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Abstract—This paper presents a novel parametric thresholding
procedure to reduce the effect of speckle noise in ultrasound
(US) medical images. The method comprises the use of an
adaptive data-driven exponential operator that operates on
wavelet coefficients of the US image to suppress undesired effects
of disturbances, preserving signal details. The obtained results
demonstrate that the proposed denoising method increases the
medical image quality and, therefore, it can be a useful tool in
medical diagnosis.

Index Terms—Scattering, speckle noise, thresholding, ultra-
sound medical imaging, wavelet transform.

I. Introduction

MEDICAL IMAGES are very useful tools to investigate
the anatomy of the human body, to diagnose diseases,

and to examine various illnesses. This discipline incorpo-
rates radiology, nuclear medicine, computed tomography (CT),
magnetic resonance imaging (MRI), and ultrasonography.
Each of these methods ensures important performances but
has different limitations. CT provides high resolution images,
especially for bone structures, but exposes patients to radiation
dose [1]; instead, MRI provides high quality images, especially
for soft tissues, but requires long examination time [2].

Ultrasound (US) imaging has been considered, for many
years, the best technique for organ and soft tissue imaging and
today, it is often preferred because it is economic, portable,
adaptable, non-surgical, and without ionizing radiation. US
images are obtained in real time by processing the echo
signals reflected by body tissues, which have different acoustic
impedances. Unfortunately, ultrasonography gives low quality
images, which makes their interpretation difficult as they
strongly depend on the operator’s skill.

This limitation is mainly due to the presence of speckle
noise [3]. Speckle is an undesirable interference effect oc-
curring when two or more US waves interfere with each
other, constructively or destructively, producing bright and
dark spots. It reduces both spatial and contrast resolutions in
US images, and contributes to a lower signal-to-noise ratio
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(SNR), reducing the ability to resolve details and to detect
objects of size comparable to its own size. Therefore, filtering
techniques for speckle noise are of particular interest for
medical US imaging.

Many denoising techniques have been developed to improve
US image quality, each of them with its advantages and lim-
itations and all practically ascribable to single and multiscale
methods. The single scale methods are based on the applica-
tion of denoising filters directly in the original image. Median
and Wiener filters [4]–[8] are the most popular approaches.
Even though these filters offer simplicity of implementation,
they fail to preserve many useful details and to distinguish
boundaries between areas with small differences in gray level.

Other filtering typologies are based on the mathematical
morphology [9]. They use suitable structuring elements to
model the characteristics of the speckle, such as shape and
size. This issue is very difficult because of the irregular shape
of the speckle noise.

On the other hand, multiscale methods apply the single scale
method to sub-images obtained by using wavelet decomposi-
tion or Laplacian pyramid. Recently, wavelet transform (WT)
has been widely used to recover signals from noisy medical
image [10]–[15]. In this way the wavelet decomposition sim-
plifies the statistic of the signal and tries to remove the noise
while preserves the signal characteristics.

Another reason for choosing the multiscale decomposition
is that it provides information on how the amplitude content of
the signal along horizontal, vertical, and diagonal orientations
varies with the frequency.

Generally, in the denoising methods, the wavelet coefficients
are passed through a threshold testing that requires replacing
noisy coefficients below a fixed value with zeros, and keeping
the others because they have the most of information. Then,
the resulting coefficients are used to reconstruct the signal.

This nonlinear process known as wavelet shrinkage depends
hardly on the choice of threshold value because it determines
the efficacy of the whole denoising operation. Thresholding
methods are particularly effective for sparse representations
where most of image information is concentrated in few large
coefficients [16], [17]. The sparsity is a typical characteristic of
wavelet domain where noise is uniformly spread throughout all
coefficients, while the signal is represented by a small subset
of high coefficients.

In this paper, we propose an adaptive wavelet threshold-
ing operator that depends on both noise level and signal
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characteristics and differs with resolution scales. So, a new
expression of thresholding operator is suggested here. The
proposed method is based on the assumption that speckle
noise commonly manifests itself as a fine-grained structure
and generates low wavelet coefficients that can be removed
by a suitable thresholding algorithm. This formulation is
grounded on the empirical observation that the wavelet details
in the sub-bands of a high quality US image exhibit a heavy-
tailed distribution (as shown successively), whereas a noisy
image provides wavelet coefficients generally characterized
by a smoothed distribution. The application of a traditional
soft thresholding on noisy image provides a highly impulsive
distribution of the relevant wavelet coefficients because it
removes significant pixels too. Therefore, it is suitable to
modify the thresholding algorithm to provide a more effective
image filtering.

II. Wavelet Thresholding

The main filtering techniques based on the wavelet trans-
form use a thresholding operator for signal denoising. These
methods involve three steps: 1) the computation of the forward
wavelet transform of the noisy image; 2) the filtering of the
wavelet coefficients by means of a thresholding processor; and
3) the image reconstruction obtained by the inverse wavelet
transformation with the filtered coefficients.

A. Wavelet Thresholding in US Images

The choice of a threshold value is a crucial phase in the
wavelet denoising filtering because the threshold separates
the undesired coefficients corresponding to the noise and the
significant coefficients useful to reconstruct the image signal.
Generally, a low threshold value preserves the details but does
not reduce sufficiently the noise; in this case, both the filtered
and the unfiltered images are very close. On the other hand,
a large threshold value reduces the noise but destroys many
details. To overcome these limitations, different thresholding
rules were proposed in the literature; the most known of them
are summarized below.

1) VisuShrink: This technique was pioneered by Donoho
and Johnstone [16], [18] and applies the universal threshold; it
consists of the use of a fixed (or universal) threshold defined
by the following equation:

Tu = σ2
n

√
2 log N. (1)

VisuShrink is a general purpose threshold selector that takes
into account only the image size (N) and the noise standard
deviation σn; though it minimizes the maximum error overall
number of pixels in the image it produces an overly smoothed
estimation that is ill suited to discontinuities in the signal,
introducing artifacts in the images [12]. An estimate of the
noise level σn in (1) is based on the median absolute deviation
given by [19]

σ2
n =

[
median(HH1(n, m))

0.6745

]2

(2)

where n and m are pixel indexes of HH1 that represents the
diagonal sub-band of first level wavelet decomposition of the
image.

The universal threshold is not signal adaptive because it
does not take into account signal properties. Moreover, for
a typical dimension image of 512×512 (or greater size),
universal threshold can be overly large due to the direct link
with N in (1); this produces an excessively smoothed image
that removes too many coefficients.

2) SureShrink: This method is a combination of the univer-
sal threshold and the Stein’s unbiased risk estimator (SURE)
technique [19]. It computes a separate threshold for each sub-
band and it is suited for images with sharp discontinuities; it
yields good denoising performance and assures little values
of the mean square error. In this case, the soft threshold is
defined as

TS = min(T, σ2
n

√
2 log N) (3)

where T denotes the value that minimizes the SURE.
3) BayesShrink: It is a method based on the assumption

that the wavelet coefficients are modeled as random variables
with general Gaussian distribution (GGD) within each sub-
band. Under this condition, a threshold is estimated to find
the value that minimizes the Bayesian risk [20]

TB (σx) =
σ2

n

σx

(4)

where σx is the image standard deviation evaluated in each
wavelet sub-band.

Practically, BayesShrink works in the same way as
SureShrink, and gives good results when a GGD is assumed
[19]. This threshold adapts both signal properties and noise
characteristics. Unfortunately, in medical US images the noise
is multiplicative [21] so the direct applications of the above-
mentioned techniques cannot be adequate to remove speckle.

Another important issue in coefficients processing is the
thresholding operator, which defines the function used to
discriminate the wavelet coefficients. There are two different
methods normally used for the thresholding process [22],
shortly described below.

1) Hard thresholding, where the wavelet coefficients are
preserved if they are greater than the threshold, other-
wise they are set to zero

ht(x) =

{
0 |x| < T

x |x| ≥ T
(5)

where x is the generic image value;
2) Soft thresholding (also called shrinkage threshold) in-

volves first setting to zero the elements whose absolute
values are lower than the threshold and then scaling the
nonzero coefficients toward zero

st(x) =

{
0 |x| < T
sign(x) · (|x| − T ) |x| > T.

(6)

Soft thresholding avoids spurious oscillations since it
eliminates the discontinuity that is inherent in hard
thresholding. This is a very common method.
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Fig. 1. Histogram of one-level wavelet details for (a)-(c) the logarithm of a reference ultrasound image, (d)-(f) the logarithm of a noisy image, and (g)-(i)
the soft thresholding with the use of the universal threshold.

Most of the efforts in literature have been devoted to im-
prove the performance of the conventional standard threshold-
ing methods by developing new threshold values or different
operators.

It has been proved that spatially and scale-wise adaptive
threshold based on context modeling [11], [19], [23] are very
effective.

Recently, some research has addressed the development of
statistical models for wavelet coefficients of image decomposi-
tion. Hence, statistical approaches have emerged as a new tool
for wavelet filtering based on Bayesian approach that models
wavelet coefficients with prior probability distributions [24],
[25].

B. Problem Formulation

As a general rule, the wavelet denoising based on thresh-
olding processor runs well in presence of additive noise.

Many studies [3], [22], [23] have proved that the speckle
noise that affects the US images can be modeled as a multi-
plicative noise

I(i, j) = Ir(i, j) · n(i, j) (7)

where I and Ir are the noisy and the noise-free image
respectively, while n is the noise component having real
and imaginary parts independent, zero mean, and identically
distributed [3], [22].

Then, a very widely used approach in US denoising is to
preprocess the speckled data by resorting to the logarithmic

function to transform the multiplicative noise model into an
additive one

log I(i, j) = log Ir(i, j) + log n(i, j). (8)

After the logarithmic transformation, it is possible to de-
compose the noisy US images by a suitable wavelet transform,
where the noise is assumed approximately Gaussian and
additive [10], [26], [28]. For each decomposition level (l), the
WT produces four wavelet sub-images: Al, Hl, Vl and Dl,
where Al is the low resolution residual at the scale l, and
Hl, Vl and Dl, represent the horizontal, the vertical, and the
diagonal details at the same scale, respectively.

Wavelet methods usually perform well in denoising medical
images if the noise is assumed additive and homoscedastic
[27]. Both the distortion of the image and loss of the infor-
mation may occur when the noise is characterized by non-
constant variance even if the enhancement of images can be
obtained with the use of adaptive thresholding [28]–[30]. The
wavelet thresholding procedure filters only the coefficients of
the details sub-bands, keeping the low resolution coefficients
unaltered.

III. Materials and Method

Wavelet denoising involves a linear forward wavelet trans-
form, a nonlinear thresholding step and a linear inverse wavelet
transform. So, finding a suitable threshold is the principal and
not easy task.

In this paper, the authors propose a new wavelet threshold-
ing procedure to reduce the noise effect on US images.
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TABLE I

Thresholding Parameters for Different US Transducer Frequencies

1–level decomposition 2-level decomposition 3-level decomposition
US frequency k1 n1 k2 n2 k3 n3

15 MHz 3.2 3 2.0 2 1.5 0.5
10 MHz 3.2 3 2.0 2 1.5 0.5
8 MHz 3.2 3 2.5 2 2.0 0.5
6 MHz 3.2 3 2.7 2 2.0 1.0
5 MHz 3.2 3 3.0 2 2.0 1.0
4 MHz 3.2 3 3.5 2 2.5 1.0

1) Materials: To evaluate the effects of thresholding
operator on noisy images, it is necessary to have reference
images (without noise or with low noise level), to compare
them with the output of the filters. In this paper, the US
images simulator Field II [31] is used to generate the reference
images for thresholding evaluation. In this respect, we have
set the simulation parameters according to the suggestions on
the Field II website to obtain high quality US images. So
the used parameters are: 1 000 000 scatterers number, 13 MHz
as transducer frequency, and transducer with 128-elements
linear array, each of them a height of 5 mm. These parameters
have been chosen with the aim of generating high quality US
images, used as reference data.

The reference images in this paper represent a kidney, a
heart, and a liver, i.e., the most common tissues analyzed in
US diagnosis. Two supplementary reference images have been
generated by adding some cysts on the kidney and the liver
images, respectively. Each of them has a resolution of 256
grey levels and a dimension of 408×480 pixels. Subsequently,
the images have been corrupted with multiplicative speckle
noise; then for each of the five reference images, 20 noisy
images have been generated. The noise variance ranges from
0.001–0.2 to simulate the noise levels affecting the images
produced by ordinary US systems. The used variance levels
are referred to image intensity with normalized values ranging
from 0 to 1.

To use the wavelet multiresolution analysis (decomposition),
homomorphic processing (logarithmic transform) [10], [12],
[21] is first applied to the noisy images to convert the
multiplicative speckle noise model to an additive one; then a
wavelet transform with mother Symlet 7 is performed on the
log-transformed images followed by an exponential operation.
Successively the images are reconstructed by using the wavelet
coefficients passed through the proposed thresholding testing.

The quality of reconstructed images has been measured by
a traditional quality index, such as peak signal-to-noise ratio
(PSNR)

PSNR = 10 · log10
L2

1
n·m

n∑
i=1

m∑
j=1

[
Iref (i, j) − Inr(i, j)

]2
(9)

where Iref is the reference US image, Inr is the reconstructed
image obtained by wavelet thresholding of noisy image; n and
m are the row and column numbers of the images, and L is
the number of the image grey levels, respectively.

Fig. 2. (a) Exponential, (b) soft, and (c) hard thresholding realization.

In addition to PSNR, beta metric [32] is used to evaluate
the edges preservation in the filtered image

β =
�

(
�I − �I,

�

�I −�

�I,

)
√

�
(
�I − �I, �I − �I

) · �

(
�

�I −�

�I,
�

�I −�

�I

) ;

�(I1, I2) =
∑

(i,j)∈ROI

I1(i, j) · I2(i, j) (10)

where �I is the highpass filtered version of image I(i,j), ob-
tained with 3×3-pixel standard approximation of the Laplacian
operator. Of course, an increase in this parameter indicates
better performances.

2) Threshold Selection and Proposed Procedure: As pre-
viously specified, many experimental and theoretical studies
have proved that the wavelet coefficients have a heavy-tailed
distribution [19], [33]. This is particularly emphasized in US
noisy-free images. It was thus deemed necessary to investigate
the influence of speckle noise on wavelet coefficients distri-
bution.

Let Lref be the logarithm of the reference image and Ln

the logarithm of the reference image corrupted with speckle
noise. Both images have been decomposed with one-level
wavelet transform. It is possible to highlight that the wavelet
details of Lref exhibit a heavy-tailed distribution (as shown in
Fig. 1 (a)–(c)), according to the previous observations. On the
contrary, the distribution shape of the wavelet coefficients of
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Fig. 3. Behavior of (a) PSNR and (b) β versus k1 variation for different n1 values. The results refer to one-level wavelet decomposition of the logarithm of
a liver noisy ultrasound image. The performance of the proposed operator has been compared to one-level universal threshold (bold red line).

Fig. 4. Behavior of (a) PSNR and (b) β versus k2 variation for different n2 values. The results refer to two-level wavelet decomposition of the logarithm of
a liver noisy ultrasound image. The performance of the proposed operator has been compared to two-level universal threshold (bold red line).

Fig. 5. Behavior of (a) PSNR and (b) β versus k3 variation for different n3 values. The results refer to three-level wavelet decomposition of the logarithm
of a liver noisy ultrasound image. The performance of the proposed operator has been compared to three-level universal threshold (bold red line).

Ln is lightly tailed (Fig. 1 (d)–(f)). Moreover, the application
of VisuShrink soft thresholding to Ln coefficients provides a
highly impulsive distribution (as shown in Fig. 1 (g)–(i)). This
is due to the large value of the universal threshold that sets to
zero too many coefficients.

To overcome this limit, a new parametric thresholding oper-
ator was proposed. Thresholding, essentially, creates a region
around zero where the wavelet coefficients are considered
negligible. The goal of the proposed method is to provide an
alternative function, with respect to hard and soft thresholding,
able to gradually reduce the coefficients in the zero zone.
For this aim the following thresholding operator based on

exponential function was defined as

et(x) =

{
x · enl·(|x|−Tkl

) |x| < Tkl

x |x| ≥ Tkl

; Tkl
=kl · Tul

(11)

where nl is a real parameter identifying the fall degree of
exponential function for l decomposition level, while kl factor
provides a modified version of l-level universal threshold,
which offers more flexibility in the threshold choice.

The thresholding function is applied to each sub-band on
three wavelet detail coefficients after estimation of the sigma
value from the data. This procedure makes the proposed
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Fig. 6. Comparison of (a) PSNR and (b) β for different thresholding methods and for different noise variance applied to liver ultrasound images.

Fig. 7. Comparison of (a) PSNR and (b) β for different thresholding methods and for different noise variance applied to kidney ultrasound images.

Fig. 8. Comparison of (a) PSNR and (b) β for different thresholding methods and for different noise variance applied to heart ultrasound images.

method very adaptive to data and can be optimized for each
image and for different noise conditions.

The presence of x factor in (11) produces the zero setting of
the thresholding function in x = 0 and avoids discontinuity in
x = Tk. Fig. 2 shows an example of the new thresholding real-
ization and compares it with the traditional soft thresholding
operator.

In order to estimate the best values for nl and kl parameters,
many simulation tests have been carried out with the aim to
maximize both PSNR and β metric of the proposed procedure
comprising the following steps.

1) Perform the logarithm of speckled images Ln.
2) Perform the wavelet transform of the logarithmic speck-

led images with l level decomposition.
3) Obtain noise variance for l level decomposition using

(2).
4) Compute the universal threshold for each level decom-

position by (1).
5) Process all l level sub-band coefficients by using the

thresholding function (11).
6) Perform the inverse wavelet transform to reconstruct the

denoised image.
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Fig. 9. (a) Real ultrasound image of a liver metastasis, (b) its filtered version with the proposed method, (c) the Bayesian Shrink thresholding, (d) the
universal thresholding, and (e) the Smith thresholding.

7) Take the exponent.

Finally, the obtained results have been compared with other
threshold techniques for different noise levels.

IV. Experimental Results

In a first step, a liver reference US image has been con-
sidered. In order to verify the performance of the proposed
method in the most critical conditions, the maximum noise
variance value (previously defined in Section II-A) has been
initially used to corrupt reference US image.

Then, experimental tests have been carried out for eval-
uating the performance of the new thresholding operator
applied to one-level wavelet decomposition of logarithmic
noisy images. Different values for n1 and k1 parameters
have been tested; the relevant experimental results are shown
in Fig. 3. In the proposed tests, k1 is always greater than
1. In fact, the proposed operator sets the wavelet coef-
ficients to zero gradually and so it is suited to enlarge
the thresholding zone with respect to Tu to make the
thresholding procedure more effective. The obtained re-
sults have been compared with one-level universal thresh-
old.
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Fig. 3 show that PSNR increases when both n1 and k1

increase, while β is characterized by an opposite behavior.
Then, it is necessary to choose suitable parameter values to
ensure a good compromise between the two quality indexes.
Consequently, k1 = 3.2 and n1=3 have been selected as optimal
values that provide good performance for both PSNR and β

and improve the image quality with respect to the use of
universal threshold. Similar tests have been carried out for two-
level wavelet decomposition. The obtained results are shown
in Fig. 4.

In this case k2 = 2 and n2 = 2 have been chosen as
optimum values. The values of parameters decrease when the
decomposition level increases. This result, partially confirmed
in a previous work [34], agrees with the observation that the
image details are emphasized when the level decomposition
increases. Then, to preserve image edges, the increase of
l requires a decrement in smoothing signal, obtained by
reducing both the threshold and the exponential degree values.
Fig. 4 highlights that the two-level wavelet decomposition of
the proposed thresholding is more effective than the two-level
wavelet decomposition of the universal threshold. In fact, the
switch from one-level to two-level decomposition improves
PSNR and β of about 5.3% and 9.9%, respectively, in the
new exponential thresholding; while it provides an increase of
about 3.7% and 1.3%, respectively, in the universal thresh-
olding. Then the proposed method is more scale adaptive,
because it allows changing both threshold and shape of the
thresholding function for each decomposition level. Further
tests have been repeated for three-level wavelet decomposition;
the obtained results are shown in Fig. 5. Then, k3 = 1.5 and
n3 = 0.5 have been chosen as optimum values confirming that
the thresholding parameters decrease when the decomposition
level increases. In this case, the universal threshold operator
provides worse performance with respect to the two-level
decomposition, while the proposed method offers a further
improvement in PSNR and β of about 0.07% and 1.3%,
respectively.

Additional experimental tests have proved that a further
increase in decomposition level does not significantly improve
the quality image for the exponential thresholding.

The produced results have been obtained starting on a
reference US images generated by Filed II with a high
frequency of US transducer (13 MHz) to have a high resolution
image. In this way, the high resolution characteristic has been
empathized with respect to the loss of penetration due to the
use of high frequency.

However, further experimental tests have been carried out by
using reference US images produced with different transducer
frequencies. The obtained results show that the noisy images
exhibit a PSNR and a beta metric, which reduce when the
frequency decreases. The obtained results are summarized in
the Table I.

It is possible to note that the parameters k1 and n1 are
insensitive to frequency changes. Moreover, in the frequency
range 10–15 MHz the thresholding parameters remain constant
at each level of decomposition.

On the contrary, when the frequency ranges in 4–8 MHz,
the optimal values of both the fall degree of the exponential

function (nl) and of the modified threshold (kl) change with
the decomposition level (l). Particularly, for two-level decom-
position, the n2 parameter does not vary with the frequency;
instead k2 parameter increases when the frequency decreases.
These results can be justified because the images with low
resolution need an enlarged threshold to provide more effective
smoothing. For three-level decomposition both parameters
increase, albeit slightly, when the frequency decreases.

Finally, in order to validate the performance of the proposed
method, a comparison with the results obtained by using
BayesShrink and the polynomial thresholding proposed by
Smith [35] has been performed for different noise levels. Fig. 6
shows that the exponential thresholding is more effective in
terms of β metric. With regards to PSNR index, both the
proposed method and the BayesShrink provide very similar
performances. Analogous results have been obtained on heart
and kidney images (as shown in Figs. 7 and 8, respectively).

Finally, the filtering tests have been carried out with some
real US images. Fig. 9 show a qualitative comparison of a real
US image of liver metastasis filtered with different tresholding
methods.

Although a visual image inspection is not always effective
because it is not much sensitive to the loss of small size
details, it is possible noting that 1) the universal threshold-
ing offers worse performance in terms of preserving details,
2) the Bayesian Shrink and Smith tresholding provide a higher
smhooting, and 3) the proposed method offers a good trade-off
between noise reduction and edge preservation.

V. Conclusion

In this paper, the wavelet based denoising of US images
was addressed by focusing the attention on the influence of
thresholding operator. In particular, a new multiscale suit-
able data-driven thresholding operator grounded on parametric
exponential function was presented to reduce speckle noise.
The parametric approach was more flexible and effective
because it adapted the thresholding parameters to the wavelet
level decomposition and to the image characteristics. Several
experiments were carried out on simulated US images with
different US transducer frequencies to provide a wide case of
study. The obtained results showed that the proposed method
provides good performance, especially in terms of β metric.
This one increased by about 10% with respect to the other
thresholding methods.

Finally, experimental tests carried out on real US images
seemed to confirm and validate the proposed technique. The
suggested threshold operator assures good feature preservation
performance and it is proposed as a useful method in medical
image processing.
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