG) techniques. Further, the uncom-
pressed images were experimented to segment MA. JPEG compression
was used to detect the MA [124] with higher accuracy.

Hybrid approach-based: Spencer et al. [125] have developed an
algorithm based on mathematical morphology and matched filter
to segment MA using fluorescein angiograms. Initially, the mor-
phological operations such as erosion followed by dilation was
performed on shade-corrected image. An 11�11 Gaussian shape
was correlated with an image after top-hat transformation.
Further, matched-filtering was applied followed by region growing
to segment out MA. Frame et al. [120] applied Spencer et al. [125]
method to detect MA after correcting illumination variations. The
classification methods viz., Linear Discriminant Analysis (LDA), NN
and Rule based analysis were used to classify the objects like MA.
Using their method it is difficult to distinguish small MA with
background fluorescence patches. Cree et al. [126,127] have
refined the technique proposed by Spencer et al. [125] using
alternative region growing and classification algorithms in fluor-
escenin images by adding four intensity-based measurements,
which were scaled by contrast of the image. Their technique
was able to discriminate MA from micro-vascular abnormalities.
Niemeijer et al. [117] have presented a hybrid red lesion segmen-
tation algorithm using Spencer et al. [125] and Frame et al. [120]
methods. Initially, the red lesion candidates were detected using
pixel classification [125]. After applying this method, vessels and
red lesions were isolated from the background. Further, the red
lesions were extracted after discarding the connected vasculature.
In addition to the features of earlier methods [125,120] additional
features were used to identify red lesions using k-NN classifier.
Usher et al. [31] used NN to detect MA. Initially, preprocessing

performed by locally adaptive contrast enhancement and segmen-
tation of OD and vessels, HEM/MA were performed using RRGT
and adaptive intensity thresholding combined with moat operator
[113]. Features such as size, shape, hue and intensity were derived
to detect MA using Artificial Neural Network (ANN). The specific
detection of sight-threatening maculopathy was also achieved
using this algorithm. Zhang et al. [128] have proposed an approach
using Multi-Scale Correlation Filtering (MSCF) and variable
threshold within fluorescein angiography. In the course level, the
authors detected MA using MSCF. The correlation coefficient of the
pixels were extracted using sliding window Gaussian kernels with
different scales. In the fine level, 31 features were extracted
from the detected MA, to manually classify true and false MA
using fixed threshold value. This algorithmworked independent of
image condition and resolution. Hence tuning of parameters are
not needed to achieve the improvement. Streeter and Cree [129]
have proposed a MA detection approach using shading correction,
top-hat transform, matched filter and region growing to enhance
small round features after background intensity correction.
Further, LDA was used to detect true MA which can classify only
MA of greater than ten pixels in size. Lazar and Hajdu [130] have
proposed an automated MA detection method using directional
cross-section profile centred on the local maximum of the image
pixels. Peak detection was applied on the profiles to compute size,
shape, and height features. Finally statistically significant features
were fed to naive Bayes classifier to identify the MA. The proposed
method was able to distinguish blood vessel bifurcation and
crossings fromMA. Larsen et al. [131] have proposed an automated
MA and HEM detection method using RetinaLyze System. The
shape and size of the lesions were used for classification. Their
system was unable to distinguish the two lesions.

Mathematical morphology-based and pixel classification-based: Flem-
ing et al. [34] have used multiscale and morphological techniques to
detect HEM During preprocessing the changes in image intensity and
contrast was corrected using median filtering and histogram

Table 5
Performance measures of exudates segmentation methods.

Authors Methods (dataset size) Salient feature Performance measure

Segmentation of hard and soft exudates
Gardner [116] NN (301) Statistical threshold tuning Sensitivity-93.10%
Hsu et al. [25] Clustering and contrast

information (543)
Domain knowledge Sensitivity-100%, specificity-74%

Sinthanayothin [113] RRGT and moat operator (30) Use of moat operator Sensitivity-88.50%, specificity-99.70%
Walter et al. [111] Pixel variations (30) Accuracy depends on minimal variation

value and contrast
Sensitivity-92.80%, predictive value-92.40%

Osareh et al. [104] FCM (142) Locate exudates at pixel resolution Sensitivity-93%, specificity-94.10%
Sanchez et al. [56] Color and statistical

classification (80)
Threshold selection based mixture model Sensitivity-79.62%

Fleming et al. [114] SVM (13219) Drusen also can be detected Sensitivity-95%, specificity-84.6%
Sanchez [118] Color and FLDA (58) User initialization is not required and robust Sensitivity-100%, specificity-100%,

accuracy-100%
Niemeijer et al. [119] Pixel classification (300) Detects and differentiates exudates,

CWS and drusen
Exudate detection: sensitivity-95%,
specificity-86%,
CWS detection: sensitivity-70%,
specificity-93%, Drusen detection:
sensitivity-77%, specificity-88%

Sopharak [110] Optimally adjusted morphological
operators (60)

Works well even with poor computing system Sensitivity-80%, specificity-99.50%

Sopharak [109] Naive Bayes classifier (39) Works well even with non-dilated fundus images Sensitivity-93.38%, specificity-98.14%,
accuracy-98.05%

Osareh et al. [105] FCM, shape, NN (300) Distinguish CWS and exudates using edge
strength and texture

Sensitivity-93.50%, specificity-92.10%

Sanchez et al. [112] Histogram modelling and dynamic
thresholding (20)

Uses minimum distance discriminant criteria Sensitivity-100%, specificity-90%

Sopharak [106] FCM (40) Quantifies pixel similarity using distance
between pixels and cluster centre

Sensitivity-92.18%, specificity-91.52%

Welfer et al. [115] Mathematical morphology (88) Course and fine exudate detection Sensitivity-70.48%, specificity-98.84%
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equalization. Further, morphological operations were performed to
extract HEM. The algorithm proposed in [35] was used to detect large
abnormal regions in different scales by iteratively applying various
structuring elements. Two stages of region growing were performed
[35] to detect the lesions. Using this approach distinguishing HEM
from smaller dark lesions was difficult. Zhang and Chutatape [132]
have developed an algorithm to segment out HEM using SVM. During
preprocessing color normalization was performed to find pixel evi-
dence value. Further, two dimensional PCA was used to extract the
features. These features were fed to SVM to segment out HEM.
Rotation and illuminance invariance were employed to get virtual
support vectors, which improved the classification accuracy. Hipwell
et al. [133] have developed an automated MA technique in digital red-
free fundus images. Initially, the images were subjected to shading
correction to remove changes in the illumination. Next, vessels and
HEM were removed by excluding all structures greater than MA.
Finally, the objects having size and shape of MA were retained for
classification. Antal and Hajdu [134] have developed an ensemble
based MA detection algorithm. The ensemble creation was performed
by preprocessing and candidate extraction. Euclidean distance was
computed between the pairs for the ensemble having more pairs. The
candidates were grouped together, if their distance is less than that of
predefined constant. These ensembles were compared with the
ground truth to detect MA. Gardner et al. [116] used NN to segment
MA and/or HEM.

The results of first international MA detection competition were
discussed in [135]. The results of five different methods such as
Valladolid [136], Waikato [137], Latim [123], Ok Medical [138], and
Fujita Lab [139] presented by five different teams of researchers were
discussed. They used same dataset to evaluate their algorithms, 50
training and 50 test images. Valladolid [136] used green channel
image and normalized the image by subtracting an median filter
estimate from the background. The MA detection was performed
using GMM and thresholding. Waikato [137] MA detector used green
plane images for MA segmentation. Initially, the noise was removed
using median filtering. Further, top-hat transform was used to
identify the vessels and subsequently it was removed. Finally,
matched filtering was used to detect the MA and region growing
was used to segment the MA. Latim [123] MA detector assumes that
MA is at a particular scale and can be modelled using 2D Gaussian
functions. Further, it uses template matching in the wavelet domain
to identify the MA candidates. Ok Medical [138] MA detection
method uses a multiscale Bayesian correlation filtering. The prob-
abilistic model of MA and its surroundings were modelled using
Gaussian filterbank. Further, correlation measure was obtained by
matching the filterbank output with the new image. Finally, the MA
was segmented by thresholding correlation filter output. Fujita Lab
[139] method starts with brightness correction, gamma correction
and contrast enhancement. Initially, MA detection was performed
using a modified double ring filter, which provides MA along with
blood vessels. Further, the vessels were removed using original
double ring filter. The results of these five MA detection methods
were evaluated using ROC. Ok Medical [138] outperformed all other
methods and human expert. Their method obtained an area under
ROC of 0.89. The summary of the MA and HEM segmentation
methods is presented in Table 6.

3.6. Detection of macular edema

DME is a complication of DR particularly in aged Type-2
diabetes patients [21]. It causes loss of visual acuity and also
affects the central vision of the diabetes patients having early sign
of DR [140]. It is mainly classified into two types viz., Clinically
Significant Macular Edema (CSME) and Non Clinically Significant
Macular Edema (NCSME). CSME occurs if there is thickening at the
center of macula, or presence of hard exudates within 500 μm

of radius around macula [21]. DME can be clinically evaluated
using stereoscopic fundus photographs and slit-lamp fundus
stereo biomicroscopy [140]. The results are subjective and mainly
depends on experience of the clinicians. Very few [16,141] meth-
ods are available to automatically diagnose DME. However, several
authors have analyzed retinal thickening using OCT and proved
that OCT imaging is a precise and reliable method to evaluate
macular edema [140,142].

Giancardo et al. [16] have proposed an exudate-based DME
detection method using retinal fundus images. During preproces-
sing the green plane image was subjected to morphological
reconstruction for contrast normalization. Further, the exudate
candidate was selected using hard threshold method. The 8-
neighborhood connected component analysis was performed on
these exudate candidates. Next, exudate edge values were com-
pared with the Kirsch's edges of non-exudate structures. The
features based on color, and wavelet were extracted. These
features were fed to the k-NN, Naive Bayes, SVM and Random
forests classifiers to identify the DME. They evaluated their
algorithm with MESSIDOR dataset. Their algorithm obtained an
area under ROC of 0.94 using SVM classifier.

Phillips et al. [141] have developed fundus imaging and proces-
sing system to quantify ME, exudates, and MA in DR. Initially, color
slides or Fluorescein Angiography (FA) negatives were used for
imaging. The square shape mask was used to quantify the fluores-
cence intensity gradient in the foveal region. Further, exudates were
detected around the macular area using illumination correction,
contrast enhancement and thresholding. MA were segmented and
counted around the macular region using shade correction, matched
filtering and shape operators. The accuracy of the macular leakage
techniques was approximately 97%.

Nayak et al. [143] have developed an automated classification
strategy to discriminate normal, CSME and NCSME fundus images
using exudate-based features and NN. During preprocessing the color
normalization was performed using histogram specification and
contrast enhancement using locally adaptive transformation. The
OD was recognized using variance of intensity of adjacent pixels. The
positional constraint and intensity-hue-saturation transformation
was used to locate the fovea. Morphological operations and thresh-
olding was performed to detect the exudates. The location of
exudates and area of exudates in the foveola, fovea, parafovea and
perifovea regions were extracted. These features were fed to the NN
model to discriminate normal, CSME and NCSME. Their method
showed a detection sensitivity of 95.4% and specificity of 100%.

Sadda et al. [144] have compared the performance of OCT grid
scanning protocol and biomicroscopic examination for the detection
of CSME. Forty DME patients underwent OCT using both Macular
Grid5 scanning protocol and Fast Macular Thickness Map. An
automated image processing algorithm was developed based on
ETDRS protocol for the Macular Grid5 scan data to plot retinal
thickness, area of edema and distance from macula. These results
were compared with the clinical examination and stereo fundus
imaging. They showed that, Macular Grid5 scan method obtained a
sensitivity of 89% and specificity of 86% for the detection of CSME.

Strøm et al. [145] have compared retinal thickening in DME using
Stereoscopic Fundus Photographs (SFPs) and OCT imaging methods.
The SFP and OCT images of 84 eyes were compared using location and
area of retinal thickening. Further, retinal thickness was mapped
topographically and the subjective thickness map was overlaid. The
location of the retinal thickening was evaluated using degree of
agreement. Exact agreement on area was identified in 69 (84.1%) of
82 eyes.

Kim et al. [146] have analyzed the patterns of morphological
changes in DME using OCT. They performed retrospective study of
DME patients. The OCT images were analyzed for the presence of
diffuse retinal thickening, cystoid macular edema, posterior
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hyaloidal traction, serous retinal detachment, traction retinal
detachment, retinal thickening and visual acuity. Their results
revealed a strong correlation between retinal thickness and visual
acuity.

Sánchez-Tocino et al. [147] have assessed the retinal thickness of
diabetes patients using OCT. The retinal thickness was analyzed from
control, patients with NPDR without CSME, PDR without CSME, and
PDR with CSME groups. The results show a significant difference in
foveal thickness between control and diseased groups. The foveal
thickening measured by OCT is useful in early detection of DME.

The topography of macular thickening in DME was analyzed
using OCT [148]. Totally, 182 eyes of 107 patients with DR, 55 eyes
from 31 patients with diabetes without retinopathy and 73 eyes
from 41 control subjects were studied. The radial spoke pattern
OCT imaging was performed on fovea. Retinal thickness was
computed automatically from the tomograms. The average thick-
ness (mean7standard deviation) of normal eyes was 174718 μm,
diabetes eyes without retinopathy was 174717 μm and eyes with
NPDR was 2567114 μm. The results shows that OCT is useful in
quantifying retinal thickening in patients with DME.

Neubauer et al. [149] have compared the fluorescein leakage
pattern, retinal thickness obtained using Retinal Thickness Analy-
zer (RTA), and OCT of DME. The study includes 30 eye images from
30 patients with DME. Initially, the FA was analyzed for 10 sub-
fields to identify the source of leakage and then retinal thickness

was measured using RTA and OCT. The amount of leakage was
significantly correlated with the topography of retinal thickness.

4. Computer aided diagnosis of diabetic retinopathy

In the past ten years, numerous research work was conducted in
the development of automated DR diagnosis. It helps in mass eye
screening of diabetic patients efficiently at a faster rate. Fig. 6 depicts
the overall approach of the CAD system. In the off-line system, a set
of training images were preprocessed to extract features. Further,
significant features were selected using filtering or wrapper methods
[150,151] and used to train the classifier. In the on-line system, only
the significant features which were selected during training phase
were extracted from the testing set. The trained model classifies the
test set into either normal or DR class using the significant features.
Further, the classifier performance was evaluated by comparing the
predicted and gold standard labels of the test set, which provides the
accuracy, sensitivity, and specificity. This section describes systematic
survey of automatic diagnosis of DR using retinal fundus images. The
aim of the CAD is to distinguish normal and DR using features like
area of MA, exudates, blood vessels, node points, HEM, textures, etc.
Table 7 summarizes the automated DR classification systems avail-
able in the literatures.

Table 6
Literature review of segmentation of MA and HEM.

Authors Methods (dataset size) Salient feature Performance measure

Segmentation of MA
Spencer et al. [125] Morphological methods and matched

filter (Not Available (NA))
Region growing Sensitivity-82%, specificity-86%

Cree et al. [126] Peak of correlation function and
region growing (20)

Shape, intensity, and rule based classifier
combination

Sensitivity-82%, specificity-84%

Frame et al. [120] Matched filter, region growing,
LDA, NN and Rule based method (68)

Circularity and grayscale intensity
used to detect MA

Sensitivity-84%, specificity-85%

Hansgen et al. [124] Matched filter, region growing
and Peak of correlation function (3)

Matched filter and region growing
used to detect MA

Sensitivity-95.30% (DWT),
sensitivity-93.60% (JPEG)

Hipwell et al. [133] Size and shape (3783) Rule based classifier Sensitivity-81%, specificity-93%
Sinthanayothin [113] RRGT and moat operator (30) Moat operator sharpen the red lesion edges Sensitivity-77.50%, specificity-88.70%
Streeter and Cree [129] Top-hat, matched filter and region

growing (20)
Can detect MA with greater than ten pixels Sensitivity-56%

Larsen et al. [131] Size and shape (200) RetinaLyze System Red lesion detection specificity-71.4%
Usher et al. [31] RRGT and moat operator (1273) Moat operator sharpen the red lesion edges Sensitivity-95.10%, specificity-46.30%
Niemeijer [117] Pixel classification using k-NN (140) Performs well with pixel similarity, color,

first and second order Gaussian filters
Sensitivity-100%, specificity-87%

Fleming et al. [35] Contrast normalization and watershed
retinal region growing method (1441)

Contrast normalization discriminate MA and dots Sensitivity-85.40%, specificity-83.10%

Walter et al. [121] Gaussian filtering, top-hat (94) Kernel density estimation with variable
bandwidth

Sensitivity-88.5%

Hatanaka et al. [122] Brightness correction and thresholding
(125)

False Positive (FP) elimination in the
non-contrast images

Sensitivity-80%, specificity-88%

Quellec et al. [123] Optimal wavelet transform (120) Automated selection of wavelet basis,
subbands, and template-matching parameter

Sensitivity-89.62% (color), 90.24%
(green filtered) and 93.74% (angiographs),
specificity-89.50% (color), 89.75% (green
filtered)
and 91.67% (angiographs)

Zhang et al. [128] Multi-scale correlation filtering
and dynamic thresholding (89)

Automated selection of kernel sigma
value to detect MA

Sensitivity-71.30%

Antal and Hajdu [134] Ensemble-based system (1200) High flexibility for different datasets AUC-0.90
Lazar and Hajdu [130] Directional cross-section

profile features (60)
Able to distinguish blood vessel
bifurcation and crossings from MA

ROC score-0.423

Segmentation of HEM
Gardner [116] NN (301) Statistical threshold tuning Sensitivity-73.80%
Zhang and Chutatape [132] PCA and SVM (30) Use of rotation and illumination

invariance
TPR-89.10%

Fleming et al. [34] Multi-scale, morphological
technique and SVM (10846)

Discontinuity assessment method Sensitivity-98.60%, specificity-95.50%
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Two-class (normal and DR) classification: Screening tool for DR
was developed by (Usher et al. [31], Sinthanayothin et al. [30],
Aptel et al. [152], Reza and Eswaran [7], Garner et al. [116], Kahai
et al. [153], Osareh et al. [154], and Quellec et al. [33]) using clinical
features namely blood vessels, exudates, CWS, MA, and HEM.
Exudates were extracted using RRGT and adaptive intensity
thresholding [31] and dark lesions were extracted using moat
operator [31]. Quellec et al. [33] have used optimal filters to
segment out MA. The ANN [31,30,116] and Bayesian frame work
[153] were used to classify the lesions. Their algorithm yielded a
sensitivity of 95.1%, and specificity of 46.3% [31]. Sinthanayothin
et al. [30] have proposed an automated DR detection system using
morphological features. Initially, the retinal images were prepro-
cessed using adaptive local contrast enhancement. Further, the OD,
blood vessels were identified using intensity variation and NN. The
hard exudates were identified using RRGT. The MA and HEM were
identified using intensity information. Finally, all these features
were combined and fed to NN classifier to detect DR. Their method
obtained a sensitivity of 80.21% and specificity of 70.66%. Aptel
et al. [152] have experimented the effect of field number (single or
three) and mydriasis or non-mydriasis in digital fundus photo-
graphy for screening of DR. Their methods obtained a kappa value
of 0.82, 0.90, 0.90 and 0.95, respectively. Reza and Eswaran [7]
reported an accuracy of 97% for the detection of bright lesion using
rule based classification. Garner et al. [116] have proposed an
automated DR detection using pixel intensity and ANN. Their
method obtained a sensitivity of 88.4% and specificity of 83.5%.
Kahai et al. [153] have used morphological features for automated
DR detection and reported a sensitivity of 100% and specificity of
67%. Osareh et al. [154] have classified the two classes using FCM
with an accuracy of 90.1%. Moreover, optimal filter frame work
[33] using wavelet was able to classify DR lesions with AUC of
0.927. These above discussed DR detection systems have reported
less specificity. However, their performance can be increased
further by using more images and better features.

The automated telescreening systemwas introduced by Neubauer
et al. and Suthammanas et al. [155,29] using RTA and exudates. They
reported a mean sensitivity of 93% for PDR using RTA. In another

study [29] exudates were detected with an accuracy of 92.52%.
However, this system used only RTA and exudate features for
classification.

Larsen et al. [156] have demonstrated an automatic detection of
DR in fundus photographs using visibility threshold. Their system
was able to identify patients with DR and without DR with an
accuracy of 90.1% and 81.3% correctly. This system separated
patients with diabetes in addition to DR.

Agurto et al. [157] have used multiscale Amplitude Modulation
(AM)–Frequency Modulation (FM) based decomposition to discri-
minate normal and DR images. Texture features namely instant
amplitude, magnitude of frequency and relative frequency angle
with different scales obtained from MESSIDOR database were used
and reported an area under ROC of 0.98.

Wavelet transform coupled with SVM has yielded an accuracy of
99.17% in classifying two classes [158]. Moreover, they introduced
Diabetic Retinopathy Risk Index (DRRI) to diagnose two groups.

Jelinek et al. [159] have proposed an automated DR detection based
on MA. Their MA detection system based on Spencer [125] and Cree
[126] system achieved a sensitivity of 85% and specificity of 90%.

Hansen et al. [160] have proposed an automated DR screening
method using red lesions. Their method was based on Larsen et al.
[156,131] red lesion detection method and reported a sensitivity of
100% with and without pupil dilation.

Abràmoff et al. [161] have developed an algorithm called Eye-
Check for automated DR detection. Their algorithmwas able to detect
abnormal lesions such as MA, HEM, exudates, and CWS with an AUC
of 0.839.

Dupas et al. [162] have developed an CAD system for grading
DR. The features such as MA, HEM, exudates were used to design
the classifier model. Features coupled with k-NN classifier was
able to detect DR with a sensitivity of 83.9% and specificity
of 72.7%.

Three-class (normal, NPDR and PDR) classification: Three classes
were classified using HEM and MA, hard exudates, and CWS [163].
This method was accurate in classifying the mild, moderate, and
severe NPDR stages with an accuracy of 82.6%, 82.6%, and 88.3%
respectively.

Fig. 6. Overview of the computational steps in automated DR diagnosis.
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Table 7
Automated DR detection methods.

Authors Features Methods (Dataset size) Salient feature Performance measure

Two class classification
Garner et al. [116] Pixel intensity NN (301) Statistical threshold tuning Sensitivity-88.40%, specificity-83.50%
Osareh et al. [154] HEM, MA, hard exudates and

cottonwool spots
FCM (142) Precisely detect's exudates Accuracy-90.10%

Larsen et al. [156] Red lesions DR Visibility threshold (260) Adjustable visibility thresholding Sensitivity-96.70%, specificity-71.40%
Sinthanayothin et al.

[30]
HEM, MA, and hard exudates NN (767) Real time screening Sensitivity-80.21%, specificity-70.66%

Hansen et al. [160] Red lesions DR Visibility threshold (83) With and without pupil dilation Sensitivity-97%, specificity-75%
Usher et al. [31] HEM, MA, hard exudates and

cottonwool spots
NN (1273) Detects maculopathy also Sensitivity-95.10%, specificity-46.30%

Abramoff et al. [27] Web-based questionnaire, visual acuity
measurement

EyeCheck software (1676) Telediagnosis system Interrater agreement-0.93

Neubauer et al. [155] Retinal thickness RTA (61) RTA used for telescreening of DR Sensitivity-93% (PDR)
Jelinek et al. [159] MA Waikato automated MA detector

(543)
Color non-mydriatic images can be analyzed Sensitivity-85%, specificity-90%

Kahai et al. [153] MA statistical learning (143) Less computational time (10 ns) Sensitivity-100%, specificity-67%
Philip et al. [19] MA and HEM Wilson score and kappa statistic

(527)
Adaptable to local imaging methods and equipments Accuracy-99.1%

Aptel et al. [152] HEM, MA, hard exudates
and cottonwool spots

Kappa analysis (158) Three-field strategy without pupil dilation Degree of agreement-0.82 (single), 0.90 (three),
0.90 (mydriasis), 0.95 (non-mydriasis)

Suthammanas et al. [29] Exudates DR telescreening system (100) Can handle images from various hospitals Accuracy-92.52%
Agurto et al. [157] AM–FM features Distance metrics (376) Rapid retraining ROC-0.98
Abràmoff et al. [161] MA, HEM, exudates, and CWS k-NN classifier (16,770) It can discard poor quality images AUC-0.839
Dupas et al. [162] MA, HEM, and exudates k-NN classifier (761) It can able to detect ME Sensitivity-83.9%, specificity-72.7%
Quellec et al. [33] Optimal filter frame work k-NN (67) Detects drusen and Stargardt's disease flecks also AUC-0.927
Reza and Eswaran [7] Hard exudates, CWS, and large

plaque of hard exudates
Rule based classifier (20) Accurate grading of NPDR lesions Accuracy-97%

Kevin Noronha et al.
[158]

Wavelet energy features SVM (240) DRRI Accuracy-99.17%, sensitivity-99.17%, specificity-99.17%

Three class classification
Lee et al. [163] HEM, MA, exudates and CWS NN (430) High reproducibility Normal-82.60% Non-Proliferative Diabetic

Retinopathy-82.60% Proliferative Diabetic Retinopathy-
88.30%

Nayak et al. [3] Exudates, area of bloodvessel, and contrast NN (140) Texture and morphological features Sensitivity-90% Specificity-100% Accuracy-93%
Mookiah et al. [80] Blood vessels and exudates area,

bifurcation points, global texture and
entropies

GA optimized PNN classifier (156) PNN tuning by GA and Particle Swarm Optimization
(PSO)

Sensitivity-96.27%, specificity-96.08%, accuracy-96.15%

Four class classification
Yun et al. [164] Perimeter of the blood vessels NN (124) Morphological features Sensitivity-90%, specificity-100%, accuracy-84%
Acharya et al. [165] Co-occurrence matrix and run length matrix SVM (238) DRRI Sensitivity-98.9%, specificity-89.5%, accuracy-100%

Five class classification
Acharya et al. [166] Higher Order Spectra (HOS) SVM (300) Non-linear features Sensitivity-82.50%, specificity-88.90%, accuracy-82%
Acharya et al. [167] Blood vessel area, exudates, MA, and MA SVM (331) Morphological features Sensitivity-82%, specificity-86%, accuracy-85.9%
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Nayak et al. [3] have used features like blood vessels, exudates
and texture and classified with an average accuracy of 93%,
sensitivity of 90%, and specificity of 100% using NN.

Mookiah et al. [80] have used features like blood vessels area,
bifurcation (node) points in the blood vessels, exudates area,
texture and entropies. Their results shows that the GA optimized
Probabilistic Neural Network (PNN) classifier was able to identify
normal class correctly with an accuracy of 92.88% NPDR and PDR
with 96.97% and 100% respectively. The sensitivity and specificity
of their system was 96.27% and 96.08% respectively.

Four-class (normal, moderate NPDR, severe NPDR and PDR)
classification: Yun et al. [164] have used blood vessel area and
perimeter coupled with NN and reported an average accuracy of
84%, sensitivity and specificity of 90% and 100% respectively.

Acharya et al. [165] have proposed an automated DR detection
system using texture and presented an accuracy of 85.2%, sensi-
tivity of 98.9% and specificity of 89.5%. The authors also proposed a
DR index using the combination of texture features, which was
able to identify the different stages of DR and ME.

Five-class (normal, mild DR, moderate DR, severe DR, and PDR)
classification: Acharya et al. [166] have automatically classified five
classes using the bispectral invariant features of HOS techniques
and an SVM classifier. They reported an average accuracy of 82%,
sensitivity of 82% and specificity of 88%.

Same group [167] have used the blood vessels, exudates, MA,
and HEM features coupled with SVM classifier and demonstrated a
classification accuracy of 85%, sensitivity of 82%, and specificity
of 86%.

5. Summary

This review presents a detailed survey of algorithms and results
used for the automated identification of DR stages using fundus
photographs. The robust DR mass screening tool will significantly
reduce the workload of ophthalmologists and graders in clinics.
The process of analysing retinal images involves series of steps
namely identifying the anatomical structure, extracting patholo-
gical lesions, feature extraction and classification. All these steps
involve various techniques or algorithms. Initially, the overall
performance of the anatomy and pathology detection algorithms
were evaluated quantitatively. Further, individual steps of these
algorithms were evaluated to achieve higher performance [38].
Even though significant achievements have been made in digital
fundus image analysis, challenges still exists in the selection of
best algorithms which yields higher accuracy during DR screening.

For the detection of anatomical structures in the retinal images,
intensity and NN based methods have performed effectively [50].
The blood vessel extraction results of Chaudhuri et al. [48], and
Hoover et al. [79] have reported good results using standard
dataset. However, the automated analysis of retinal images are
affected by image quality, laser scars and noise [168]. The impor-
tant problem in the automated segmentation of basic structures
(OD, blood vessels and fovea) and abnormal lesions (exudates, MA,
and HEM) is obtaining the ground-truth.

Several studies reported different novel algorithms to detect
the various salient features of the retina. The abnormalities
present at fovea have higher clinical significance than at other
regions. Moreover, organized standard research methodologies are
required to evaluate the algorithms in each step and as a whole
report the sensitivity and specificity. Nevertheless, the best feature
extraction algorithm and robust classifier to be used to obtain the
highest accuracy is still a debatable issue. The ME can be detected
only with stereoscopic images or direct examination using slit-
lamp biomicroscopy. Also, the drusen can be clearly detected only
with stereoscopic images [41].

Few research papers [30,156,164,166,33,165] investigated auto-
mated DR detection with abnormal lesions which might need
additional examination by the ophthalmologists. Moreover, any
CAD system should have high specificity during screening with
minimum false negatives. This will reduce the burden on the
ophthalmologists by focusing only on the abnormal DR images.

Abramoff et al. [28] have suggested that the segmentation
methods developed by the authors should be evaluated using
open source (public) datasets. Two open source data sets such as
STructured Analysis of the Retina [169] and DRIVE [170] are
available with different diagnosis and facilitates to perform com-
parative studies in blood vessel segmentation. Moreover, DIA-
RETDB1 [171] is a public database available for benchmarking DR
detection using fundus images. The results of different methods
can be compared using this dataset. They invite the research
communities to evaluate their developed methods with this
database and share their results on the web. Moreover, fundus
image analysis of DR requires a large set of training images with
various lesions that can be used by the other researchers to
evaluate their proposed systems. These data sharing was initiated
by approved research councils and also sponsorers should support
the creation of such database. Bossuyt et al. [172] presented the
STAndards for the Reporting of Diagnostic accuracy studies
(STARD) for analysing the performance of diagnosis tests for
Diabetic Retinopathy. This procedure may be used as a standard
format for reporting DR screening studies.

Finally, the CAD system performance need to be tested with
best features, diverse images and robust classifiers. In addition to
morphological features one can use texture features such as local
binary pattern, laws mask [80] and gray co-matrix [165] and other
non-linear features such as HOS and bi-spectral entropies [173] to
achieve higher accuracy. Moreover, the classifier parameters can
also be optimized using evolutionary algorithms to yield higher
accuracy [80]. A CAD system which can detect the True Negative
(TN) (normal images) correctly can significantly reduce the burden
of the ophthalmologists significantly. Nowadays, authors have
proposed an integrated index called DRRI computed from the
clinically significant features. It is one number having unique
ranges for different classes [158,165,174]. This may be used to
classify the various classes and can help the doctors significantly in
their DR screening [158,165].
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