
A Survey of Consistency Checking Techniques for UML Models

Muhammad Usman1, Aamer Nadeem1, Tai-hoon Kim2, Eun-suk Cho2

1Center for Software Dependability, Mohammad Ali Jinnah University
Islamabad, Pakistan

m_usman99@yahoo.com, anadeem@jinnah.edu.pk

2Dept. of Multimedia, Hannam University,
133, Ojeong-dong, Daedeok-gu, Daejeon, Korea
taihoonn@hannam.ac.kr, eunsukk@empal.com

Abstract

UML is the de-facto industry standard to design
object-oriented software. UML provides a set of
diagrams to model every aspect of an object-oriented
application design in sufficient detail, but lacks any
mechanism to rigorously check consistency between
the models. Today, most of the effort is applied on
creating accurate and consistent UML models rather
than implementing the design. Automatic code
generation from UML models has emerged as a
promising area in recent years. The accuracy of
generated code in some ways depends on UML models
consistency. In this paper, we present a survey of
UML consistency checking techniques. To analyze
existing techniques, we identify some analysis
parameters and construct an analysis table. The
analysis table helps us to evaluate existing consistency
checking techniques. We conclude that most of the
approaches validates intra and inter level
consistencies between UML models by using
monitoring strategy. UML class, sequence, and
statechart diagrams are used in most of the existing
consistency checking techniques.

1. Introduction

The launch of UML [3] opened a new way for OO

application designing [1]. UML standard of Object
Management Group (OMG) [4] contains a set of useful
diagrams to express static and dynamic properties of an
OO application in design phase [2]. OMG has also
introduced Model Driven Architecture (MDA) [5] to
provide a standard for automatic translation of UML
models to OO code.

Automatic translation of UML models to code
minimizes the number of errors and generates more
conformed and reliable OO code than manual
translation. So it is important to have consistent UML
models to get conforming OO code. It requires to have
full concentration on UML models consistency such as
if a UML sequence diagram calls a method on an

object of a class then method signature for that method
must exists in UML class diagram in that specific class
[4]. UML models consistency is also important
because inconsistent UML models result into
inaccurate OO code generation. Consistency validation
between UML models is useful because it is hard to
make changes in source code than in UML models. So
whenever UML models are changed, it is very
important to assure that UML models are still
consistent after the changes. Consistency validation
between UML models also helps software vendors
financially by minimizing the cost during software
development process [6].

In this paper, we present a survey of existing
consistency checking techniques between UML
models. We have defined some analysis parameters
and construct an analysis table to analyze existing
techniques on the basis of parameters. Most of the
techniques focus on inter and intra level consistency
validation between UML models. Nearly all existing
consistency checking techniques provide consistency
rules to validate consistency between UML models
which comes under monitoring strategy.

2. Consistency Types

Following are the types of consistencies which we
are focused in context of this survey paper from Mens
et al. [7].
Inter-model (Vertical) Consistency: Consistency is
validated at different levels of abstraction between
different diagrams. Syntactic and semantic
consistencies are also included in it.
Intra-model (Horizontal) Consistency: Consistency is
validated at a same level of abstraction between
different diagrams.
Evolution Consistency: Consistency is validated
between different versions of a same UML diagram.
Semantic Consistency: Consistency is validated for
UML diagrams semantic meanings defined by UML
metamodel.
Syntactic Consistency: Consistency is validated for
UML diagrams specifications in UML metamodel.

2008 Advanced Software Engineering & Its Applications

978-0-7695-3432-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ASEA.2008.40

57

3. Analysis Parameters

This section provides a set of analysis parameters
used for analyzing consistency checking techniques.

Nature: It identifies the focused properties of an OO
application such as static or dynamic. Possible values
are structural, behavioral and both which are based on
used UML diagrams.
MDA Based: It identifies that the approach lies in
MDA domain or not. Possible values are yes and no.
UML Version: It identifies the version of UML.
Possible values are the different available versions of
UML such 1.0, 1.4, 1.5, 1.1.1, 2.0, 2.1.1, etc.
UML Diagrams: It identifies the UML diagram(s) use
in the presented approach. Possible values are any one
or more UML diagrams.
Consistency Type: It identifies the relevant consistency
type addressed in the presented approach. Possible
values are from the list of consistency types discussed
in section 2.
Intermediate Representation: It identifies any
temporary representation is used to validate
consistency between UML diagrams. Possible values
any intermediate representation which varies from
technique to technique.
Consistency Strategy: It identifies the strategy used to
validate consistency between UML diagrams. There
are three types of strategies available in literature as
consistency by analysis (based on an algorithm),
consistency by monitoring (based on rules), and
consistency by construction (generates one artifact
from another) [14]. Possible values are the strategies
defined above.
Rules Provided: It identifies the level of consistency
checking rules presented in a paper. Possible values are
high, medium and low which are determined on the
basis that how rules are presented and discussed in the
paper with their logical correctness.
Case Study: It identifies the real-life example use to
check the validity of the presented approach. Possible
values are yes and no.
Automatable: It identifies the automation of presented
consistency checking technique. Possible values are
high, medium and low which are assigned when
paper’s author mention it or on the probability of
approach automation.
Tool Support: It identifies the tool develop to automate
the proposed work. Tool support helps in quick
validation of the proposed work. Possible values are
yes and no.

4. Consistency Checking Techniques

This section provides a discussion on existing
consistency checking techniques between UML

models. This section also analysis existing techniques
with the help of analysis table build from analysis
parameters. The consistency checking techniques are
divided by intermediate representation into three
categories.

4.1. Formally Represented Techniques

This subsection discusses and analysis those

existing techniques in which intermediate
representation is defined in any formal language or in
some formal notation.

Engels et al. : Engels et al. [8] use UML 1.3 sequence,
collaboration and statechart diagrams to validate
consistency between them. The authors focus on
representing UML behavioral models formally as it is
easy and accurate to determine inconsistencies between
formal models. The authors define a step wise
approach to extract problems between UML models.
The approach is proposed for real time UML (UML-
RT) applications. Monitoring strategy is used through
which consistency rules are presented in terms of
definitions and conditions on formally represented
model. A traffic light case study is also demonstrated.
A tool named FDR is developed to implement
proposed work.

Rasch and Wehrheim: Rasch and Wehrheim [9]
focus on UML 1.5 class and state machine diagrams
for consistency validation. Classes and state machines
are translated to CSP-OZ which is semantically
powerful. CSP-OZ is used because it helps in complete
class definition as well as ordering methods execution.
Translation of class and state machine to Object-Z is
also discussed. Rules are presented to validate the
translation accurately. Some propositions are also
provided to ensure the consistent transformation of
class and state machine to Object-Z.

Kim and Carrington: Kim and Carrington [10]
provide meta-model level rules against consistency
validation in statechart. Statechart is represented in
Object-Z to apply consistency rules. The main focus of
their approach is to define integrity consistency
constraints between different UML models. Predicates
are used for defining the invariants and integrity
constraints. The authors provide translation of
statechart meta-level constructs to Object-Z.

Shinkawa: Shinkawa [11] uses UML 2.0 use-case,
class, sequence, activity and statechart diagrams for
consistency checking. The paper presents UML models
classification and the author includes one diagram from
every classification. The author provides mapping for
converting UML diagrams to Colored Petri Nets

58

(CPN). The consistency is validated through
translation of UML diagrams to CPN. Different
examples are used to demonstrate the translation.
Colored Petri Nets (CPN) is used as an intermediate
representation. Inter-model consistency is validated
between UML models. Rules are presented to translate
each UML diagram to CPN.

Liu et al. : Liu et al. [12] base UML 2.0 class,
sequence and statechart diagrams to propose a
consistency checking approach. Object Oriented
Specification Language (OOL) is used to present
software design formally. Theoretical proofs are
provided to show the power of OOL to present UML
diagrams. Some constraints are defined to ensure
consistency between OOL formal representations.
UML diagrams are translated to OOL through point-of-
sale case study. No tool support is provided. Analysis
strategy is implemented by the approach.

Bernardi et al. : Bernardi et al. [13] use UML 1.4
sequence and statechart diagrams to validate
consistency. UML models are represented in
generalized stochastic Petri nets (GSPNs)
automatically. GSPN is a formal representation and the
authors believe that consistency problems between
UML diagrams occur because it lacks formalism.
Monitoring strategy is used through which consistency
rules are discussed briefly. Analysis of the presented
approach is provided on a watchdog mechanism
example which is mainly used for error detection in
fault tolerant systems. No tool support is provided.

Haesen and Snoeck: Haesen and Snoeck [14] use
UML 1.5 class and finite state machine diagrams to
propose a consistency checking approach. Class
diagram is used to represent the static structure while
object event table (OET) is used to maintain all the
events that can occur during the life time of the system.
Finite State machines (FSM) are used to demonstrate
the behavior of OET events and it is assumed that
interactions between objects are handled through the
events. A MERODE methodology provides a formal
definition of UML diagrams. UML patterns are used to
implement consistency strategies.

Satoh et al. : Satoh et al. [15] propose a consistency
validation method on UML 2.0 class diagram. UML
class is translated into logic program for contradiction
finding between two different versions of a class
diagram for consistency. Mapping rules are provided to
translate UML class diagram into logic program.
Consistency checking is applied on logic program.
Contradictory parts are deleted from the logic program
to get a consistent class diagram. The proposed
translation rules are bi-directional such as they support

translation between class diagram and logic program in
both directions. An algorithm is proposed through
which contradictory part between different versions of
class diagrams can be recovered.

Straeten and Simmonds: Straeten and Simmonds [16]
discusses consistency checking on UML 1.5 class,
sequence, and statecharts diagrams. ALCQI is used to
present UML models formally. The authors use a
method for representing class diagram into ALCQI by
Berardi [17]. Berardi demonstrates the translation of
class diagram constructs such as classes, associations,
aggregations, generalization, and constraints into
ALCQI. Berardi also provides experimentation to
validation the proposed translation methods.

4.2. Extended UML Representation Techniques

This subsection discusses and analysis those
presented techniques in which intermediate
representation is defined as an extension in UML
diagram(s).

Engles et al. : Engles et al. [18] use UML 1.4
sequence, collaboration and statechart diagrams for
consistency validation. Dynamic Meta-Modeling
(DMM) rules are used for this purpose. The rules are
provided as two constraints {new} and {destroyed}.
{new} constraint initiates a create call to attached
class. {destroyed} constraint deletes the attached
instance from the execution space. The tester
environment is also provided to validate the
consistency.

Mens et al. : Mens et al. [7] extend UML 2.0 class,
sequence and statechart diagram meta-models to
include versioning support for consistency validation.
Description logic (DL) is used to detect and resolve
inconsistencies formally. Five stereotypes as
<<versioned>>, <<horizontal>>, <<evolution>>,
<<refine>>, and <<trace>> are also included in UML
extension. OCL is used for stereotypes definition.

4.3. No Intermediate Representation Techniques

This subsection discusses and analysis those

presented techniques in which no intermediate
representation.

Grischick: Grischick [19] uses UML 1.5 class diagram
to detect inconsistencies between two versions. An
algorithm is proposed for this purpose. Different color
codes are used for distinguishing properties of class
diagram. The approach not only tells difference
between two versions but also provides information
that how the difference is produced. A data structure is

59

proposed for the approach implementing. Evaluation
function is used to compare any two elements of class
diagram. Critical analysis is presented against proposed
algorithm.

Graaf and Deursen: Graaf and Deursen [20] focus on
UML 1.4 scenario (sequence, collaboration) and
statechart diagrams for consistency checking. The
approach generates statecharts from scenarios.
Transformation rules are provided in ATL for
generating statecharts from scenarios. Scenarios are
created from use-cases. Transformation is done in four
steps. First step applies domain knowledge. Second
step generates flattened statecharts. Third step merges
flattened statecharts against their respective class. Last
step introduces hierarchy information in merged
statecharts.

Briand et al. : Briand et al. [21, 22] use UML 1.4
class, sequence and statechart diagrams for evaluating
consistency. The approach focuses on change
management in UML models. Change affect is also
estimating by the approach before actual change
implementation. Monitoring strategy is applied through
which consistency rules are implemented in the tool.
OCL expressions are used for expressing the rules.
ATM is used as case study to validate the feasibility of
the approach. Experimental analysis and results are
also provided.

Feng and Vangheluwe: Feng and Vangheluwe [23]
use UML 1.5 class sequence and statechart diagrams
for consistency validation. The approach covers client-
server applications. Consistency issues are resolved
between components. Rules are presented for
validating consistency. Output traces are used for this
purpose. Rule consists of four parts as pre-condition,
post-condition, guard (optional) and counter-rule
property (optional).

Egyed: Egyed [24] uses UML 1.3 class, sequence
diagrams and statechart diagrams to validate
consistency between them. The approach is applied on
runtime instances for consistency validation. The
issues in runtime instances are resolved through scope
of a consistency rule and a logger. Rules are provided
in OCL through monitoring strategy. UML/
ANALYZER tool [25] is developed to automate the
approach. It contains three components as consistency
checker, evaluation profiler, and rule detector. The
tool is integrated in IBM Rational Rose for open use.
Experimental results are presented with the help of the
developed tool.

Bellur and Vallieswaran: Bellur and Vallieswaran
[26] use UML 1.5 use-case, class, sequence, statechart,

component and deployment diagrams for consistency
validation. The paper discusses some consistency
issues and provides solution for them. Relational-
metamodel is used for consistency checking based on
four views as requirement, development, source, and
deployment. Consistency is enforced during the
construction of UML models. XMI is used to represent
UML model. Consistency rules are also applied on an
XMI. Two case studies as Document Viewer and ATM
are demonstrated. They incorporate their work as a
plug-in to an open source tool known as Eclipse.

5. Conclusion

In this paper, we presented a survey of consistency

checking techniques for UML models. Intermediate
representation is used to classify the existing
techniques. The consistency validation mechanism is
discussed in existing techniques. A generalized set of
parameters is also defined. Analysis table is
constructed to analyze the existing techniques on the
basis of analysis parameters. The analysis reflects that
formalization of UML models is preferable to validate
consistency because it helps in removing ambiguities
and enforce consistency. Most of the approaches
implement consistency validation rule between UML
models in a tool which lies under monitoring strategy
and help in quick validation. Intra and inter model
consistency types are used in nearly all the approaches.

6. References

[1] G. Booch : Object Oriented Design with

Applications, Benjamin/Cummings, 1991,
Redwood, California. ISBN: 0-8053-0091-0.

[2] I. Jacobson, G. Booch, and J. Rumbaugh : The
Unified Software Development Process, Addison-
Wesley, Reading, MA, 1999.

[3] G. Booch, J. Rumbaugh and I. Jacobson : The
Unified Modeling Language User Guide, Addison
Wesley, 1999. ISBN: 0-201-57168-4.

[4] OMG, Unified Modeling Language Specification,
Version 2.1.1, (2007-02-07).

[5] MDA Guide (2003), Version 1.0.1 Object
Management Group (OMG) on 01-06-2003,
http://www.omg.org/docs/omg/03-06-01.pdf.

[6] W-H. Roetzheim and R-A. Beasley : Software
Project Code and Schedule Estimating: Best
Practices, Prentice Hall PTR; Pap/cdr edition
November 1997. ISBN: 978-0136820895

[7] T. Mens, R. V-D. Straeten, and J. Simmonds : A
Framework for Managing Consistency of Evolving
UML Models, In H. Yang, editor, Software
Evolution with UML and XML, chapter 1. Idea
Group Inc., March 2005.

60

[8] G. Engels, J. M. Kuster, and L. Groenewegen : A
Methodology for Specifying and Analyzing
Consistency of Object-Oriented Behavioral
Models, In Proceedings of the 8th European
Software Engineering Conference held jointly with
9th ACM SIGSOFT international symposium on
Foundations of software engineering
(ESEC/FSE’01), pp. 186-195, September 2001,
Vienna, Austria, ACM Press.

[9] H. Rasch and H. Wehrheim : Consistency
Checking in UML Diagrams: Classes and State
Machines, In Proceedings of the 6th Formal
Methods for Open Object-Based Distributed
Systems (FMOODS’03), pp. 229-243, November
2003, Paris, France, Springer-Verlag, LNCS 2884.

[10] S-K. Kim and D. Carrington : A Formal Object-
Oriented Approach to defining Consistency
Constraints for UML Models, In Proceedings of
the 15th Software Engineering Conference
(ASWEC’04), pp. 87- 94, April 2004, Melbourne,
Australia, IEEE.

[11] Y. Shinkawa; Inter-model Consistency in UML
Based on CPN Formalism, In Proceedings of the
13th Asia Pacific Software Engineering
Conference (APSEC'06), pp. 411-418, December
2006, Bangalore, India, IEEE Computer Society.

[12] Z. Liu, X. Li, J. Liu, and J. He : Integrating and
refining UML models. Technical Report 295,
UNU/IIST, PO Box 3058, Macao SAR China,
2004. Presented at UML 2004 Workshop on
Consistency Problems in UML-based Software
Development, October 10-15, 2004, Lisbon,
Portugal.

[13] S. Bernardi, S. Donatelli and J. Merseguer : From
UML Sequence Diagrams and Statecharts to
Analyzable Petri Net models, In Proceedings of
the 3rd International Workshop on Software and
Performance (WOSP'02), pp. 35-45, July 2002,
Rome, Italy.

[14] R. Haesen, M. Snoeck : Implementing Consistency
Management Techniques for Conceptual
Modeling. In Proceedings of the 3rd International
Workshop on Consistency Problems in UML based
Software Development III Understanding and
Usage of Dependency Relationships, pp. 99-113,
October 2004, Lisbon, Portugal.

[15] K. Satoh, K. Kaneiwa, and T. Uno: Contradiction
Finding and Minimal Recovery for UML Class
Diagrams, In Proceedings of the 21st IEEE
International Conference on Automated Software
Engineering (ASE’06), September 2006, Tokyo,
Japan. IEEE Computer Society.

[16] R. V-D Straeten, J. Simmonds, and T. Mens :
Detecting inconsistencies between UML models
using description logic. In Proceedings of the
International Workshop on Description Logics

(DL’03), September 2003. Rome, Italy. CEUR-
Workshop Proceedings.

[17] D. Berardi. Using DLS to reason on UML class
diagrams. In Proceedings of the Workshop on
Applications of Description Logics (ADL’02),
September 2002, Aachen, Germany. CEUR-
Workshop Proceedings.

[18] G. Engles, J. H. Hausmann, R. Heckel, and S.
Sauer, Testing the Consistency of Dynamic UML
diagrams, In Proceedings of the 6th Integrated
Design and Process Science (IDPT’02), June
2002, Pasadena, California.

[19] M. Grischick : Difference Detection and
Visualization in UML Class Diagrams,
Department of Computer Science on
Metamodeling and its Application, Technical
University of Darmstadt, Technical Report TUD-
CS-2006-5, 2006.

[20] B. Graaf and A-V. Deursen, Model-Driven
Consistency Checking of Behavioral
Specifications, In Proceedings of the 4th
International Workshop on Model-Based
Methodologies for Pervasive and Embedded
Software (MOMPES'07), pp. 115-126, March
2007, Braga, Portugal, IEEE Computer Society.

[21] L. C. Briand, Y. Labiche, and L. O’Sullivan :
Impact Analysis and Change Management of
UML Models, In Proceedings of the 19th
International Conference Software Maintenance
(ICSM’03), pp. 256-265, September 2003,
Amsterdam, Netherlands, IEEE Computer Society
Press.

[22] L. C. Briand, Y. Labiche, L. O’Sullivan, and M.
M. Sowka : Automated Impact Analysis of UML
Models, Journal of Systems and Software, vol. 79,
issue. 3, pp. 339-352, March 2006.

[23] T-H. Feng and H. Vangheluwe : Case Study:
Consistency Problems in a UML Model of a Chat
Room, In Proceedings of the 6th International
Conference on the Unified Modeling Language
(UML’03), October 2003. San Francisco, USA.

[24] A. Egyed : Instant Consistency Checking for the
UML, In Proceedings of the 28th International
Conference on Software Engineering (ICSE‘06),
May 2006, Shanghai, China. ACM Press.

[25] A. Egyed : UML/ANALYZER: A Tool for the
Instant Consistency Checking of UML Models, In
Proceedings of the 29th International Conference
on Software Engineering (ICSE'07), pp. 793-
796, May 2007, Minneapolis, MN, USA, IEEE
Computer Society.

[26] U. Bellur and V. Vallieswaran : On OO Design
Consistency in Iterative Development, In
Proceedings of the 3rd International Conference
on Information Technology: New Generations
(ITNG'06), pp. 46-51, April 2006.

61

R

ef
. N

o

N
at

ur
e

M
D

A
 B

as
ed

U
M

L
 V

er
si

on

U
M

L
 D

ia
gr

am
s

C
on

si
st

en
cy

T

yp
e

In
te

rm
ed

ia
te

R

ep
re

se
nt

at
io

n

C
on

si
st

en
cy

St

ra
te

gy

R
ul

es
 P

ro
vi

de
d

C
as

e
St

ud
y

A
ut

om
at

ab
le

T
oo

l S
up

po
rt

[8] Behavioral N 1.3 SD, CLD,
SC

Inter-model CSP-OZ Monitoring M Y H Y

[9] Both N 1.5 CD, SM Intra-model CSP-OZ Monitoring M Y H N
[10] Behavioral N 1.3 SC Inter-model OZ Monitoring H N H N
[11] Both N 2.0 UCD, CD,

SD, AD,
SC

Inter-model CPN Analysis H N H N

[12] Both N 2.0 CD,
SD,SC

Intra-model OOL Analysis H Y H N

[13] Behavioral N 1.4 SD, SC Semantic &
Syntactic

LGSPN Monitoring M Y M N

[14] Both N 1.5 CD, SC
(FSM)

Intra-model MERODE All L N H Y

[15] Structural N 2.0 CD Evolution Logic
Program

Monitoring M N L N

[16]
[17]

Both N 1.5 CD, SD,
SC

Intra &
Evolution

ALCQI Monitoring L N L N

[18] Behavioral N 1.4 SD, CLD,
SC

Intra-model Extended
UML

Monitoring M N M N

[7] Both N 2.0 CD, SD,
SC

All Extended
UML

Monitoring H Y H Y

[19] Structural N 1.5 CD Evolution N Analysis M Y H Y
[20] Behavioral Y 1.4 SD, SC Intra-model N Analysis &

Construction
H Y H N

[21]
[22]

Both N 1.4 CD, SD,
SC

Intra-model N Monitoring H Y H Y

[23] Both N 1.5 CD, SD,
SC

Intra-model N Monitoring L Y M N

[24]
[25]

Both N 1.3 CD, SD,
SC

Intra-model N Monitoring M Y H Y

[26] Both N 1.5 UCD, CD,
SD, SC,
CPD, DD

Inter-model N Construction M N H Y

Table 1: Analysis of UML diagrams Consistency Checking Techniques

Abbreviation Value
H High
M Medium
L Low
Y Yes
N No

Abbreviation Value
UCD Use-case

Diagram
CD Class Diagram
SD Sequence

Diagram
CLD Collaboration

Diagram
SM State Machine
SC Statechart

Abbreviation Value
AD Activity

Diagram
CPD Component

Diagram
DD Deployment

Diagram
FSM Finite State

Machine

Table 2: Abbreviations Used in table 1

62

